Table of Contents Table of Contents
Previous Page  163 / 390 Next Page
Information
Show Menu
Previous Page 163 / 390 Next Page
Page Background

Summary

The recent research results strongly suggest that a major part of methyl group

decomposition and related side-reactions occur at or near the active sites which

catalyze MCS formation. This is evidenced by the following observations: (a)

formation of Si-H and Si-CH

2

-Si containing products; (b) the co-relation of MeH

suppression and Me2 enhancement when methyl group decomposition is suppressed,

(c) formation of coke near Cu and Cl sites. On a single active site, there is competition

between transferring activated methyl groups to form MCS and decomposing them.

Encouraging methyl group decomposition might increase Si-H containing products.

However, the overall material efficiency should decrease, as more methyl groups will

likely be converted to hydrocarbon wastes. Fine-tuning the balance to achieve the

optimum process performance requires detailed mechanistic information of methyl

group decomposition and its related side-reactions. Studying these side-reactions of

the direct process face the challenge of separating them from the main reaction of

forming MCS. Developing new instrumentation and research methods might be

necessary to achieve this goal.

References

(1)

Lewis, K. M. In

Catalyzed Direct Reactions of Silicon

; Lewis, K. M., Rethwisch, D. G., Eds.;

Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1993, p 1.

(2)

Lewis, K. M.; McLeod, D.; Kanner, B.; Falconer, J. L.; Frank, T. In

Catalyzed Direct Reaction

of Silicon

; Lewis, K. M., Rethwisch, D. G., Eds.; Elsevier Science Publishers B.V.:

Amsterdam, The Netherlands, 2003.

(3)

Acker, J.; Bohmhammel, K.

J. Organomet. Chem.

2008

,

693

, 2483.

(4)

Gordon, A. D.; Hinch, B. J.; Strongin, D. R.

J. catal.

2009

,

266

, 291.

(5)

Magrini, K. A.; Gebhard, S. C.; Koel, B. E.; Falconer, J. L.

Surf. Sci.

1991

,

248

, 93.

(6)

Samson, Y.; Tardy, B.; Bertolini, J. C.; Laroze, G.

Surf. Sci.

1995

,

339

, 159.

(7)

Okada, M.; Goto, S.; Kasai, T.

J. Am. Chem. Soc

2007

,

129

, 10052.

(8)

Wessel, T. J.; Rethwisch, D. G.

J. catal.

1996

,

161

, 861.

(9)

Voorhoeve, R. J. H.

Organohalosilanes: Precursors to Silicones

; Elsevier, Amsterdam, 1967.

(10) Olakangil, J. F., PhD Thesis, The University of Iowa, 2002.

(11) Hawkins, L. G. In

Catalyzed Direct Reactions of Silicon

; Lewis, K. M., Rethwisch, D. G., Eds.;

Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1993, p 189.

(12) Muller, R.; Gumbel, H.

ZAAC

1964

,

327

, 286.

(13) Alber, A., PhD Thesis, The Technical University of Darmstadt, 2010.

(14) Freeburne, S. K.; Jarvis, R. F., Jr.

One step process for converting high-boiling residue from

direct process to monosilanes

; Dow Corning Corp., USA . 1997 US5627298A.

(15) Yeon, S.-H.; Han, J. S.; Yoo, B. R.; Jung, I. N.

J. Organomet. Chem.

1996

,

516

, 91.

(16) Henry, D. J.; Parkinson, C. J.; Mayer, P. M.; Radom, L.

J. Phys. Chem. A

2001

,

105

, 6750.

(17) Westheimer, F. H.

Chem. Rev.

1961

,

61

, 265.

(18) Rochow, E. G.

J. Am. Chem. Soc

1945

,

67

, 963.

(19) Bohmhammel, K.; Roewer, G.; Röver, I.; Acker, J. In

Silicon for the Chemical Industry VII

;

Øye, H. A., Holas, A., Nygaard, L., Eds. MS Trollfjord, Trøms-Bergen, Norway, 2004.

(20) Tamhankar, S. S.; Gokarn, A. N.; Doraiswamy, L. K.

Chem. Eng. Sci.

1981

,

36

, 1365.

(21) Gokarn, A. N.; Doraiswamy, L. K. In

Catalyzed Direct Reactions of Silicon

; Lewis, K. M.,

Rethwisch, D. G., Eds.; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1993.

(22) Acker, J.; Kother, S.; Lewis, K. M.; Bohmhammel, K.

Silicon Chem.

2003

,

2

, 195.

(23) Ward, I. W. J.; Lewis, L. N.; Bablin, J. M.; Demoulpied, D. C.

Method for promoting

dialkyldihalosilane formation during direct method alkylhalosilane production

; General

Electric Company, USA . 2001 US6258970B1.

155