
Chapter 7
Theory of Elasticity

7.1 Introduction

The classical theory of elasticity is primary a theory for isotropic, linearly elastic
materials subjected to small deformations. All governing equations in this theory
are linear partial differential equations, which means that the principle of superpo-
sition may be applied: The sum of individual solutions to the set of equations is also
a solution to the equations. The classical theory of elasticity has a theorem of unique-
ness of solution and a theorem of existence of solution. The theorem of uniqueness
insures that if a solution of the pertinent equations and the proper boundary con-
ditions for a particular problem is found, then this solution is the only solution to
the problem. The theorem is presented and proven in Sect. 7.6.3. The theorem of
existence of a solution is fairly difficult and complicated to prove and perhaps not
so important, as from a practical view point we understand that a physical solu-
tion must exist. Although this chapter is primarily devoted to the classical theory
of elasticity, Sect. 7.10 includes some fundamental aspects of the general theory of
elasticity.

Temperature changes in a material result in strains and normally also in stresses,
so-called thermal stresses. Section 7.5 presents the basis for determining the thermal
stresses in elastic material.

Two-dimensional theory of elasticity in Sect. 7.3 presents analytical solutions to
many relatively simple but important problems. Examples are thick-walled circular
cylinders subjected to internal and external pressure and a plate with a hole. Analyt-
ical solutions are, apart from being of importance as solutions to practical problems,
also serving as test examples for numerical solution procedures like finite difference
methods and finite element methods.

An important technical application of the theory of elasticity is the theory of tor-
sion of rods. The elementary torsion theory applies only to circular cylindrical bars.
The Saint-Venant theory of torsion for cylindrical rods of arbitrary cross-section is
presented in Sect. 7.4.
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200 7 Theory of Elasticity

The theory of stress waves in elastic materials is treated in Sect. 7.7. The intro-
ductory part of the theory of elastic waves is mathematically relatively simple, and
some of the most important aspects of elastic wave propagation are revealed, using
simple one-dimensional considerations. The general theory of elastic waves is fairly
complex and will only be given in an introductory exposition.

Anisotropic linearly elastic materials are presented in Sect. 7.8. Materials having
different kinds of symmetry are discussed. This basis is then applied in the theory
of fiber-reinforced composite materials in Sect. 7.9.

An introduction to non-linearly elastic materials and elastic materials that are
subjected to large deformations, is presented in Sect. 7.10. We shall return to these
topics in Sect. 11.7.

Energy methods have great practical importance, both for analytical solution and
in relation to the finite element method. The basic concepts of elastic energy are
presented in Sect. 7.2 and 7.10. However, the energy methods are not included in
this book.

7.2 The Hookean Solid

We shall now assume small deformations and small displacements such that the
strains may be given by the strain tensor for small deformations E, which in a
Cartesian coordinate system Ox has the components:

Eik = (ui,k +uk,i) (7.2.1)

where ui are the components of the displacement vector u, and ui, j are the displace-
ment gradients. Eii (not summed) are longitudinal strains in the directions of the
coordinate axes, and Ei j (i �= j) are half of the shear strains for the directions ei

and e j.
A material is called elastic, also called Cauchy-elastic, if the stresses in a particle

r = xiei are functions only of the strains in the particle.

Tik = Tik (E,x)⇔ T = T [E,r] (7.2.2)

These equations are the basic constitutive equations for Cauchy-elastic materials.
In Sect. 7.6 another definition of elasticity is introduced, hyperelasticity, also called
Green-elasticity, which reflects that a material may store deformation work as elas-
tic energy, also called strain energy, a concept to be defined already in Sect. 7.2.2.

If the elastic properties are the same in every particles in a material, the ma-
terial is elastically homogeneous. If the elastic properties are the same in all di-
rections through one and the same particle, the material is elastically isotropic.
Metals, rocks, and concrete are in general considered to be both homogeneous
and isotropic materials. The crystals in polycrystalline materials are assumed to
be small and their orientations so random that the crystalline structure may be ne-
glected. Each individual crystal is normally anisotropic. By milling or other forms of
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Fig. 7.2.1 Anisotropy due to
milling

macro-mechanical forming of polycrystalline metals, an originally isotropic mate-
rial may be anisotropic, as indicated in Fig. 7.2.1. Inhomogeneities in concrete due
to the presence of large particles of gravel may for practical reasons be overlooked
when the concrete is treated as a continuum. Materials with fiber structure and well
defined fiber directions have anisotropic elastic response. Wood and fiber reinforced
plastic are typical examples. The elastic properties of wood are very different in the
directions of the fibers and in the cross-fiber direction. Anisotropic elastic materials
are discussed in Sect. 7.8 and 7.9.

Isotropic elasticity implies that the principal directions of stress and strain coin-
cide: The stress tensor and the strain tensor are coaxial. This may be demonstrated
by the following arguments. Figure 7.2.2 shows a material element with orthogonal
edges in the undeformed configuration.The element is subjected to a state of stress
with principal directions parallel to the undeformed edges of the element. The de-
formed element is also shown. For the sake of illustration the deformation of the
element is exaggerated considerably. Due to the symmetry of the configuration of
stress and the isotropy of the elastic properties the diagonal planes marked p1 and p2

are equally deformed. This means that the element retains the right angles between
its edges through the deformation. Thus the principal directions of strains coincide
with the principal directions of stress.

Homogeneous elasticity implies that the stress tensor is independent of the par-
ticle coordinates. Therefore the constitutive equation of a homogeneous Cauchy-
elastic material should be of the form:

Tik = Tik (E)⇔ T = T [E] (7.2.3)

Fig. 7.2.2 Coaxial stresses and strains
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If the relation (7.2.2) is linear in E, the material is said to be linearly elastic. The
six coordinate stresses Ti j with respect to a coordinate system Ox are now linear
functions of the six coordinate strains Ei j. For a generally anisotropic material these
linear relations contain 6× 6 = 36 coefficients or material parameters, which are
called elasticities or stiffnesses. For a homogeneously elastic material the stiffnesses
are constant material parameters. We shall now prove that for an isotropic, linearly
elastic material the number of independent stiffnesses is two. Different types of
anisotropy are presented and discussed in Sects. 7.8 and 7.9.

In tension or compression tests of isotropic materials a test specimen is subjected
to uniaxial stress σ and experiences the strains ε in direction of the stress and εt in
any transverse direction, i.e. normal to the stress. For a linearly elastic material the
following relations may be stated:

ε =
σ
η

, εt =−ν ε = ν
σ
η

(7.2.4)

where η is the modulus of elasticity and ν is the Poisson’s ratio. Values for η and
ν for some characteristic materials are given in Table 7.2.1. The symbol η for the
modulus of elasticity rather then the more common symbol E is used to prevent
confusion between the modulus of elasticity and the strain matrix E . Throughout
the book the symbol η for the modulus of elasticity will be used in constitutive
equations were the bold face tensor notation or the index notation are used. How-
ever, when the xyz – notation is used and in cylindrical coordinates and spherical
coordinates the more common symbol E will be used for the modulus of elasticity.

