

OpenDreamKit

Computational environments for research and education

Min Ragan-Kelley Simula Research Lab

OpenDreamKit

H2020 project

16 Institutions

4 Years (2015-2019)

Virtual Research Environments

Generic (Jupyter, SageMath)

Domain-specific (OOMMF micromagnetics)

IPython

IPython Interactive Python

helps run code

tab completion

introspection

%magics

What about Jupyter?

What is Jupyter:

Network Protocol

Document Format

We have already computed P(X|A) above. On the other hand, $P(X|\sim A)$ is subjective: our code can pass tests but still have a bug in it, though the probability there is a bug present is reduced. Note this is dependent on the number of tests performed, the degree of complication in the tests, etc. Let's be conservative and assign $P(X|\sim A)=0.5$. Then

$$P(A|X) = \frac{1 \cdot p}{1 \cdot p + 0.5(1-p)}$$

SUB

SUB DEAL

SUB DEAL

= 2p

This is the posterior probability. What does it look like as a function of our prior, $p\in [0,1]$?

figsize(12.5, 4)
p = mp.linspace(0, 1, 50)
plt.plot(p, 2 * p / (1 * p), color="#348ABD", lw=3)
plt.plot(p, 2 * p / (1 * p), slphs=.5, facecolor=["#A60628"])
plt.fill_between(p, 2*p/(1*p), slphs=.5, facecolor=["#A60628"])
plt.xialin(0, 1, 2 * (0.2) / 1.2, s=140, c=#348ABD")
plt.xialin(0, 1)
plt.xiabel("Prior, \$P(A) = p\$")
plt.xiabel("Prior, \$P(A) = p\$")
plt.yiabel("Prior, \$P(A) = p\$")

MMQ + JSON

PUB Kernel

Jupyter Jupyter Protocol

supercharge the P in REP*L

any mime-type output

text

svg, png, jpeg

latex, pdf

html, javascript

interactive widgets

Jupyter Protoco is language agnostic

Jupyter Notebooks

- notebook = sequence of cells
- text cell = markdown + latex)
- code cell = REP (input + output)
- metadata everywhere

function x(t), not just evaluating it at a single point. This means we are collecting

information about the entire function to compute a single discrete point a_n

whereas with sampling we are just taking individual points in isolation

But here we are generating discrete points a, by integrating over the entire

 $x(t) = \sum_{k} a_{n} \exp(j\omega_{n}t)$

Jupyter Notebooks

- Plain Text (JSON)
- schema Publicly documented
- easy to understance Machine readable,
- Transformable (nbconvert)

whereas with sampling we are just taking individual points in isolation

information about the entire function to compute a single discrete point a_n

Jupyter Notebooks

- interactive environment
- input format
- output format

In this section, we investigate the implications of the sampling theorem. Here is the usual statement of the theorem from wikipedia:

determined by giving its ordinates at a series of points spaced 1/(2B) seconds "If a function x(t) contains no frequencies higher than B hertz, it is completely

reduction of data since it only takes a tiny number of points to completely uncountably many points between any two ordinates, so sampling is a massive Since a function x(t) is a function from the real line to the real line, there are series expansions where (for periodic x(t)) seen this idea of reducing a function to a discrete set of numbers before in Fourier characterize the function. This is a powerful idea worth exploring. In fact, we have

$$a_n = \frac{1}{T} \int_0^T x(t) \exp(-j\omega_n t) dt$$

with corresponding reconstruction as:

$$x(t) = \sum_{k} a_n \exp(j\omega_n t)$$

function x(t), not just evaluating it at a single point. This means we are collecting information about the entire function to compute a single discrete point a_n But here we are generating discrete points a, by integrating over the entire whereas with sampling we are just taking individual points in isolation

Computational Idea Lifecycle of a

- Explore an idea interactively in a Notebook
- 2. Build/add to a library based on what you learn
- 3. Record and collaborate on analyses in Notebooks
- 4. Document, demonstrate, and share in Notebooks
- 5. Computational companions, reproducible papers

of Jupyter Notebooks Applications

- **nbconvert** convert notebooks to other formats (rst, html, latex/pdf, markdown, script, reveal.js slides)
- nbviewer nbconvert to html on the web
- **nbgrader** automated grading of notebooks
- tmpnb containerized (docker) transient deployments of notebooks
- **thebe** transient kernels on the web, without notebooks
- **dexy** reproducible document-based workflows
- jupyterhub multi-user notebook server for classes, groups
- binder online notebooks populated from GitHub repos

Lorena Barba AeroPython

Aerodynamics, George Washington U

http://lorenabarba.com/blog/announcing-aeropython

in the Classroom

CS, Brynmawr
Calysto (Multiple languages, not Python)
JupyterHub Doug Blank

Brian Granger Computational Physics, Cal Poly JupyterHub

https://github.com/ellisonbg/phys202-2015

Eric Matthes High School Programming Alaska, USA

How IPython Notebook and Github have changed the way I teach Python

Posted on September 22, 2013

I teach in a small high school in southeast Alaska, and each year I teach an Introduction to Programming class. I recently learned how to use IPython Notebook, and it has completely changed the way I teach my classes. There is much to improve about CS education at the K-12 level in the United States, and sharing our stories and our resources will go a long way towards improving what we

in the Classroom

Jessica Hamrick
Computational Models of
Cognition
Psychology, UC Berkeley
220 students
JupyterHub
NBGrader

NBGrader

Notebooks as assignments

- distributed to students via JupyterHub turned in online
- Test-based auto-grading
- Manual grading of prose assignments

DY TO C

multi-user notebook server

Notebook Application

- Manages authentication
- Spawns single-user servers on-demand
- restarting other components Resume from db without

- Initial request is handled by Hub
- User authenticates via form / OAuth
- Spawner starts single-user server
- Hub notifies Proxy
- Redirects user to /user/[name]
- Single-user Server verifies auth with Hub

- Pluggable Authentication
- PAM, OAuth, SSO, etc.
- Pluggable Spawning
- etc. Popen, Docker, PBS, EC2,

upyter hub

- User-controls
- specify resources √
- multiple servers per user
- Sharing
- publishing notebooks for other users
- long-term: live collaboration

The University Of Sheffield

BRYN MAWR

COLLEGE

Sheffield.

Extreme Science and Engineering Discovery Environment

