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Abstract—The potential for destructive interference between
running processes is increased as Chip Multiprocessors (CMPs)
share more on-chip resources. We believe that understanding
the nature of memory system interference is vital to achieve
good fairness/complexity/performance trade-offs in CMPs. Our
goal in this work is to quantify the latency penalties due to in-
terference in all hardware-controlled, shared units (i.e. the on-
chip interconnect, shared cache and memory bus). To achieve
this, we simulate a wide variety of realistic CMP architectures.
In particular, we vary the number of cores, interconnect
topology, shared cache size and off-chip memory bandwidth.
We observe that interference in the off-chip memory bus
accounts for between 63% and 87% of the total interference
impact while the impact of cache capacity interference can
be lower than indicated by previous studies (between 5% and
32% of the total impact). In addition, as much as 11% of the
total impact can be due to uncontrolled allocation of shared
cache Miss Status Holding Registers (MSHRs).

I. INTRODUCTION

Chip Multiprocessors (CMPs) or multi-core architectures

are the prevalent architecture for modern general-purpose,

high-performance processors. In these architectures, it is

common to share some part of the hardware-controlled

memory system between cores. When multiple processes are

run concurrently, the presence of shared resources makes

destructive interference possible. In addition, the on-chip

shared resources are managed by simple hardware poli-

cies that are unaware that the requests belong to different

processes. The performance effects caused by destructive

interference are hard to predict since they are a conse-

quence of the runtime interaction between the memory

request streams from co-scheduled processes. Consequently,

destructive interference is an undesirable property and a

considerable research effort has been aimed at developing

techniques that reduce its performance impact [1, 2].

Figure 1 illustrates that the current CMP memory systems

are unable to provide predictable performance. To evaluate

interference, we use a baseline configuration called the pri-
vate mode where the benchmark is run in one of the process-

ing cores while the remaining cores are idle. Consequently, it
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Figure 1. Performance Impact of Interference in the 4-core, Crossbar-
Based CMP with 4 Memory Channels

has exclusive access to all shared resources. Conversely, all

benchmarks in a workload are run concurrently and compete

for access to the shared resources in the shared mode.

Figure 1 shows the private- and shared mode IPCs of all

benchmarks in two of our 40 randomly generated workloads.

These measurements are taken from the 4-core, crossbar-

based architecture with 4 memory channels which is the

architectural configuration with the lowest amount of inter-

ference of the configurations used in this work. In workload

17, facerec and mgrid are heavily impacted by interference

with a performance reduction of 46% and 21%, respectively.

However, the performance of mcf is only reduced by 1%.

This illustrates that the performance impact of interference

can be substantial and that it does not affect all running

processes equally. Furthermore, the performance impact of

interference is unpredictable since facerec is only slowed

down by 7% in workload 13. Since these effects are clearly

undesirable, there is a need for architectural techniques that

provide predictable performance and improve fairness.

Previously, cache capacity interference has received a

great deal of attention [1, 3–7] while only a few researchers

have proposed techniques that reduce memory bus interfer-

ence [2, 8, 9]. Furthermore, there has been little interest in

the details of designing a complete, thread-aware memory

system [10–12]. A first step towards a unified approach

to reducing interference in the hardware-managed memory

system is to develop an understanding of the problem. For
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Figure 2. Crossbar-based CMP
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Figure 3. Ring-based CMP

instance, we found that memory bus interference accounts

for 64% of the total amount of interference while cache

capacity interference only accounts for 25% with a powerful

4-channel memory bus in our 4-core crossbar-based CMP.

When the complexity of current fair cache sharing tech-

niques is taken into account, the fairness requirements on

the system must be strict for thread-aware cache techniques

to be worth the cost.

In this work, we aim to increase the understanding of

the interference problem and thus help architects achieve

good complexity/fairness trade-offs. This understanding is

developed through detailed analysis of interference at the

memory request level. Consequently, we are able to analyze

both the relative interference impact of the different shared

units as well as the distribution of interference penalties.