A linearly elastic material in a state of uniaxial stress: σ1 �= 0,σ2 = σ3 = 0,
obtains the strains:

ε1 =
σ1

η
, ε2 = ε3 = εt =−ν σ1

η
In a general state of triaxial stress, with principal stresses σ1,σ2, and σ3, the princi-
pal strains are:

Table 7.2.1 Density ρ , modulus of elasticity η ≡ E, shear modulus μ ≡ G, poisson’s ratio ν , and
thermal expansion coefficient α for some characteristic materials

ρ [103 kg/m3] η ,E [GPa] μ ,G [GPa] v α [10−6 ◦C−1]

Steel 7.83 210 80 0.3 12
Aluminium 2.68 70 26 0.25 23
Concrete 2.35 20–40 0.15 10
Copper 8.86 118 41 0.33 17
Glass 2.5 80 24 0.23 3–9
Wood 0.5 4–11 fiber dir. anisotropic 3–8
Cork 0
Rubber 1.5 0.007 0.49
Bronze 8.30 97 39
Brass 8.30 97 39 19
Magnesium 1.77 40 16 25
Cast iron 7.75 103 41 0.25 11
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ε1 =
σ1

η
− ν
η

(σ2 +σ3) =
1 +ν
η

σ1− ν
η

(σ1 +σ2 +σ3) etc. for ε2 and ε3

The result follows from the fact that the relations between stresses and strains are
linear such that the principal of superposition applies. The result may be rewritten to:

εi =
1 +ν
η

σi− ν
η

trT , trT = σ1 +σ2 +σ3 = tr T

The expression may also be presented in the matrix representation:

εiδik =
1 +ν
η

σi δik− ν
η

(trT )δik (7.2.5)

This is furthermore the matrix representation of a tensor equation between the ten-
sors E and T in a coordinate system with base vectors parallel to the principal di-
rections of stress. The matrix equation (7.2.5) now represents the tensor equation:

E =
1 +ν
η

T− ν
η

(tr T) 1 (7.2.6)

In any Cartesian coordinate system Ox (7.2.6) has the representation:

Eik =
1 +ν
η

Tik− ν
η

Tj j δik (7.2.7)

From the (7.2.6) and (7.2.7) the inverse relations between the stress tensor and the
strain tensor is obtained:

T =
η

1 +ν

[
E +

ν
1−2ν

(tr E)1
]
⇔ Tik =

η
1 +ν

[
Eik +

ν
1−2ν

E j j δik

]

(7.2.8)
The inversion procedure is given as Problem 7.1. The relations (7.2.6, 7.2.7, 7.2.8)
represent the generalized Hooke’s law and are the constitutive equations of the
Hookean material or Hookean solid, which are names for a isotropic, linearly elas-
tic material. Note that normal stresses Tii only result in longitudinal strains Eii, and
visa versa, and that shear stresses Ti j only result in shear strains γik = 2Eik, and visa
versa. This property is in general not the case for anisotropic materials, see Sect. 7.8.

For the relations between the coordinate shear stresses and coordinate shear
strains the (7.2.8) give:

Tik = 2μEik = μ γik , i �= k (7.2.9)

The material parameter μ (≡ G in common notation) is called the shear modulus
and is given by:

μ =
η

2(1 +ν)
⇔ G =

E
2(1 +ν)

(7.2.10)

Table 7.2.1 presents the elasticities η(≡ E),μ(≡G), and ν for some characteris-
tic materials. The values vary some with the quality of the materials listed and with
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temperature. The values given in the table are for ordinary, or room, temperature of
20◦C. We shall find that the relationship for the shear modulus in formula (7.2.10)
is not exactly satisfied. This is due to the fact that the values given in Table 7.2.1 are
standard values found from different sources.

The relationship between the elastic volumetric strain εv and the stresses is found
by computing the trace of the strain matrix from (7.2.7).

εv = Eii =
1 +ν
η

Tii− νη Tj j δii =
1−2ν
η

Tii (7.2.11)

The mean normal stress σo and the bulk modulus or the compression modulus of
elasticity κ are introduced:

σo =
1
3

Tii =
1
2

tr T the mean normal stress (7.2.12)

κ =
η

3(1−2ν)
the bulk modulus (7.2.13)

Then the result (7.2.11) may now be presented as:

εv =
1
κ
σo (7.2.14)

A more appropriate name for κ than the compression modulus had perhaps been the
expansion modulus. For an isotropic state of stress the mean normal stress is equal
to the normal stress, i.e. T = σo1.

Fluids are considered as linearly elastic materials when sound waves are an-
alyzed. The only elasticity relevant for fluids is the bulk modulus κ . For water
κ = 2.1GPa, for mercury κ = 27GPa, and for alcohol κ = 0.91GPa.

It follows from (7.2.13) that a Poisson ratio ν > 0.5 would have given κ < 0,
which according to (7.2.14) would lead to the physically unacceptable result that
the material increases its volume when subjected to isotropic pressure. Furthermore
we may expect to find that ν ≥ 0 because a Poisson ratio ν < 0 would, according to
(7.2.4)2, give an expansion in the transverse direction when the material is subjected
to uniaxial stress. Thus we may expect that:

0≤ ν ≤ 0.5 (7.2.15)

The upper limit for the Poisson ratio, ν = 0.5, which according to (7.2.13) gives
κ = ∞, characterizes an incompressible material. Among the real materials rubber,
having ν = 0.49, is considered to be (nearly) incompressible, while the other ex-
treme, ν = 0, is represented by cork, which is an advantageous property when cork-
ing bottles. As a curiosity and a historical note it may be mentioned that a theory
developed by Poisson and based on an atomic model of materials, led to a universal
value of ν equal to 0.25. From Table 7.2.1 it is seen that this “universal” value is
not universal, although close to the values found in experiments for some important
materials.
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A very simple form for Hooke’s law (7.2.8) is obtained when we decompose the
stress tensor T and the strain tensor E into isotrops and deviators:

T = To + T′ , E = Eo + E′ (7.2.16)

To =
1
3

(tr T) 1 = σo 1 , Eo =
1
3

(tr E) 1 =
1
3
εv1 (7.2.17)

From (7.2.8) or (7.2.6) we find that:

To = 3κEo, T′ = 2μE′ (7.2.18)

The development of these results is given as Problem 7.2. Alternative forms for
Hooke’s law are:

T = 2μE+
(
κ− 2

3
μ
)

(tr E) 1 (7.2.19)

E =
1

2μ
T− 3κ−2μ

18μ κ
(tr T)1 (7.2.20)

The parameters:

μ and λ ≡ κ− 2
3
μ (7.2.21)

are called the Lamé constants. The parameter λ does not have any independent
physical interpretation.

For an incompressible material: εv ≡ 0, the mean stress: σo = (1/3)trT, can-
not be determined from Hooke’s law. For these materials it is customary to replace
(7.2.8) or (7.2.19) by:

T =−p1 + 2μE (7.2.22)

p = p(r, t) is an unknown pressure, which is an unknown tension if p is negative.
The pressure p can only be determined from the equations of motion and the corre-
sponding boundary conditions.

7.2.1 An Alternative Development of the Generalized Hooke’s Law

The constitutive equations for a Hookean solid, or what we have called the gen-
eralized Hooke’s law for general states of stress and strain, represented by (7.2.6,
7.2.7, 7.2.8), may also be found on the basis of mathematical results in Sect. 4.6.3
on isotropic tensor functions. Since the relationship between the stress tensor T and
the strain tensor E is linear, we may write:

T = S : E ⇔ Ti j = Si jkl Ekl (7.2.23)

E = K : T ⇔ Ei j = Ki jkl Tkl (7.2.24)
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The fourth order tensor S is called the elasticity tensor or the stiffness tensor. The
fourth order tensor K is called the compliance tensor or the flexibility tensor. Since
we assume that the material model defined by the constitutive equations (7.2.23)
and (7.2.24) is isotropic, each of the tensors S and K must be represented by the
same matrix in all coordinate systems Ox. This implies that S and K are isotropic
fourth order tensors. With reference to (4.6.30) we see that S = Is

4, and with the
symmetric 4.order isotropic tensor Is

4 from (4.6.31) we may write:

S = 2μ 1s
4 +
(
κ− 2

3
μ
)

1⊗1 ⇔ Si jkl = μ
(
δik δ jl + δil δ jk

)
+
(
κ− 2

3
μ
)
δi j δkl

(7.2.25)

K =
1

2μ
1s

4−
3κ−2μ
18μ κ

1⊗1 ⇔ Ki jkl =
1

4μ
(
δik δ jl + δil δ jk

)− 3κ−2μ
18μ κ

δi j δkl

(7.2.26)

The material parameters have been chosen such that the result coincide with what is
found above in (7.2.19) and (7.2.20). Compare (7.2.25) with (4.6.34).

