Previous Page  41 / 60 Next Page
Information
Show Menu
Previous Page 41 / 60 Next Page
Page Background

41

ZEB

annual report 2015

hand, a double-glazing with aerogel filling

with a similar U-value has a g-value of 0,75,

which means a window with the same thermal

insulation property and higher transparency.

This is very favourable, as a high g-value

allows for high solar radiation, which in winter

is beneficial for reducing the energy required

for space heating.

However, it must be noted that depending

on the form of the final product (powder or

monolith), the optical properties of aerogel

varies. While monolithic aerogel shows a

visible transmittance which is comparable to

glass, granular aerogel shows much lower

values of visible transmittance, as the material

is translucent. In such a perspective, the use

of granular aerogel in residential buildings

may have a limited application due to its

translucent appearance.

The energy simulations showed that the

substitution of triple-glazing with argon gas

with aerogel glazing (either monolithic or

granular) saves up to 20% of the delivered

energy for space heating. This is due, as

explained above, to the high solar radiation

through aerogel windows.

The calculation of the lifecycle of greenhouse

gas emissions showed that the building

lifecycle emissions decrease by 9% when

the aerogel windows substitute triple-glazed

windows. In figure 3, the comparison

between the use of either aerogel windows

or triple-glazed windows represents the

most significant results (space heating, total

building energy use, and building lifecycle

emissions). The values are obtained by

dividing each result given by the use of

aerogel windows by the same result given by

the use of triple-glazed windows. In the first

column the different windows types (granular

aerogel, monolithic aerogel, and triple-glazing)

and the different glazing ratios (amount of

glazed area/total facade area) are shown. It

is possible to conclude, from the results of

this study, that the use of aerogel windows

is beneficial for the reduction of the building

energy need for indoor space heating and the

lifecycle emissions for a residential building

located in Norway.

For å få bukt med den lave termiske

motstanden i transparente overflater er det

utviklet vindustyper med flere lag glass,

hvorav et bredt utvalg er tilgjengelig i dagens

marked. Trelags vinduer med lavenergibelegg

og argongassfylling er eksempel på en effektiv

energispareløsning. Disse teknologiene har

imidlertid den ulempen at de, som følge av de

mange lagene med belegg, drastisk reduserer

andelen solstråling som trenger gjennom

glasset. Dette kan være ugunstig på nordlige

breddegrader (som i de skandinaviske

landene) der solstrålingen i vinterhalvåret er

liten både med tanke på tilgjengelighet og

lyskvalitet. Glass med aerogelˆ er fremmet

som en teknologi med evne til både å

slippe inn mer dagslys og med en bedre

isolasjonsverdi enn tradisjonelle vinduer med

tre- og firelags glass. Resultatene presentert

her sammenligner og vurderer utslippene av

drivhusgasser (GHG) fra tre ulike teknologier

benyttet ved renovering av et boligkompleks

Figure 1. Top left and centre: the West and East façades of the test building, the Myhrerenga Borettslag before renovation. Top right: the original drawing of the

cross section of one the apartment buildings. From Lolli, N., Life cycle analyses of CO2 emissions of alternative retrofitting measures, Ph.D. Thesis, Norwegian

University of Science and Technology, 2014.