Handling memory bus interference yields the largest gain,

and we believe that employing a fairness-aware technique

here will be sufficient for many architectures and usage

scenarios. However, we have also observed interference due

to shared cache Miss Status Holding Register (MSHR) al-

location which must be handled if the fairness requirements

are sufficiently strict. Finally, we show that the main driver

of memory system interference is insufficient memory bus

bandwidth. Since this parameter is limited by the number of

physical pins on a chip and the electronic characteristics of

the circuit board, it is likely that thread-aware memory bus

schedulers will become a necessity in the near future.

II. RELATED WORK

It is common to aim an interference reduction technique

at providing fairness and/or Quality of Service (QoS). A

memory system is fair if the performance reduction due

to interference between threads is distributed across all

processes in proportion to their priorities [5]. QoS is pro-

vided if it is possible to put a limit on the maximum

slowdown a process can experience when it is co-scheduled

with any other process [1]. Furthermore, the allowed slow-

down can depend on the priority of the process. In other

words, the objective of fairness techniques is not to remove

interference completely but to equalize its impact on all

running processes.

There has been a considerable amount of research on how

the performance impact from interference can be reduced in

the hardware-controlled, shared memory system. However,

most of these studies have focused on a single component

of the entire system. For example, techniques have been

proposed to reduce cache capacity interference [1, 3–7],

cache bandwidth interference [13] and memory bus transfer

interference [2, 8, 9]. Unfortunately, a technique that reduces

interference in one component is not adequate to provide

interference control for the complete memory system. Con-

sequently, a few researchers have investigated how a chip-

wide resource management technique can be designed. Iyer

et al. [11] proposed a high-level framework for implement-

ing a QoS-aware memory system, while Nesbit et al. [12]

proposed the Virtual Private Machines framework where a

private virtual machine is created by dividing the available

physical resources among applications. In addition, Bitirgen

et al. [10] showed how machine learning can be applied to

the resource allocation problem. The focus of these works

has been to partition all shared resources amongst processes

according to some allocation policy. In this work, we in-

vestigate the impact of interference and provide guidance

on how trade-offs can be handled in resource allocation

implementations.

III. METHODOLOGY

A. Chip Multiprocessor Architectures

There is still considerable debate regarding the high-

level organization of CMPs [14–16]. Therefore, we use

two different CMP architectures that are similar to current

general-purpose, high-performance CMP implementations

for our interference investigations. Furthermore, we scale

these architectures according to the expected improvements

in process technology [17]. The first CMP type uses a

crossbar interconnect to connect the private L1 caches to

a large, shared L2 cache as shown in Figure 2. Unfortu-

nately, the crossbar does not scale in terms of area [18].

Consequently, we also use a different CMP model where a

bi-directional ring is used as the interconnect. Since the ring

has lower bandwidth than the crossbar, we add a private L2

cache to each processor to reduce the number of accesses

to the interconnect. This is reasonable since the ring uses

considerably less area than the crossbar. Furthermore, the

number of processing cores and memory bus channels can be

configured in both processor models which makes it possible

to investigate the impact of memory system interference

across a wide range of realistic CMP architectures. For

convenience, we will refer to these architectures by the tuple
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c-i-m where c is the number of cores, i is the interconnect

and m is the number of memory bus channels.

B. Measuring and Reporting Interference

To gather accurate interference measurements, it is con-

venient to compare to a baseline where interference does

not occur [19]. In this work, we create such a baseline by

letting the process run in one processing core and leaving

the remaining cores idle. Consequently, the process has

exclusive access to all shared resources and we will refer

to this configuration as the private mode. Conversely, all

processing cores are active and the processes compete for the

shared resources in the shared mode. Mutlu and Moscibroda

observed that memory system interference is related to the

memory latencies in the shared and private modes with

the formula: interference penalty = shared mode latency −
private mode latency [8].