7.2.2 Strain Energy

In Chap. 6 the concept of stress power was defined. The stress power per unit volume
is given by the expression ω = T : D, where D is the rate of deformation tensor.
When we assume small deformations, we may set D = Ė, and thus:

ω = T : Ė (7.2.27)

Since the stresses are linear functions of the strains through Hooke’s law (7.2.8), the
work done on the material per unit volume when the state of stress is increased from
zero stress to the state given by T, is equal to:

W =
1
2

T : E (7.2.28)

This work is recoverable in the sense that the material may perform an equal amount
of work on the environment when the stresses are relieved, and W may thus be
considered to be stored in the material in the form of elastic energy per unit volume
or strain energy per unit volume:

φ =
1
2

T : E = μE : E+
1
2

(
κ− 2

3
μ
)

(tr E)2 (7.2.29)

By linear decompositions of the stress tensor T and the strain tensor E according
to (7.2.16) it may be shown, see Problem 7.7, that the strain energy consists of a
volumetric strain energy φo and a deviatoric strain energy φ ′:
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φ = φo +φ ′

φo =
1
2

To : Eo =
κ
2
εv

2 =
1

2κ
(σo)2 =

1
18κ

(tr T)2

φ ′ =
1
2

T′ : E′ = μE′ : E′ =
1

4μ
T′ : T′ (7.2.30)

For uniaxial stress:

φ =
1
2
σ ε =

1
2
η ε2 =

1
2η

σ2 (7.2.31)

7.3 Two-Dimensional Theory of Elasticity

The general equations of the theory of elasticity can only be solved by elementary
analytical methods in a few special and simple cases. In many problems of practical
interest we may however introduce simplifications with respect to the state of stress
or the state of displacements, such that a useful solution may be found by relatively
simple means.

7.3.1 Plane Stress

Thin plates or slabs that are loaded parallel to the middle plane, see Fig. 7.3.1, by
body forces b and contact forces t on the boundary surface A, such that:

bα = bα (x1,x2,t) , b3 = 0 in the volume V (7.3.1)

tα = tα (x1,x2,t) , t3 = 0 on the surface A (7.3.2)

Fig. 7.3.1 Thin plate in plane stress
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obtain approximately a state of plane stress:

Ti3 = 0 , Tαβ = Tαβ (x1,x2,t) (7.3.3)

A stricter analysis of the problem presented in Fig. 7.3.1 and with the loading con-
ditions given by (7.3.1) and (7.3.2), will show that the conditions (7.3.3) for plane
stress are not completely satisfied. However, the approximation (7.3.3) is acceptable
for a thin plate if the stresses Tαβ and the displacements uα are considered to repre-
sent mean values over the thickness h of the plate. The thickness h is assumed to be
much smaller than a characteristic diameter d of the plate, see Fig. 7.3.1.

The fundamental equations for a thin plate in plane stress are:

1) The Cauchy equations of motion:

div T+ρ b = ρ ü ⇔ Tαβ ,β +ρ bα = ρ üα (7.3.4)

The acceleration a has been substituted by the second material derivative of the
displacement vector u, which in turn will be represented by the second partial
derivative of u with respect to time:

ü =
∂ 2u
∂ t2 (7.3.5)

2) Hooke’s law for plane stress, see Problem 7.3:

Tαβ = 2μ
[

Eαβ +
ν

1−νEρρ δαβ
]
, 2μ =

η
1 +ν

(7.3.6)

σx =
2G

1−ν [εx +ν εy] , σy =
2G

1−ν [εy +ν εx] , τxy = Gγxy , 2G =
E

1 +ν
(7.3.7)

Eαβ =
1

2μ

[
Tαβ −

ν
1 +ν

Tρρ δαβ
]
, E33 =− ν

η
Tρρ (7.3.8)

εx =
1
E

[σx− ν σy] , εy =
1
E

[σy− ν σx] , γxy =
1
G
τxy

εz =− ν
E

[σx + σy] , E =
G

2(1 +ν)
(7.3.9)

Note that for a convenient notation two different symbols have been used for the
modulus of elasticity: η ≡ E and for the shear modulus: μ = G.

3) Strain-displacement relations:

Eαβ =
1
2

(
uα ,β +uβ ,α

)
. (7.3.10)

Equations (7.3.4), (7.3.6), and (7.3.10) represent all together 8 equations for the
8 unknown functions Tαβ , Eαβ , and uα .
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It is assumed that the contact forces, or stresses, are given on a part Aσ of the
surface A of the plate, while the displacements are given over the remaining part:
Au = A−Aσ , such that:

tα = Tαβ nβ = t∗α on Aσ (7.3.11)

uα = u∗α on Au (7.3.12)

t∗α and u∗α are prescribed functions of position. Equations (7.3.11) and (7.3.12)
are thus boundary conditions in the problem governed by the (7.3.4), (7.3.6),
and (7.3.10).

In an analytical solution to a problem in the theory of elasticity it is customary
to choose either displacements or stresses as the primary unknown functions. In the
present section we consider the first alternative. In Sect. 7.3.3 the stresses are chosen
as the primary unknown functions.

When the displacements are selected as the primary unknowns, the fundamen-
tal equations are transformed as follows. The relations (7.3.10) are substituted into
Hooke’s law (7.3.6), and the result is:

Tαβ = μ
[

uα ,β +uβ ,α +
2ν

1−ν uρ ,ρ δαβ
]

(7.3.13)

These expressions for the stresses are then substituted into the Cauchy equations of
motion (7.3.4) to give:

uα ,ββ +
1 +ν
1−ν uβ ,βα+

1
μ
ρ (bα − üα) = 0 (7.3.14)

These equations of motion are called the Navier equations for plane stress, named
after Claude L. M. H. Navier [1785–1836]. The two displacement components uα
are to be found from the two Navier equations. The stresses may then be deter-
mined from the expressions (7.3.13), and the strains are determined from the ex-
pressions (7.3.10). Finally the boundary conditions (7.3.11) and (7.3.12) complete
the solution to the problem.

Below we shall consider two problems for which the state of displacements is
axisymmetrical. The result of this assumption is that the state of deformation is
irrotational, or in other words the result is a state of pure strain:

R̃αβ = 0 ⇔ uα ,β = uβ ,α ⇒ uα ,ββ = uβ ,αβ = uβ ,βα

The two Navier equations (7.3.14) may now be transformed into:

εA,α +
1−ν
2μ

ρ (bα − üα) = 0 (7.3.15)

εA is the invariant:
εA ≡ uβ ,β = Eββ = E11 + E22 (7.3.16)
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The invariant represents the change in area per unit area in the plane of the plate. We
shall call this quantity the area strain. We now introduce the radial displacement u as
the only unknown displacement function, see Fig. 7.3.2 which shows a circular slab.
Polar coordinates (R,θ ) are applied and due to axisymmetry the radial displacement
is a function of R alone: u = u(R). The relevant strains are the longitudinal strains:

εR =
du
dR

, εθ =
l− lo

lo
=

2π (R + u)−2πR
2πR

=
u
R

(7.3.17)

The area strain is now:

εA = εR + εθ =
du
dR

+
u
R

=
1
R

d (Ru)
dR

(7.3.18)

The Navier equation for the R-direction is supplied by (7.3.15) when xα is replaced
by R. The result is:

d
dR

[
1
R

d (Ru)
dR

]
+

1−ν
2G

ρ (bR− üR) = 0 (7.3.19)

The coordinate stresses in polar coordinates are σR,τRθ , and σθ , see Fig. 7.3.2.
Due to axisymmetry the shear stress τRθ is zero. When the displacement u has been
determined from (7.3.19), the stresses may be determined from Hooke’s law (7.3.7),
now written as:

