Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

TPK 5170 RAMS Assessment and Optimization

Image Removed

...adds new methods to your RAMS toolbox and new skills in the application of these.                                                                         

 

Brief background of course

This course is the specialization course in reliability, availability, maintenance and safety (RAMS) in the last fall semester of the (2 year) international master program in RAMS and the (5 year) master program in Mechanical Engineering (in Norwegian: Produktdesign og Produksjon - PUP). The course introduces some new methods, and makes a more thorough presentation of methods introduced in previous RAMS-related courses.

Two examples:

  • Consider a wind turbine: We want this system to be reliable, meaning that it generates the power according to the turbine's operating profile. To ensure that the costs of producing power is sufficiently low, it is necessary to find more cost-efficient wind turbine designs and more cost-efficient ways of operating and maintaining them. This course aims to give you knowledge and competence in RAMS tools and methods help you to solve such tasks. 

  • Consider an instrumented pressure protection system installed in relation to a subsea pipeline which is tied into a topside platform. The system is installed to protect the pipeline from over-pressuring upon certain events, such as a downstream blockage. A failure of this instrumented pressure protection system may result in a pipe burst. If the pipe bursts close to the platform, it may eventually create a gas cloud nearby with the potential of escalating into an explosion and fire. If the pipeline bursts on the seabed, it may damage the sea environment. This course aims to give you a set of tools that are needed to define how reliable such safety-systems must be, how they should be designed to meet the reliability requirements, and how the reliability performance may be traced in operation
The course aims to build new knowledge and new skills in RAMS methods. In some cases, this means to extend the application of lectured methods and models, while in other cases, it means to introduce new methods to broaden the perspective to how RAMS assessments may be carried out
  • .

The course belongs to the large envelope of RAMS courses given from the department of Production and Quality Engineering at NTNU.  The course is adminstred by the RAMS group at this department. It is expected that the students already have taken (or have relevant background corresponding to):

  • TPK 4120: Safety and Reliability
  • TPK 4140: Maintenance Management 
  • TPK 5160: Risk Analysis 

...

  • You may ask why this is necessary, if the you (for example) are focusing mainly on risk analysis in the specialization project and master thesis. The answer from our This course should give you the remaining topics that we - as a RAMS group - think you should have when you leave NTNU with a specialization in RAMS.

The responsible person for TPK 5170 in the fall of 2014 is Professor Mary Ann Lundteigen. She will give approximately 60% of the lectures. Since this is a specialization course, some "specialists" are brought in for specific topics. For example, Associate Professor Yiliu Liu  will lecture methods like PetriNets. Lectures that belong to the topic maintenance optimization are planned to be lectures by Professor Jørn Vatn our new Professor Anne Barros.

It may be remarked that this course may, from the fall of 2015, change the name to "Asset management methods". A new course in "Reliability of safety-critical systems" ("SIS course") will at the same time be introduced (from spring 2015). Topics related to  reliability assessment will be transferred to the new ("SIS") course, and it is planned that TPK 5170 with its new profile will expand on topics related to maintenance optimization and the estimation of remaining useful life. The changes will be available http://www.ntnu.edu/studies/courses, once implemented.

The responsible person for TPK 5170 in the fall of 2014 is Professor Mary Ann Lundteigen. She will give approximately 50% of the lectures. Since this is a specialization course, some "specialists" are brought in for specific topics. For example, Associate Professor Yiliu Liu  will lecture methods like PetriNets. Lectures that belong to the topic maintenance optimization are planned to be lectures by our new Professor Anne Barros.

Course objective and motivation

The main objective of this course is to increase the depth of understanding about RAMS assessment . Sometimes the purpose of the assessment is to determine the reliability requirements or to determine the reliability of system functions in light of safety requirements. At other times, the purpose is to minimize costs or downtime of the systems, by considering different maintenance strategies.

Think about a system. This system may constitute many different parts and together they shall perform many different functions. Systems may be production-critical, safety-critical, or even both. Safety-critical systems are used to protect personnel from injury and death, or to protect the environment from severe damages.  Production-critical systems may, if they fail, cost "a whole lot", and have a severe effect on a manufacturer reputation, the quality of products developed, and the costs associated with correcting the system after failure. Critical infrastructures may be consideres as both production and safety-critical. Stable and safe public transportation, clean and stable water supply, power supply, and net supply are important for serving the society and business, and a failure of these could affect safety at a local level as well as at a national level.

Some key questions to ask in relation to such systems are shown in the figure below, and in many cases, they need to be solved using RAMS assessment and optimization methods.

Image Removed

and optimization models and methods. Such models and methods may be useful for several purposes, including:

  • Definition of requirements (how reliable must a system be?)
  • Implementation of requirements (how should we design the system in order to meet stated reliability?)
  • How may we operate the system in order to minimize costs and time?
  • How may it be required to operate the system to be sufficiently safe?
  • How can we support our models and methods with data, and can these data be determined?

As already mentioned, the course aims to study already lectured methods and models in more detail, to add more perspectives to the understanding. Some new models This means that methods already introduced in other courses are studied in more detail, with assistance of new application examples and new perspectives. Some new methods are also introduced so that the students, after having taken the course, will have a heavy weighted solid toolbox of models and methods to use in their future work taskswork career.    

Expected learning outcome

...

Knowledge:
Obtain a more thorough understanding of the theoretical foundation and the practical applications of RAMS assessment and optimization methods. 

...

Reliability assessments of safety-critical systems are key services provided by many consultancy companies, such as with Safetec, Lloyd's Register Consulting, and DNV-GL (link to the GL-part of the services), and Lilleaker Consulting. Manufacturers like ABB, Siemens, AkerSolutions, FMC, Kongsberg Maritime and many others need to design systems in light of reliability requirements, and also demonstrate (sometimes with assistance of the consultancy companies) that the reliability requirements are met. End users, like railway service providers like Jernbaneverket, oil companies like Statoil, Det Norske, GDF-Suez, Shell and Conoco-Phillips, and Wintershall and other Wintershall, and other industries like smelting plants and water power suppliers must be competent to select proper system design, follow up the system performance and select the most suitable maintenance strategies to keep costs and safety within the accepetable limits.

...