Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

WhenWhoWhat

09.02.2022

10:30-11:30

Guest Ph.D Candidate

Danilo Colombo

Title: Optimizing the testing policy for the Blowout Preventer  

Abstract: The topic of the presentation is the optimization of the testing policy of a subsea Blowout Preventer (BOP). The subsea BOP is a safety-critical equipment used during the construction or intervention in a well. It is installed at the top of the wellhead, near the seabed, and connects the well with the rig via riser. When a kick occurs, i. e., the formation fluids start to flow into the wellbore, the BOP is activated and acts like a valve, sealing the well and preventing an oil spill from occurring. To ensure its availability and safety, the BOP is periodically tested, which entails the operation to be stopped. The tests are done usually according to the best practices (e.g. regulations, standards). The downtime due to the testing period may have a significant economic impact.

The aim of this study is to optimize the test strategy for BOP reducing costs while satisfying the integrity lever required. To do so it will be considered three kinds of tests: (i) functional tests, (ii) partial pressure tests; and (iii) maximum pressure tests. The study will investigate a formulation for the test coverage and costs of each test. The test policy should consider the last overhaul of the BOP (i.e., the age of components) and failures that lead to a loss of redundancy in the system, which affects the probability of having a safety impact.

Possible future developments are: (i) to include the degradation caused by the test; (ii) to consider dependent failures.

About Speaker: Guest Ph.D Candidate from Brazil, Danilo Colombo. He is a mechatronics engineer and obtained a M.Sc in Production Engineer with the work in Markov chains to model the subsea well integrity. He is a petroleum engineer at Petrobras and he is currently an advisor in reliability and risk analysis at the CENPES Research Center. He is a member of SPE (Society of Petroleum Engineers) and ABRISCO (Brazilian Association of Risk, Reliability and System Safety). 
27.01.2022

Ph.D. Candidate

Lin Xie

There will be no seminar this week. Instead, you are invited to Lin Xie’s defense.

  1. The trial lecture starts at 14:00 and the public defense at 15:00.
    Trial lecture: Safety barriers in renewable energy production
    Defense: Safety barriers in complex systems with dependent failures
  2. The meeting room PhysualDesign (on the second floor) is booked for the defense.
    You can also attend by the following link:
    https://NTNU.zoom.us/j/99829849206?pwd=aDlyRENNUXdNcGp5UGtPQnZHMEFGUT09
    Meeting ID: 998 2984 9206
    Passcode: 054409
  3. The department will prepare some small food, cake, and drinks to celebrate the defense at around 17:30. It will be arranged in the kitchen on the second floor.

Check the program for more information. Lin Xie_english program.pdf

13.01.2022

(Digital only)

Ph.D. Candidate

Lin Xie

Title: Safety barriers in complex systems with dependent failures—Modeling and assessment approaches

Abstract: Technical systems are becoming more and more complex with a degree of dependencies. Such dependency issues can significantly reduce system reliability and cause catastrophes without proper prevention. Therefore, a variety of control measures, such as safety barriers, are necessary to be adopted against dependent failures and ensure the safety of technical systems. However, in the current literature, neither the effects of dependent failures within safety barriers nor the impact of safety barriers against dependent failures has been well studied. Therefore, it is desirable to analyze and model the effects of safety barriers in complex systems considering dependency issues, such as dependency between safety barriers and the environment, dependent failures within safety barriers, and safety barriers against dependent failures. The Ph.D. thesis bridges safety barriers and complex systems by considering the dependency issues. The aim is broken into four objectives addressed in five journal articles and three conference articles.

...