σR(R) =
2G

1−ν
[

du
dR

+ ν
u
R

]
, σθ (R) =

2G
1−ν

[
u
R

+ ν
du
dR

]
(7.3.20)

Example 7.1. Circular Plate with a Hole
A circular plate of radius b has a concentric hole of radius a, as shown in

Fig. 7.3.3. The edge of the hole is subjected to a pressure p, and the outer edge
of the slab is subjected to a pressure q. We shall determine the state of stress and the
radial displacement of the plate. The Navier equation (7.3.19) is in this case reduced
to the equilibrium equation:

Fig. 7.3.2 Circular plate with axissymmetrical displacement
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Fig. 7.3.3 Circular plate with a concentric hole. Examples 7.1 and 7.2. Radial stress σR and tan-
gential stress σθ as functions of the radial distance R

d
dR

[
1
R

d (Ru)
dR

]
= 0

Two integrations result in:

u = AR +
B
R

,
du
dR

= A− B
R2 , A and B are constants of integration

An expression for the radial stress is now obtained from (7.3.20):

σR(R) = 2G

[
1 +ν
1−ν A− B

1
R2

]

The boundary conditions give:

σR(a) =−p ⇒ 2G

[
1 +ν
1−ν A− B

1
a2

]
=−p ,

σR(b) =−q ⇒ 2G

[
1 +ν
1−ν A− B

1
b2

]
=−q ⇒

2G
1 +ν
1−ν A =

p(a/b)2−q

1− (a/b)2 , 2GB =
(p−q)a2

1− (a/b)2

The final solution to the problem is then:

σR(R) =
1

1− (a/b)2

{
−
[( a

R

)2−
(a

b

)2
]

p−
[

1−
(a

R

)2
]

q

}
(7.3.21)

σθ (R) =
1

1− (a/b)2

{[( a
R

)2
+
(a

b

)2
]

p−
[

1 +
( a

R

)2
]

q

}
(7.3.22)

u(R) =
1

2G
a

1− (a/b)2

{[
1−ν
1 +ν

(a
b

)2 R
a

+
a
R

]
p−
[

1−ν
1 +ν

R
a

+
a
R

]
q

}
(7.3.23)
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The stress distribution in the radial direction and in the circumferential direction are
shown in Fig. 7.3.3. For the particular case when p = q, we get the reasonable result:

σR = σθ =−p , u =− 1−ν
2G(1 +ν)

pR

The strain in the direction normal to the plane of the plate is found from (7.3.9)4:

εz =− ν
E

(σR +σθ ) =
ν

G(1 +ν)
q− (a/b)2 p

1− (a/b)2 = constant (7.3.24)

Example 7.2. Rotating Circular Plate
The plate in Fig. 7.3.3 rotates with a constant angular velocity ω about its axis.

The pressures p = q = 0. The state of stress and the radial displacement are to be
determined when the boundary conditions alternatively are given by:

Case I. Plate without a hole, a = 0. Outer edge, R = b, of the plate is stress free.
Case II. Plate with a hole, a > 0. Stress free inner and outer edges.
The rotation of the plate results in a normal acceleration an towards the axis of

rotation. Hence:
ü = üR =−an =−ω2R

The Navier equation (7.3.19) is reduced to:

d
dR

[
1
R

d (Ru)
dR

]
=−1−ν

2G
ρω2R

Two integrations provide the result:

u(R) = AR +
B
R
− 1−ν

16G
ρ ω2R3 , A and B are constants of integration (7.3.25)

The stresses are given by the (7.3.20):

σR(R) = 2G

[
1 +ν
1−ν A− B

1
R2

]
− 3 +ν

8
ρ ω2R2

σθ (R) = 2G

[
1 +ν
1−ν A + B

1
R2

]
− 1 + 3ν

8
ρ ω2R2 (7.3.26)

The constants A and B will be found from the boundary conditions in Case I and
Case II respectively.
Case I: Plate without a hole, a = 0. Outer edge, R = b, is stress free. The boundary
conditions are:

u(0) = 0 , σR(b) = 0

Using the expressions (7.3.25) and (7.3.26) in these conditions, we get two equations
from which A and B can be solve. The solution of the equations is:
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B = 0 , 2G
1 +ν
1−ν A =

3 +ν
8

ρ ω2b2 ,

The (7.3.24, 7.3.25, and 7.3.20) provide the complete solution to the problem:

u(R) =
1−ν

16G(1 +ν)
ρ ω2b3

[
(3 +ν)

R
b
− (1 +ν)

(
R
b

)3
]

σR(R) =
3 +ν

8
ρ ω2b2

[
1−
(

R
b

)2
]
,σθ (R) =

1
8
ρ ω2b2

[
(3 +ν)− (1 + 3ν)

(
R
b

)2
]

σmax = σR(0) = σθ (0) =
3 +ν

8
ρ ω2b2

Case II: Plate with a hole. Stress free inner and outer edges, R = a and R = b. The
boundary conditions are:

σR(a) = 0 , σR(b) = 0

Using the expression (7.3.26) in these conditions, we get two equations from which
the constants of integration A and B can be solve. The solution of the equations is:

2G
1 +ν
1−νA =

3 +ν
8

(
a2 + b2)ρ ω2 , 2GB =

3 +ν
8

a2b2ρ ω2

The (7.3.25, 7.3.26, and 7.3.20) provide the complete solution to the problem:

u(R) =
(3 +ν)ρ ω2b3

16G

{
1−ν
1 +ν

[
1 +
(a

b

)2
]

R
b

+
(a

b

)2 b
R
− 1−ν

3 +ν

(
R
b

)3
}

σR(R) =
(3 +ν)ρ ω2b2

8

{
1 +
(a

b

)2−
( a

R

)2−
(

R
b

)2
}

σθ (R) =
(3 +ν)ρ ω2b2

8

{
1 +
(a

b

)2
+
( a

R

)2− 1 + 3ν
3 +ν

(
R
b

)2
}

σmax = σθ (a) =
(3 +ν)ρ ω2b2

4

{
1 +

1−ν
3 +ν

(a
b

)2
}

If we let the hole radius approach zero, a → 0, we get the result that σmax =
(3+v)ρb2ω2/4, which is twice the value we found above for σmax in a plate without
a hole.

7.3.2 Plane Displacements

A body is in the state of plane displacements parallel to the x1x2 – plane when:

uα = uα (x1,x2,t) , u3 = 0 (7.3.27)
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The strains are expressed by:

Eαβ =
1
2

(
uα ,β +uα ,β

)
, Ei3 = 0 (7.3.28)

This is also called a state of plane deformations, or a state of plane strains.
States of plane displacements occur in cylindrical bodies that are held between

two rigid and parallel planes, as shown in Fig. 7.3.4, and that are subjected to forces
of the type (7.3.1) and (7.3.2). The rigid planes can only transfer normal stresses
T33. If the cylindrical body is not held between two rigid planes, but has an ap-
preciable length, we may find the stresses and the displacements in the body by
first assuming the body is held between two rigid planes, compute the stress T33

from Hooke’s law, and then superimpose a solution for the problem where the body
is subjected to negative T33 stress. This type of problem will be demonstrated in
Example 7.3.

