Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

  • 11.09. Jonas Tjemsland* (previously IFY, NTNU): How are the Norwegian electricity prices set? *Exceptional time: wednesday, 14:15.

Abstract:Despite Norway's self-sufficiency in hydro and wind power, its electricity prices are significantly influenced by external factors, such as European gas and coal prices. This issue became particularly noticeable during the 2021 energy crisis, sparking heated family debates. In this talk, I will provide an introduction to the Norwegian electricity market, aiming to enlighten potential future arguments. I will discuss how the electricity prices are determined in the Day-Ahead auction. Finally, I will offer insights into the short- and long-term outlook for Norwegian electricity prices.


  • 17.09. Bidisha Sen  (IFY, NTNU): TBD The Orbit and Companion of PSR J1622-0315: Variable Asymmetry and a Massive Neutron Star

Abstract:  The companion to PSR J1622-0315, one of the most compact known redback millisecond pulsars, shows extremely low irradiation despite its short orbital period. We model this system to determine the binary parameters, combining optical observations from NTT in 2017 and NOT in 2022 with the binary modeling code ICARUS. We find a best-fit neutron star mass of $2.3 \pm 0.4\,\text{M}_\odot $, and a companion mass of $0.15 \pm 0.02\,\text{M}_\odot$. We detect for the first time low-level irradiation from asymmetry in the minima as well as a change in the asymmetry of the maxima of its light curves over five years. Using star spot models, we find better fits than those from symmetric direct heating models, with consistent orbital parameters. We discuss an alternative scenario where the changing asymmetry is produced by a variable intrabinary shock. In summary, we find that PSR J1622-0315 combines low irradiation with variable light curve asymmetry, and a relatively high neutron star mass. Slides available here: https://www.ntnu.no/wiki/download/attachments/195538250/Bidisha_Sen_PSR_J1622.pdf?api=v2


  • 08.10. Valentina Richard Romei*  (IPAG, Grenoble): Enhanced particle acceleration in a pulsar wind interacting with a companion *remote seminar

Abstract:

...

Pulsar winds have been shown to be preferred sites of particle acceleration and high-energy radiation. Models have been constructed in order to better characterize their general structure in isolated systems. However, most of the galactic millisecond pulsars find themselves in binary systems. In this talk, I present the first Particle-in-cell (PIC) simulations of both the pulsar magnetosphere and the wind of the pulsar interacting with an unmagnetized spherical companion. This work considers a generic case that could be applied to various companions including planets, asteroids, white dwarfs, or even neutron stars. Our results show evidence of an enhanced conversion of Poynting flux into particle acceleration, via forced reconnection in the outflowing wind near the companion. Hence, the high-energy synchrotron radiation is also amplified and takes the form of an orbital-modulated hollow cone of light. We do not exclude long-period radio transient counterparts, that would be of significant interest, especially in the light of the recently discovered galactic long-period radio transients. Slides available here: https://www.ntnu.no/wiki/download/attachments/195538250/NTNU_seminar_VRR.pdf?api=v2


  • 24.10. Luca Comisso*  (Columbia University): Particle acceleration in highly magnetized plasmas *remote seminar, exceptionally on Thursday 4PM in D5-106

Video available here: https://www.youtube.com/watch?v=_KxfrVZkamE


  • 03.12. Karri Koljonen (IFY, NTNU): Cosmic-neighbor-associated distances to blazars

Abstract: Blazars are active galactic nuclei with relativistic jets directed toward Earth. Relativistic beaming amplifies their brightness, making them appear extremely luminous across multiple wavelengths, from radio to gamma-rays. Consequently, blazars are the most numerous source class among very high-energy gamma-ray emitters. However, determining their redshifts is often challenging because jet emission can obscure spectral lines from the host galaxy or intervening matter. In this talk, I will introduce two methods for estimating blazar distances by associating them with their "cosmic neighborhood". These techniques involve analyzing the optical fields around a blazar using either multi-object spectroscopy or multi-band photometry, combined with the assumption that blazars are typically located in galaxy-rich environments. Accurate redshift estimation for high-redshift blazars is crucial for advancing our understanding of extragalactic very high-energy gamma-ray sources and their interactions with the surrounding universe. Slides available here: https://www.ntnu.no/wiki/download/attachments/195538250/NTNU_seminar_Koljonen.pdf?api=v2


The (planned) seminars in 2025 are

  • 14.01. Matteo Imbrogno (Università di Tor Vergata of Rome): A tale of serendipity: quasi-periodic oscillations in pulsating ULXs and a search for new X-ray pulsators

Abstract: The discovery of pulsating ultraluminous X-ray sources (PULXs) has revealed that accreting neutron stars can shine at extreme luminosities, well above their Eddington limit. This finding has caused a shift in the ULX paradigm and poses significant challenges to our understanding of the physics of accretion onto compact objects. Given their rarity, every new insight into their complex phenomenology can bring us closer to a deeper understanding of these sources. A possible way to find more PULXs is by searching the archives of X-ray missions with good imaging and timing capabilities using a data mining approach. In the process, serendipitous sources are always behind the corner. Both the study of PULXs and the search for new X-ray pulsators through data mining have defined the course of my PhD. I will report my discovery of mHz QPOs in the X-ray flux of the PULXs. These mHz QPOs could represent a signature of super-Eddington accretion. I will also talk about a new pulsar (likely a new candidate magnetar) I discovered in the Large Magellanic Cloud thanks to a data mining project aimed at searching for new pulsators in the XMM-Newton archive.