In our CMP models, there are three shared units: the

interconnect, the memory bus and the shared cache. To

assess the interference impact of each of these units, we

partition the memory request latency through the shared

memory system as shown in Table I. For the interconnect,

we divide the latency into three types: entry, transfer and

delivery. The interconnect has a finite entry queue. If this

queue becomes full, the interconnect can not accept any

more requests and the request is delayed in the private cache

MSHR. We refer to this as Interconnect Entry Interference
if it causes a different delay in the shared mode than in

the private mode. Furthermore, the shared cache can block.

In this case, all requests waiting behind a request for a

blocked bank are delayed since reordering requests can cause

starvation. We refer to interference arising from this situation

as Interconnect Delivery Interference. Finally, Interconnect
Transfer Interference is the difference between the shared

mode and private mode latencies when there is no cache

blocking.

In the memory bus, we divide the latency into two types:

entry and transfer. Again, the entry delay is the number of

cycles the request is kept in an MSHR before it is accepted

into the memory bus queue. If this latency is different for

the shared and private modes, we refer to it as Memory
Bus Entry Interference. In addition, Memory Bus Transfer
Interference is the difference between the memory bus queue

latency plus service latency in the two modes. Since there is

no buffer allocation in the shared cache on a response, the

memory bus does not have a delivery latency.

Finally, competition for space in the shared cache can

lead to Cache Capacity Interference. Unlike the interference

types discussed above, cache capacity interference does not

have a latency value directly associated with it. The key

observation is that if a request experiences a bus transfer

latency in the shared mode and no bus transfer latency in

the private mode, we have a miss in the shared cache that

would have been a hit if the process had the entire cache

Figure 4. Interference Measurement Workflow

to itself. The extra latency caused by this event in our CMP

models is the number of cycles used to service the request in

the memory bus. Consequently, the latency penalty of cache

capacity interference is the sum of the bus entry latency and

the bus transfer latency of the request.

Figure 4 illustrates the two stage process of gathering

interference measurements and aggregating them for a single

architecture. In the first stage, we create a compact represen-

tation of the measured interference for each benchmark in

all workloads and architectures. First, we record the latency

of all shared mode memory requests and all private mode

memory requests. For all shared mode requests, we find

the corresponding private mode request and compute the

interference penalties for all interference types. If there are

more than one request for the same address, we assume that

the requests occur in the same order in both the private and

shared modes. Then, we create a histogram representation of

the data by counting the number of requests that experience

a certain interference penalty for each interference type. For

example, if a request for memory address 15 experiences

12 cycles of interconnect transfer interference, we add 1 to

the interconnect transfer interference entry at position 12.

We refer to this data as the Interference Penalty Frequency
(IPF), and stage 1 of the analysis is complete when we have

created IPF files for all workloads and architectures.

Stage 2 is the process of aggregating the per benchmark

IPF files into one file for each architecture. First, we sum

the request counts for each interference penalty from all

files belonging to the architecture of interest. For some of

the interference types, it is very common to not experience

interference. These entries are of little interest and will

dominate the results if we use plot the number of requests

per interference penalty directly. Consequently, we devise

a new metric called the Interference Impact Factor (IIF)
that balances the latency penalty of interference against the

probability of it arising (i.e. IIF(i) = i ·P (i)). For example,

an experiment that results in 15 requests with 3 cycles

interconnect transfer interference and 100 requests in total

gives IIF(3) = 3 · 15
100 . When we have computed the IIFs for

all interference penalties, stage 2 is finished. In most cases,

there is a large range of possible interference values and

there is a need to summarize the IIFs for a range of inter-

ference penalties into a single number. To do this, we use

the Aggregate Interference Impact Factor (AIIF) which is
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Table I
SHARED MEMORY SYSTEM LATENCY BREAKDOWN