The fundamental equations for plane displacements are provided by Hooke’s law
for plane displacements, see Problem 7.4:

Tαβ = 2μ
[

Eαβ +
ν

1−2ν
Eρρ δαβ

]
, T33 =

2ν μ
(1−2ν)

Eαα = νTαα

σx =
2G

1−2ν
[(1−ν)εx +ν εy] , τxy = Gγxy (7.3.29)

σy =
2G

1−2ν
[(1−ν)εy +ν εx] , σz =

2νG
1−2ν

(εx + εy)

Eαβ =
1

2μ
[
Tαβ −ν Tρρ δαβ

]
(7.3.30)

εx =
1−ν
2G

[
σx− ν

1−ν σy

]
, εy =

1−ν
2G

[
σy− ν

1−ν σx

]
, γxy =

1
G
τxy

The stress tensor, the displacement vector, and the strain tensor must satisfy the
Cauchy equations (7.3.4), the strain-displacement relations (7.3.10), and the bound-
ary conditions (7.3.11) and (7.3.12). When the stresses (7.3.29) are substituted into

Fig. 7.3.4 Elastic body in plane displacements
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the Cauchy equations, the result is the Navier equations for plane displacements:

uα ,ββ +
1

1−2ν
uβ ,βα +

1
μ
ρ (bα − üα) = 0 (7.3.31)

We shall find that the fundamental equations (7.3.29, 7.3.30, 7.3.31) for plane dis-
placements mathematically are identical to the similar (7.3.6), (7.3.8), and (7.3.14)
for the case of plane stress if we in (7.3.29, 7.3.30, 7.3.31) keep the shear modulus
μ = η/(2(1 + ν)) unchanged but otherwise replace ν by ν/(1 + ν). Alternatively
we may in the fundamental equations for plane stress keep μ = η/(2(1 + ν)) un-
changed but otherwise replace ν by ν/(1− ν), and the result is the fundamental
(7.3.29, 7.3.30, 7.3.31) for plane displacements. Due to the analogy between the
two sets of fundamental equations it becomes easy to transfer solutions of problems
in plane stress to analogous problems in plane displacements. We may state the rules
of transformation as follows.

In the plane displacement equations expressed with the elastic parameters

μ and ν, replace ν by
ν

1 +ν
⇒ plane stress equations (7.3.32)

In the plane stress equations expressed with the elastic parameters μ and ν

replace ν by
ν

1−ν ⇒ plane displacement equations (7.3.33)

The Navier equation for axisymmetrical displacements u(R) may be developed
along similar lines to the (7.3.19) for plane stress. The result is:

d
dR

[
1
R

d (Ru)
dR

]
+

(1−2ν)
2G(1−ν)ρ (bR− üR) = 0 (7.3.34)

The relevant stresses are:

σR(R) =
2G(1−ν)
(1−2ν)

[
du
dR

+
ν

1−ν
u
R

]
, σθ (R) =

2G(1−ν)
(1−2ν)

[
u
R

+
ν

1−ν
du
dR

]

(7.3.35)

Example 7.3. Thick-Walled Cylinder with Internal and External Pressure
A circular thick-walled cylinder with inner radius a and outer radius b is sub-

jected to an internal pressure p and an external pressure q, see Fig. 7.3.5. The bound-
ary conditions for the radial stress σR(R) are:

σR(a) =−p , σR(b) =−q (7.3.36)

We shall consider three different situations for the plane end surfaces of the cylinder:

1) The end surfaces are fixed as shown in Fig. 7.3.5.
2) The end surfaces are free without stresses.
3) The cylinder is closed with rigid end plates, as indicated to right in Fig. 7.3.5.

A force F is necessary to hold the rigid plates in place without axial motion.
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Fig. 7.3.5 Thick walled cylinder with internal pressure p and external pressure q

Let us start by assuming that the end surfaces of the cylinder are prevented from
moving in the axial direction. The cylinder will then be in a state of plane displace-
ments. Since we are not considering body forces or accelerations in this problem,
the Navier equation (7.3.34) is identical to (7.3.19) for plane stress. The solution
to the Navier equation with the boundary conditions (7.3.36) and the general stress
formulas (7.3.35), results in the same formulas for the stresses σR(R) and σθ (R) as
in Example 7.1. For the radial displacement u(R) however we find:

u(R) =
1

2G
a

1− (a/b)2

{[
a
R

+(1−2ν)
(a

b

)2 R
a

]
p−
[

a
R

+(1−2ν)
R
a

]
q

}

(7.3.37)
This expression may be also be obtained directly from formula (7.3.23) by using
the rule (7.3.33). The stress on a plane normal to the z-axis is determined from the
second formula in the set (7.3.29):

σz ≡ T33 = ν Tαα = ν (σR +σθ ) =−2ν
q− (a/b)2 p

1− (a/b)2 = constant (7.3.38)

We shall now assume that the end surfaces of the cylinder are free and without
stresses. To the solution above we need only to add a normal stress in the z-direction
that is equal to the constant σz in formula (7.3.38) for plane displacements, but with
opposite sign. This addition does not influence the stresses σR and σθ . The cylinder
will now in fact be in a state of plane stress and the radial displacement u(R) is given
by (7.3.23) in Example 7.1. The strain in the z-direction is:

εz =−σz

E
=

ν
G(1 +ν)

q− (a/b)2 p

1− (a/b)2 = constant (7.3.39)

The result is identical to the result (7.3.24) in Example 7.1. The radial and tangential
strains get a constant addition equal to:

εR = εθ =−ν εz =− ν2

G(1 +ν)
q− (a/b)2 p

1− (a/b)2 = constant (7.3.40)
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Using formula (7.3.17)2 we obtain the additional radial displacement due to this
tangential strain:

Δu(R) = Rεθ =− ν2

G(1 +ν)
q− (a/b)2 p

1− (a/b)2 R (7.3.41)

When this displacement is added to the radial displacement given by (7.3.37), we
obtain the displacement (7.3.23) in Example 7.1.

If the cylinder is closed by rigid end plates, as indicated to the right in Fig. 7.3.5,
these plates will, under the assumption of plane displacements for the cylinder, be
subjected to an axial tension σz · π(b2− a2), an axial compression p · πa2, and an
additional external force F , see Fig. 7.3.5. For the case when q = 0, i.e. when the
cylinder is subjected to internal pressure p only, the extra force is a compressive
force equal to:

F = p ·πa2−σz ·π
(
b2−a2)= πa2 (1−2ν) p

This extra force may be eliminated by superposition of a constant tensile stress in
the z-direction equal to:

σz =
F

π (b2−a2)
=

1−2ν
1− (a/b)2

(a
b

)2
p = constant

The constant tensile stress results in constant strains in the z-direction and in the
radial and tangential directions. Using formula (7.3.17)2 we obtain the additional
radial displacement due to the tangential strain:

Δu(R) = Rεθ = R · (−νεz) = R ·
(
−ν σz

E

)
=
ν (1−2ν)
2G(1 +ν)

1

1− (a/b)2

(a
b

)2
pR

(7.3.42)

7.3.3 Airy’s Stress Function

The choice of stresses as primary unknown functions is only natural in static prob-
lems, i.e. when the acceleration ü = 0, or in problems where the acceleration is
known a priori. In the latter case we introduce an extraordinary body force (−ü)
and a “corrected body force”, b− ü, and the problem is again a static one. The
Cauchy equations (7.3.4) are now equations of equilibrium:

divT+ρ b = 0 ⇔ Tαβ ,β +ρ bα = 0 (7.3.43)

Let us assume that we have found three stress components Tαβ that satisfy the
two equations of equilibrium (7.3.43). The strain components Eαβ may then be
determined from Hooke’s law (7.3.8) in the case of plane stress, or from Hooke’s law
(7.3.30) in the case of plane displacements. Then the displacements should follow
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from (7.3.10). But we cannot be sure that “any” three components of strain will give
two displacement components uα . The relation (7.3.10) represents three equations
for the two unknown functions uα . From the strain-displacement (7.3.10) we may
develop the equation:

E11,22 + E22,11− 2E12,12 = 0 ⇔ εx,yy + εy,xx−γxy,xy = 0 (7.3.44)

This equation is called the compatibility equation and represents a necessary and
sufficient condition for the three strain functions Eαβ to give two displacement func-
tions uα .

Sections 5.3.9 and 5.3.10 present the compatibility equations for a general state
of small deformations, and furthermore give the proof for their necessity and suffi-
ciency. The proof assumes that the material region considered is simply-connected.
This implies that any closed curve in the region may be shrunk to a point. A region
containing a piercing hole does not represent a simply connected region. For such
regions, in general called multply-connected regions, additional conditions have to
be imposed. Example 7.9 provides a case where the region is doubly-connected and
an extra condition is introduced for the unknown displacement function.