Type Description
Interconnect Entry The number of cycles a request was kept in the private cache MSHR before it is accepted into a interconnect queue
Interconnect Transfer The number of cycles spent in the interconnect queue plus the interconnect transfer latency
Interconnect Delivery The number of cycles a request was delayed because a shared cache bank could not accept requests due to insufficient

buffer space
Memory Bus Entry The number of cycles a request was delayed in a shared cache MSHR before it was accepted into a memory controller queue
Memory Bus Transfer The number of cycles a request spent in the memory controller queue plus the number of cycles used to retrieve the

requested data from DRAM
Cache Capacity The number of cycles used to service misses that would not occur if the process had exclusive access to the shared cache

simply the sum of the IIFs for all or a subset of the observed

interference penalties (i.e. AIIF(a, b) =
∑b

i=a IIF(i)).

C. Processor Model Scaling

To investigate the impact of interference in multi-core

architectures, it is important that reasonable parameters are

used to scale the latency, bandwidth and capacity of the

various units in the memory system. To this end, we have

used the International Technology Roadmap for Semicon-

ductors [17] to estimate scaling trends and CACTI 5.3 [20]

to find reasonable caches for the multi-core architectures

used in this work. Table II summarizes the main multi-core

model parameters. With each improvement in feature size,

we double the number of processing cores but use the same

core implementation. Furthermore, we follow the ITRS ex-

pectation that the interconnect transfer latency will roughly

double with each technology generation. The only exception

is the per hop latency of the 4-core ring architecture which

we assume is limited by the cache cycle time. To account

for this latency increase, we double the ring bandwidth

across generations. Since the ITRS projections for off-chip

bandwidth results in a large range of possible pin counts,

we simulate all architectures with 1, 2 and 4 independent

memory channels.

Table III contains the parameters of our scaled on-chip

caches. Here, we choose to keep the percentage of the

total chip area occupied by L2 and L3 caches in the ring-

based CMP constant. We use the same shared cache for

the crossbar based CMP, but here we only use two levels

of caches. Consequently, we assume that the area made

available by using a two level cache hierarchy is sufficient

to implement a crossbar interconnect. To reduce the shared

cache access time and increase the opportunity for cache

access parallelism, we divide the shared cache into 4 banks.

D. Simulation Methodology

We use the system call emulation mode of the cycle-

accurate M5 simulator [22] for our experiments. The

processor architecture parameters for the simulated CMPs

are shown in Table IV. Table V contains the interconnect

and memory bus parameters, and the cache parameters are

outlined in Table III. We have extended M5 with crossbar

and ring interconnects and a detailed DDR2-800 memory

bus and DRAM model [23]. For the shared mode, we

generated 40 different 4-core workloads (Table VI), 20 8-

core workloads (Table VII) and 10 16-core workloads (Table

VIII) by picking benchmarks at random from the full SPEC

CPU2000 benchmark suite [24]. The only requirement given

to the random selection process is that a benchmark can

only appear once in each workload. These workloads are

fast-forwarded for 1 billion clock cycles before we gather

traces for 100 million clock cycles. For our interference

measurement methodology to be accurate, it is critical to

minimize the difference between the memory requests in

the shared and private modes. To ensure this, we use static

cache partitioning and an infinite bandwidth interconnect and

memory bus during fast forwarding such that the simula-

tion sample starts on a similar instruction in both modes.

Furthermore, we run the shared mode experiments first

and then retrieve the number of instructions the benchmark

committed. Then, we run the private mode simulation for

the exact same number of instructions.

Since our processor cores are out-of-order, we can get

cache misses from wrong path instructions that only occur

in either the private or shared mode. Secondly, the start

and termination of the simulation sample is not perfectly

synchronized between the two modes. Thirdly, our memory

controller reorders requests to achieve high page hit rates

which can affect the private cache access patterns and miss

rates. For these reasons, there can be small differences

between the private and shared mode memory request traces.

We remove these differences by applying two preprocessing

steps before analyzing the traces. Firstly, we remove the

requests for addresses that only occur in the private or shared

modes. Secondly, we remove the superfluous requests of the

mode that has the most requests in the cases where there are

a different number of requests for the same address in the

shared and private modes. These steps result in the removal

of 0.1% of the observed requests.

IV. RESULTS

Modern out-of-order processors and memory systems

contain a substantial amount of logic dedicated to hid-

ing memory latency. Since our interference measurement

methodology is latency focused, it is necessary to verify

that the observed interference result in an asymmetric per-
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Table II
ARCHITECTURE PARAMETER SCALING

Crossbar Based Architecture Ring Based Architecture
4-core 8-core 16-core 4-core 8-core 16-core

ITRS Year of Production 2007 2010 2013 2007 2010 2013

Feature Size (nm) 65 45 32 65 45 32

Shared Cache Size (MB) 8 16 32 8 16 32

Memory Bus Channels 1, 2 or 4 1, 2 or 4 1, 2 or 4 1, 2 or 4 1, 2 or 4 1, 2 or 4

Interconnect Latency (End-to-End/Per Hop) 8/- 16/- 30/- -/4 -/4 -/8

Table III
CACHE PARAMETERS

Cache Size Associativity Access Latency Cycle Time MSHRs / WB Banks Area
(4-core/8-core/16-core) (cycles) (cycles) (per bank) (mm2)

Level 1 Private Cache 64KB 2 3/2/2 2 16MSHRs/4WB 1 2.3/1.1/0.5

Level 2 Private Cache 1 MB 4 9/6/5 4/3/2 16 1 14.6/7.0/3.6

Level 2/3 Shared Cache 8/16/32 MB 16 16/12/12 4 16/32/64 4 94.0/91.9/84.7

Table IV
PROCESSOR CORE PARAMETERS

Parameter Value
Clock frequency 4 GHz

Reorder Buffer 128 entries

Store Buffer 32 entries

Instruction Queue 64 instructions

Instruction Fetch Queue 32 entries

Load/Store Queue 32 instructions

Issue Width 4 instructions/cycle

Functional units 4 Integer ALUs, 2 Integer
Multipy/Divide, 4 FP ALUs, 2 FP
Multiply/Divide

Branch predictor Hybrid, 2048 local history registers,
4-way 2048 entry BTB

Table V
INTERCONNECT AND DRAM INTERFACE

Parameter Value
Crossbar Interconnect 8/16/30 cycles end-to-end transfer

latency, 32 entry request queue,
Pipelined (2/4/6 pipe stages)

Ring Interconnect 4/4/8 cycles per hop transfer latency,
1/1/2 pipe stages per hop, 32 entry
request queue, 1/2/2 request rings, 1
response ring

Point to Point Link 4/3/2 transfer latency, 32 entry
request queue

Main memory DDR2-800, 4-4-4-12 timing, 64 entry
read queue, 64 entry write queue, 1
KB pages, 8 banks, FR-FCFS
scheduling [21], Closed page policy
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formance reduction. To this end, we use the fairness metric

of Gabor et al. [25]. This metric expresses the difference

between the largest and smallest shared mode slowdowns

for one workload and provides values in the range from

0 to 1 where 1 indicates that the slowdown is the same

for all benchmarks. A value of 0 indicates that at least one

benchmark is not making forward progress.

Figure 5 shows the distribution of fairness metric values

for all 4-core CMPs used in this work. Here, we plot the

lowest fairness value observed when a certain number of

workloads are taken into account for the different CMP ar-
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chitectures. The main observation from Figure 5 is that many

workloads have reasonably good fairness values. However,

there are also workloads where interference leads to large

performance differences between the benchmarks (i.e. low

fairness). This supports the claim that interference-aware

techniques are necessary to reduce performance variability.