Because we will use stress components as primary unknown functions, we write
the compatibility (7.3.44) in terms of the stress components. In the case of plane
stress Hooke’s law (7.3.8) and the equations of equilibrium (7.3.43) are used to
transform the compatibility (7.3.44) into:

∇2Tαα +(1 +ν) ρ bα ,α = 0 plane stress (7.3.45)

In the case of plane displacements we apply Hooke’s law (7.3.30) and the equations
of equilibrium (7.3.43) to express the equation of compatibility (7.3.44) as:

∇2Tαα +
1

1−ν ρ bα ,α = 0 plane displacements (7.3.46)

Note that this also may be derived from (7.3.45) by use of the transformation
(7.3.33).

In cases where the body forces may be neglected, bα = 0, the equations of equi-
librium (7.3.43) and the compatibility equation (7.3.45) or (7.3.46) are reduced to
the following set of equations:

Tαβ ,β = 0 , ∇2Tαα = 0 (7.3.47)

For any scalar field Ψ(r) coordinate stresses defined by the expressions:

T11 =Ψ,22 , T22 =Ψ,11 , T12 =−Ψ,12 (7.3.48)

satisfy the equations of equilibrium, Tαβ ,β = 0, identical. The compatibility equa-
tion, ∇2Tαα = 0, now becomes:

∇2∇2Ψ= 0 ⇔ ∇4Ψ= 0 (7.3.49)
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This equation is a biharmonic partial differential equation. The operator∇4 is called
the biharmonic operator and is in Cartesian coordinates:

∇4 ≡ ∇2∇2 =
∂ 4

∂x4 + 2
∂ 4

∂x2y2 +
∂ 4

∂y4 (7.3.50)

The scalar field Ψ(r) is called Airy’s stress function, named after George Biddell
Airy [1801–1892]. Any scalar field Ψ(r) that is the solution to the biharmonic
(7.3.49), i.e. the compatibility equation, gives stresses from (7.3.48) that satisfy the
equations of equilibrium in (7.3.47)1 and that provide compatible strains through
Hooke’s law.

In cases where the body forces bα may not be neglected, we proceed as follows.
First we try to find any particular solution to the equations of equilibrium (7.3.43)
and the compatibility equation (7.3.45) or (7.3.46), but without necessarily satisfy-
ing any boundary conditions. The complete solution to the problem in question is
then given by the sum of the particular solution and a homogeneous solution deter-
mined from an Airy’s stress function. This total solution must satisfy the boundary
conditions of the problem.

A series of simple states of stress may be derived from the stress function:

Ψ= Ax2 + Bxy +Cy2 + Dx3 + Ex2y + Fxy2 + Gy3 + Hx3y + Kxy3 (7.3.51)

A,B, ...,K are constants. Each term in this stress function satisfies the compatibility
equation (7.3.49).

Example 7.4. Cantilever Beam with Rectangular Cross-Section
The stress function:

Ψ= Bxy + Kxy3

provides a satisfactory solution to the beam problem illustrated in Fig. 7.3.6. The
height h of the beam is assumed to be greater than the width b of the beam, which
leads us to assume a state of plane stress. The beam is loaded by shear stresses on
the free end surface at x = 0. The resultant of the shear stresses is a known force F ,
while the distribution of F is not given, and we shall accept the distribution of the
shear stresses at the end surface that the solution requires. For convenience we shall
use a mixture of x and y and numbers for indices in this example.

Fig. 7.3.6 Cantilever beam
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The stress components become:

σx(x,y) = T11 =
∂ 2Ψ
∂y2 = 6K xy , σy = T22 =

∂ 2Ψ
∂x2 = 0 ,

τxy(y) = T12 =− ∂
2Ψ

∂x∂y
=−B−3K y2

The constants B and K will now be determined from the boundary conditions:

σx(0,y) = 0 is satified , τxy(±h/2) =−B−3K (±h/2)2 = 0⇒ B =−3Kh2/4

h/2∫

−h/2

T12 bdy =−Bbh−3K b

[
y3

3

]h/2

−h/2
=−F⇒ −Bbh−K bh3/4 =−F

From these two equations we find the constants B and K.

B =
3F
2bh

, K =− 2F
bh3

The stress components are then:

σx(x,y) =−12F
bh3 xy , σy = 0 , τxy(y) =− 3F

2bh

[
1−
(

2y
h

)2
]

These are the same stresses that are given by the elementary beam theory.
If the real distribution of shear stresses on the free end surface is known and

deviates from the result obtained from the stress function, we may assume that the
state of stress in the beam is everywhere approximately the one found above from
the stress function, except in a small region near the free end. Such an assumption,
which we very often have to make in the theory of elasticity, is called the application
of the Saint-Venant’s principle, named after Barré de Saint-Venant [1797–1886].

We now turn to displacements: u1(x,y) ≡ ux(x,y) and u2(x,y) ≡ uy(x,y). From
Hooke’s law for plane stress (7.3.9) we get:

εx = E11 = u1,1≡ ∂ux

∂x
=
σx

E
=− 12F

E bh3 xy , εy = E22 = u2,2≡ ∂uy

∂y
=−ν σx

E

=−12F ν
E bh3 xy

γxy = 2E12 = u1,2 +u2,1≡ ∂ux

∂y
+
∂uy

∂x
=

1
G
τxy =

2(1 +ν)
E

τxy

=−3(1 +ν)F
E bh2

[
1−
(

2y
h

)2
]
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Integrations of u1,1 and u2,2 result in:

u1(x,y) =− 6F
E bh3 x2y + f1(y) , u2(x,y) =

6νF
E bh3 xy2 + f2(x)

f1(y) and f2(x) are unknown functions. The expressions for u1 and u2 are substituted
into the expression for u1,2 +u2,1, and we get:

− 6F
E bh3 x2 +

d f1

dy
+

6νF
E bh3 y2 +

d f2

dx
=−3(1 +ν)F

E bh

[
1−
(

2y
h

)2
]

From this equation we deduce the results:

f1(y) =
(4 + 2ν)F

Ebh3 y3−
[

A +
3(1 +ν)F

Ebh

]
y +C , f2(x) =

2F
Ebh3 x3 + Ax + B

A,B, and C are constants of integration to be determined from the boundary con-
ditions at the fixed support, where x = L. It appears from the expressions for the
displacements uα that it is not possible to demand that uα = 0 over the entire cross
section at x = L. Such a requirement would indeed not be realistic anyway since we
must expect that the material in the support itself will be somewhat deformed due to
the stresses transmitted from the beam. We therefore choose first to require: uα = 0
at x = L,y = 0. These two conditions give:

u1|x=L,y=o = 0 ⇒ C = 0

u2|x=L,y=o = 0 ⇒ 2FL3

Ebh3 + AL+ B = 0 ⇒ B =−2FL3

Ebh3 −AL (7.3.52)

A third boundary condition is obtained by either requiring: 1) u2,1 = 0 at x = L,y = 0,
which means that the axis of the beam is parallel to the x-axis, as in the elementary
beam theory, or: 2) u1,2 = 0 at x = L,y = 0, which implies that the cross section at
the support is parallel to the y-axis where the cross section intersects the beam axis.
Figure 7.3.7 shows both alternative boundary conditions at the fixed support. For the
two alternative boundary conditions we get, when also the result (7.3.52) is applied:

1) u2,1|x=L,y=o = 0 ⇒ 6FL2

Ebh3 + A = 0 ⇒ A =−6FL2

Ebh3 , B =
4FL3

Ebh3

2) u1,2|x=L,y=o = 0 ⇒ −6FL2

Ebh3 −
[

A +
3(1 +ν)F

Ebh

]
= 0 ⇒

A =−6FL2

Ebh3 −
3(1 +ν)F

Ebh
, B =

4FL3

Ebh3 +
3(1 +ν)FL

Ebh

The displacements according to alternative 1) become:

u1(x,y) =
FL3

Ebh3

{
6

[
1−
( x

L

)2
]

y
L

+ 2(2 +ν)
( y

L

)3−3(1 +ν)
(

h
L

)2 y
L

}
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Fig. 7.3.7 Two alternative boundary conditions at the fixed support

u2(x,y) =
FL3

Ebh3

{
4 + 2

( x
L

)3−6

[
1−ν

( y
L

)2
]

x
L

}
, u2,max = u2 (0,y) =

4FL3

Ebh3

The displacements according to alternative 2) become:

u1(x,y) =
FL3

Ebh3

{
6

[
1−
( x

L

)2
]

y
L

+2(2+ν)
( y

L

)3
}

u2(x,y) =
FL3

Ebh3

{
4+3(1+ν)

(
h
L

)2

+2
( x

L

)3−6

[
1−ν

( y
L

)2
+

1
2

(1+ν)
(

h
L

)2
]

x
L

}

u2,max = u2 (0,y) =
FL3

Ebh3

[
4+3(1+ν)

(
h
L

)2
]

Elementary beam theory gives:

u2(x,0) =
FL3

Ebh3

[
4 + 2

( x
L

)3−6
x
L

]
, u2,max = u2 (0,0) =

4FL3

Ebh3

The displacement u2(x,y) according to the alternative boundary condition 2) may
also be determined by adding to the displacement u2(x,y) for the alternative bound-
ary condition 1) found above a rigid-body counter-clockwise rotation given by the
angle, see Problem 7.8:

α =− u1,2,|x=L,y=o =
3(1 +ν)F

E bh

In this example we have found a solution that gives stresses and displacement in
the cantilever beam in Fig. 7.3.6 when we accept the approximation regarding the
distribution of shear stresses on the free end surface and the uncertainty about the
proper displacement conditions at the fixed end surface.
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7.3.4 Airy’s Stress Function in Polar Coordinates

The general Cauchy equations of motion in polar coordinates are given by (3.2.39)
and (3.2.40). By setting the accelerations and body forces equal to zero, we ob-
tain the proper equations of equilibrium. The following formulas for the coordinate
stresses in polar coordinates, Fig. 7.3.8, will satisfy these equations of equilibrium:

σR =
1

R2

∂ 2Ψ
∂θ 2 +

1
R
∂Ψ
∂R

, σθ =
∂ 2Ψ
∂R2

τRθ =− 1
R
∂ 2Ψ
∂R∂θ

+
1

R2

∂Ψ
∂θ

=− ∂
∂R

[
1
R
∂Ψ
∂θ

]
(7.3.53)

The Laplace operator and the biharmonic operator in polar coordinates are:

∇2 =
∂ 2

∂R2 +
1
R
∂
∂R

+
1

R2

∂ 2

∂θ 2 (7.3.54)

∇4 = ∇2∇2 =
(
∂ 2

∂R2 +
1
R
∂
∂R

+
1

R2

∂ 2

∂θ 2

)(
∂ 2

∂R2 +
1
R
∂
∂R

+
1

R2

∂ 2

∂θ 2

)
(7.3.55)

Example 7.5. Edge Load on a Semi-Infinite Elastic Plate
The plate is presented in Fig. 7.3.9 and defined by the region x > 0. The material

is subjected to an edge load q. The load intensity q is given as a force per unit length
in the z-direction. We shall find the stresses on planes parallel to the z-axis, which is
normal to plane of the figure.

This stress function will provide us with the solution:

Ψ=− q
π

Rθ sinθ (7.3.56)

The polar angle θ is measured from the direction line of the load, as shown in

Fig. 7.3.9. The load direction line forms the angle α with respect to the x–axis. By
applying the biharmonic operator (7.3.53) to this stress function we shall find that
the equation of compatibility (7.3.49 is satisfied. The coordinate stresses become:

σR =
1

R2

∂ 2Ψ
∂θ 2 +

1
R
∂Ψ
∂R

=−2q
π

1
R

cosθ

Fig. 7.3.8 Coordinate stresses
in polar coordinates
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Fig. 7.3.9 Semi-infinite elas-
tic plate subjected to an edge
load q

σθ =
∂ 2Ψ
∂R2 = 0 , τRθ =− ∂

∂R

[
1
R
∂Ψ
∂θ

]
= 0

The boundary condition: t = 0 on the free surface at x = 0, except at the origin O,
which is a singular point, is clearly satisfied. In order to show that the state of stress
is in equilibrium with the externally applied edge load q, we check the equilibrium
of a body formed as a semi cylinder with radius R, see Fig. 7.3.9. Equating to zero
the forces in the direction of the edge load q and in the direction normal to q and
referring to Fig. 7.3.9, we obtain:

q =−
∫

A

(σR · cosθ )dA =
2q
π

π/2−α∫

−π/2−α
cos2 θ dθ =

2q
π

[
1
2
θ +

1
4

sin2θ
]π/2−α

−π/2−α
= q

0 =
∫

A

(σR · sinθ )dA =−2q
π

π/2−α∫

−π/2−α
cosθ sinθ dθ =−2q

π

[
1
2

sin2 θ
]π/2−α

−π/2−α
= 0

We have thus shown that all the necessary requirements to the stress function
(7.3.56) are satisfied.

This problem was first investigated and solved by Boussinesq in 1885 and Fla-
mant in 1892, and is therefore often referred to as the Boussinesq-Flamant problem.

Example 7.6. Edge Load on a Wedge
The stress function in the previous example also gives the solution to the two

problems shown in Fig. 7.3.10 if we only adjust the constant (−q/π). Figure 7.3.10
shows two wedges, each having a wedge angle of 2α . With C as an initially un-
known constant we first set:

Ψ=−C Rθ sinθ ⇒ σR =−2C
R

cosθ ,σθ = τRθ = 0

Equilibrium of the cylinder segments bounded by the radius R requires that:
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Fig. 7.3.10 Wedges subjected to edge load q

Case a in Fig. 7.3.10a:

q =−
∫

A

(σR · cosθ)dA = 2C

+α∫

−α
cos2 θ dθ = 2C

[
1
2
θ +

1
4

sin2θ
]+α
−α

= 2C

[
α+

1
2

sin2α
]
⇒ C =

q
2α+ sin2α

Case b in Fig. 7.3.10b:

q =−
∫

A

(σR · cosθ )dA = 2C

3π/2+α∫

3π/2−α
cos2 θ dθ = 2C

[
1
2
θ +

1
4

sin2θ
]3π/2+α

3π/2−α

= 2C

[
α− 1

2
sin 2α

]
⇒ C =

q
2α− sin2α

We now have the following non-zero coordinate stresses in the two cases:

Case a: σR =− 2q
2α+ sin2α

cosθ
R

, Case b: σR =− 2q
2α− sin2α

cosθ
R

Example 7.7. Circular Cylinder with Edge Loads
The state of stress in a circular cylinder or a thin cylindrical plate of diameter d

and which is subjected to two diametrically opposite edge loads q, see Fig. 7.3.11d,
is obtained by a superposition of the following three states of stress:

a) Edge load q on a semi-infinite space, Fig. 7.3.11a.
b) Edge load q on a semi-infinite space, Fig. 7.3.11b.
c) Plane isotropic tensile stress σo = 2q/πd, Fig. 7.3.11c.