Figure 6 shows the interference results for all architectures

examined in this work. The main observation is that memory

bus transfer interference is the major interference contributor

across all architectures. This trend is also visible in Figure

5. Cache capacity interference is the second most important
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Table VI
RANDOMLY GENERATED 4-CORE MULTIPROGRAMMED WORKLOADS

ID Benchmarks ID Benchmarks ID Benchmarks ID Benchmarks ID Benchmarks
1 mesa, twolf, art, vpr 9 crafty, twolf, bzip,

perlbmk
17 mgrid, facerec, mcf,

swim
25 twolf, crafty, bzip, art 33 swim, gap, vortex1,

perlbmk

2 art, vortex1, applu,
crafty

10 eon, twolf, galgel,
crafty

18 equake, applu, eon, gzip 26 applu, gap, perlbmk,
crafty

34 equake, twolf, bzip,
galgel

3 gap, eon, art, wupwise 11 vortex1, eon, art,
equake

19 galgel, mesa, gzip, gcc 27 galgel, facerec, eon,
mesa

35 applu, eon, fma3d,
vortex1

4 fma3d, applu, parser,
swim

12 gzip, lucas, twolf, apsi 20 art, galgel, parser, eon 28 vpr, crafty, applu,
vortex1

36 lucas, ammp, twolf,
fma3d

5 mcf, swim, gzip,
vortex1

13 facerec, ammp, gzip,
equake

21 bzip, gzip, perlbmk, eon 29 twolf, vpr, swim,
wupwise

37 eon, parser, bzip, mcf

6 swim, galgel, apsi,
applu

14 swim, sixtrack, mgrid,
vortex1

22 vpr, swim, apsi, gcc 30 parser, mesa, vortex1,
gcc

38 vpr, vortex1, wupwise,
applu

7 gzip, wupwise, eon,
equake

15 sixtrack, fma3d, parser,
mcf

23 art, applu, perlbmk,
mesa

31 lucas, mgrid, sixtrack,
gap

39 lucas, mgrid, swim,
gzip

8 sixtrack, gcc, facerec,
perlbmk

16 twolf, galgel, crafty,
applu

24 facerec, eon, bzip, mesa 32 facerec, galgel, vpr,
sixtrack

40 gzip, swim, eon, fma3d

Table VII
RANDOMLY GENERATED 8-CORE MULTIPROGRAMMED WORKLOADS

ID Benchmarks ID Benchmarks ID Benchmarks ID Benchmarks
1 ammp, mcf, vpr, fma3d, equake,

sixtrack, galgel, bzip
6 applu, mcf, perlbmk, parser,

crafty, eon, galgel, fma3d
11 ammp, lucas, wupwise, eon,

twolf, fma3d, gcc, equake
16 apsi, ammp, vortex1, vpr, gap,

perlbmk, art, bzip

2 crafty, vortex1, facerec, ammp,
bzip, parser, mcf, perlbmk

7 fma3d, gzip, lucas, perlbmk,
bzip, apsi, crafty, gap

12 mcf, galgel, gap, gzip, swim,
sixtrack, vpr, fma3d

17 gzip, art, equake, facerec, eon,
apsi, gcc, wupwise

3 lucas, vpr, mesa, apsi, swim, art,
gzip, twolf

8 swim, gzip, ammp, facerec,
perlbmk, equake, gcc, apsi

13 mesa, fma3d, gap, lucas,
wupwise, galgel, sixtrack, parser

18 perlbmk, gap, parser, swim,
sixtrack, fma3d, lucas, vortex1

4 art, mcf, perlbmk, wupwise,
ammp, applu, mesa, swim

9 gap, mcf, vpr, apsi, vortex1,
lucas, parser, applu

14 bzip, mgrid, facerec, art, eon,
swim, equake, apsi

19 lucas, mesa, apsi, fma3d, mcf,
parser, crafty, gcc

5 eon, apsi, equake, vpr, fma3d,
facerec, gcc, vortex1

10 mcf, sixtrack, vpr, swim, gzip,
mgrid, ammp, lucas

15 swim, vpr, gap, facerec, twolf,
sixtrack, mcf, crafty

20 gcc, perlbmk, sixtrack, parser,
vortex1, eon, facerec, galgel

Table VIII
RANDOMLY GENERATED 16-CORE MULTIPROGRAMMED WORKLOADS

ID Benchmarks ID Benchmarks
1 lucas, art, ammp, bzip, sixtrack, vpr, gzip, fma3d, equake, gcc, vortex1,

facerec, galgel, crafty, apsi, twolf
6 parser, mesa, bzip, vortex1, vpr, fma3d, gap, gcc, perlbmk, gzip, mcf, crafty,

eon, equake, facerec, galgel

2 lucas, ammp, mgrid, bzip, swim, crafty, galgel, equake, vortex1, parser, vpr,
eon, wupwise, gzip, twolf, mcf

7 gzip, sixtrack, gap, fma3d, eon, galgel, perlbmk, art, bzip, ammp, equake,
lucas, parser, facerec, apsi, crafty

3 lucas, ammp, art, bzip, twolf, applu, facerec, apsi, mesa, eon, swim, galgel,
gzip, crafty, gap, perlbmk

8 perlbmk, gzip, apsi, twolf, wupwise, gap, vpr, mgrid, galgel, facerec, gcc,
eon, mcf, lucas, fma3d, ammp

4 crafty, twolf, mgrid, applu, wupwise, swim, parser, fma3d, mesa, perlbmk,
facerec, gcc, lucas, vortex1, galgel, bzip

9 mgrid, art, facerec, gcc, vpr, gzip, parser, ammp, fma3d, galgel, crafty,
applu, twolf, bzip, mcf, apsi

5 bzip, facerec, vortex1, ammp, gzip, swim, fma3d, equake, lucas, apsi, applu,
vpr, perlbmk, sixtrack, mcf, mesa

10 apsi, swim, crafty, art, sixtrack, ammp, galgel, lucas, vortex1, gzip, perlbmk,
vpr, gcc, mesa, gap, equake

source of interference, but its impact is considerably smaller

than the impact of bus interference. In addition, there are

architectures (e.g. 16-CB-4) where the impact of cache

capacity interference is small. Finally, there is more intercon-

nect transfer interference in the crossbar interconnect than

in the ring for the 16-core CMP. This seemingly counter

intuitive result is due to two factors. Firstly, the ring-based

architecture has a private L2 cache that reduces the pressure

on the interconnect. Secondly, we do not increase the number

of banks in the shared cache which reduces the parallelism

available in the crossbar.

Figure 7 shows the interference distribution for the 4-

core CMP for both interconnects and all memory bus

configurations used in this work. Here, the interference

impact factors are aggregated into bins of size 300, and we

remove all bins that have a AIIF value of less than 0.35 to

improve readability. While Figure 6 showed that interference

is reduced when more memory bus bandwidth is made avail-

able, Figure 7 illustrates that the interference distribution

also changes significantly. For the bandwidth constrained

architectures (e.g. Figure 7(a) and 7(d)), the interference

impact increases to a maximum before it decreases. In the

4-channel architectures (Figure 7(c) and 7(f)), the largest

interference impact is in the 0 to 300 bin and the impact

decreases rapidly. The interference impact of the low penalty

bins is significantly higher for the 4-channel architectures but

the total impact is lower because of the distribution’s short

tail.

Figure 7 illustrates that the cache capacity interference

impact is heavily dependent on the amount of memory bus
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(a) 4-Ring-1
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(b) 4-Ring-2
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(c) 4-Ring-4
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(d) 4-Crossbar-1
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(e) 4-Crossbar-2
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Figure 7. 4-core CMP Interference Impact (cores-interconnect-channels)

interference. The reason is that the cost of cache capacity

interference is the memory bus service time of the additional

requests. Furthermore, the impact from interconnect transfer

interference is small across all architectures. Although this

interference type occurs very frequently, the interference

penalty is small which results in a low interference impact.

In addition, there is some interconnect delivery interference

in all architectures which is due to shared cache blocking.

The impact from this type of interference is large enough

that it most likely must be dealt with in architectures with

strict QoS requirements.
There is also a considerable amount of constructive in-

terference. With the 4-Ring-1 architecture (Figure 7(a)),

constructive memory bus interference leads to a noticeable

impact in the -1500 to -1200 cycles bin. This can be

explained by taking into account that our memory controller

allows some requests to skip past the queue to achieve

higher page hit rates and better memory bus utilization

[21]. For the interconnect transfer interference, the impact

from constructive interference is much lower. In this case,

the constructive interference is due to some benchmarks

having significant interconnect delays when they have the

memory bus to themselves. In the shared mode, memory

bus interference reduces execution speed enough that the

interconnect congestion disappears which results in lower

transfer delays in the shared mode.
To illustrate the impact on interference by increasing the

number of processing cores, we show the results of two 16-

core ring-based architectures in Figure 8. Here, we use a bin

size of 500 and only show bins that have an AIIF value of 1.0

or more. As expected, Figure 8(a) shows that there is a large

amount of interference if the memory bus bandwidth is not

scaled with the number of cores. Furthermore, memory bus
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(a) 16-Ring-1
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Figure 8. 16-core Ring Interference Impact

entry interference has a considerable impact for this archi-

tecture. Consequently, a significant part of the interference

is due to shared cache misses not being accepted into the

memory bus queue because it is full. This further illustrates

the need for fair buffer management observed in all 4-core

architectures. Figure 8(b) shows the effect of increasing the

number of memory bus channels to 4. Here, the distribution

has a considerably shorter tail. However, the impact of the

0 to 500 cycle bin is large which indicates that low-penalty

interference is frequent. In other words, providing more

resources reduces the impact of interference but does not
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remove it. This indicates that fairness techniques are useful

even when there are no severe performance bottlenecks.

V. CONCLUSION AND FURTHER WORK

In this work, we have shown that the impact of interfer-

ence will increase as more cores are added to the chip by

investigating a variety of realistic CMP architectures with

4, 8 and 16 cores. Consequently, techniques that reduce

this interference are needed in future CMPs. We found that

memory bus interference is the major source of interference

and it is responsible for between 63% and 87% of the

total interference impact depending on the architectures.

Furthermore, it is unlikely that this situation will improve

in the future as memory bus bandwidth is limited by the

number of physical pins on a chip and the electronic

characteristics of the circuit board. We also observed that

cache capacity interference can be a relatively small part

of the total interference impact (between 5% and 32%).

Consequently, adding a fair memory controller might be

sufficient to achieve acceptable fairness and QoS for many

near-term architectures. However, we have also observed

architectures where 11% of the total interference impact is

due to the shared cache MSHR allocation policy for which

no solutions are currently known.

In this work, we have developed an understanding of

memory system interference that can be useful for future

research. However, we have only investigated CMPs where

no fairness techniques have been implemented. A possible

avenue of further work is to investigate how implementing

fairness techniques in one shared unit will influence the

interference impact of the other shared units. For instance,

a cache capacity sharing technique might reduce the overall

number of cache misses enough to reduce the impact of

memory bus interference. On the other hand, it can poten-

tially increase the number misses by limiting the cache space

available to a process which might result in more memory

bus interference. In addition, we observed that shared cache

blocking and memory controller blocking can be important

contributors to interference in certain architectures. One

possible solution to this problem is to allocate MSHR entries

and memory bus queue space per thread. However, this must

be done carefully to ensure that the provided resources are

utilized efficiently.
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