We start by considering the material between two parallel planes a distance d
apart, see Fig. 7.3.11 a and b. An edge force q on the upper plane, Fig. 7.3.11a, is
balanced by normal and shear stresses on the lower plane in such a manner that the
state of stress is given by Example 7.5:
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Fig. 7.3.11 Superposition of edge loads

σR =−2q
π

1
R

cosθ , σθ = τRθ = 0

In the circular cylindrical surface of diameter d = R/cosθ shown in Fig. 7.3.11,
the radial stress is constant and equal to σR = −2q/πd. An edge force q on the
lower plane, Fig. 7.3.11b, is similarly balanced by normal and shear stresses on
the upper plane. In the circular cylindrical surface the only non-zero coordinate
stress is σθ = −2q/πd. This implies that when the effects of the two edge loads,
Fig. 7.3.11 a and b, are superimposed, the state of stress in the cylindrical surface is
plane-isotropic. The stress on the cylindrical surface is therefore a constant pressure
equal to 2q/πd. If we now add an isotropic state of tensile stress σo = 2q/πd, as
shown in Fig. 7.3.11c, the cylindrical surface becomes stress free. The superposi-
tion of the three load cases in Fig. 7.3.11a, b, and c results in the situation shown
in Fig. 7.3.11d: A circular cylinder of diameter d is loaded by two opposite edge
forces q.

The computational work to find the stress matrix in any particle in the cylin-
der shown in Fig. 7.3.11d, becomes very extensive. Therefore we shall confine the
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computation to the stresses on two characteristic diametrical sections as shown in
Fig. 7.3.11e and f.

For the section in Fig. 7.3.11e the unit normal is n = cosθeR− sinθeθ .
The contribution to the normal stress σ from the upper knife load is then:

σ = n · T · n = cosθ ·σR · cosθ =−2q
π

cos3 θ
R

We set:

cosθ =
d/2
R

, R2 =
(

d
2

)2

+ x2 =
(

d
2

)2
[

1 +
(

2x
d

)2
]

Then:

−2q
π

cos3 θ
R

=−2q
π

(d/2R)3

R
=

2q
π

d3

8R4 =− q
πd

[
2

1 +(2x/d)2

]2

Totally from the three load cases in Figure a, b, and c we obtain:

σ(x) =
[
−2q
π

cos3 θ
R

]
·2 +

2q
πd

=
2q
πd

{
1−
[

2
1 + 4(x/d)2

]2
}

Figure 7.3.11e shows the normal stress distribution. The maximum (compressive)
normal stress σmax = −6q/πd. Due to symmetry the shear stress on the section
is zero.

On the section shown in Fig. 7.3.11f only the load case in Fig. 7.3.11c con-
tributes. Thus the normal stress is a constant tension σo = 2q/πd, while the shear
is zero. This particular result is used to find the ultimate stress of brittle materials
having high compressive strength and low tensile strength, as for instance rocks and
soils. The result of the load case in Fig. 7.3.11d is also used in the determination of
the stress optical constant in the method of photoelasticity.

Example 7.8. Rectangular Plate with a Hole. Kirsch’s Problem (1898)
A rectangular plate of width b and height h and with a small hole of radius a << h

and b, Fig. 7.3.12, is subjected to a normal stress σx = σ on the sides x = ±b/2.
The sides y =±h/2 are stress free. The stresses in the neighborhood of the hole are
to be determined.

Sufficiently far from the hole we may assume that the stresses are as for a plate
without the hole. Thus:

σx = σ , σy = τxy = 0 for |x| � a , |y| � a

Because we choose to use polar coordinates (R,θ ), this state of stress may be ex-
pressed through the formulas (3.3.37) and (3.3.38) as:
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Fig. 7.3.12 Rectangular plate with a hole

σR = σ
2 (1 + cos2θ) , σθ = σ

2 (1− cos2θ)
τRθ =−σ

2 sin2θ
for |x| � a , |y| � a (7.3.57)

The following stress function provides approximately the correct stresses in
the plate.

Ψ=−σa2

2
lnR +

σ
4

R2 +
σa2

4

[
2−
(a

R

)2
+
(

R
a

)2
]

cos2θ (7.3.58)

The compatibility (7.3.49) is satisfied, and the state of stress is:

σR(R,θ )=
1
R
∂Ψ
∂R

+
1

R2

∂ 2Ψ
∂θ 2 =−σ

2

[
1−
(a

R

)2
]
+
σ
2

[
1−4

(a
R

)2
+3
( a

R

)4
]

cos2θ

σθ (R,θ ) =
∂ 2Ψ
∂R2 =

σ
2

[
1 +
(a

R

)2
]
− σ

2

[
1 + 3

(a
R

)4
]

cos2θ

τRθ (R,θ ) =− ∂
∂R

[
1
R
∂Ψ
∂θ

]
=−σ

2

[
1 + 2

(a
R

)2−3
( a

R

)4
]

sin2θ

At the edge of the hole, R = a, the stresses are:

σR(a,θ ) = 0 , τRθ (a,θ ) = 0 , σθ (a,θ ) = (1−2cos2θ)σ
σθ ,max = σθ (a,±π/2) = 3σ , σθ ,min = σθ (a,0) = σθ (a,π) =−σ

The state of stress is in accordance with the condition of a stress free surface in the
hole. On the sides of the plate, x =±b/2 and y =±h/2, we may assume that:

a
R
≤ 2a

b
� 1 for x =±b

2
and

a
R
≤ 2a

h
� 1 for y =±h

2
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The stress formulas reduce to the expressions (7.3.57) for the boundary conditions
on the edges. On the section x = 0⇔ θ = ±π/2, the shear stress is zero and the
normal stress becomes, see Fig. 7.3.12:

σθ (R,π/2) =
[

1 +
1
2

( a
R

)2
+

3
2

( a
R

)4
]
σ

At the hole, R = a, the plate has a stress concentration σθ = 3σ , independent
of the radius a, as long as the condition a << h and b is satisfied. For h = 4a,
R. C. J. Howland, see [48], has found the solution that: σθ (a,π/2) = 4.3σ and
σθ (h/2,π/2) = 0.75σ . The stress concentration increases as the hole approaches
the edges y =±h/2.

7.3.5 Axial Symmetry

For problems with a plane state of stress that is symmetrical with respect to a
z-axis, we may assume that the Airy stress function is a function only of the ra-
dial coordinate R:

Ψ=Ψ(R) (7.3.59)

The general solution of the equation of compatibility (7.3.49) is:

Ψ(R) = A lnR + BR2 lnR +C R2 + D (7.3.60)

A, B, C, and D are constants of integration. The coordinate stresses become:

σR(R) =
1
R

dΨ
dR

=
A
R2 + B(1 + 2lnR)+ 2C

σθ (R) =
d2Ψ
dR2 =− A

R2 + B(3 + 2lnR)+ 2C (7.3.61)

The shear stress τRθ is zero, which is in accordance with the symmetry condition.

Example 7.9. Circular Plate with a Hole
The problem in Example 7.1, see Fig. 7.3.3, is now revisited. The general so-

lution (7.3.61) contains three unknown constants of integration: A,B, and C. To
determine these three constants we have only two boundary conditions:

σR(a) =−p , σR(b) =−q

We know that the general solution satisfies the equations of equilibrium and the
compatibility (7.3.49). As mentioned in connection with the development of the
compatibility (7.3.49), for multi-connected region we have to introduce additional
conditions that secure a unique and continuous displacement field. The hole intro-
duces a double-connected region: A closed material curve surrounding the hole, may
not be shrunk to zero. For this reason we have to investigate closer the displacements
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that result in the general expressions (7.3.61) for the stresses. Using the expressions
(7.3.17) for the strains, Hooke’s law (7.3.9), and the stress expressions (7.3.61), we
obtain:

εR =
du
dR

=
1
E

{
A
R2 + B(1 + 2lnR)+ 2C−ν

[
− A

R2 + B(3 + 2lnR)+ 2C

]}

(7.3.62)

εθ =
u
R

=
1
E

{
− A

R2 + B(3 + 2lnR)+ 2C−ν
[

A
R2 + B(1 + 2lnR)+ 2C

]}
⇒

u =
1
E

{
−A

R
+ B(3 + 2lnR)R + 2CR−ν

[
A
R

+ B(1 + 2lnR)R + 2CR

]}
⇒

du
dR

=
1
E

{
A
R2 + B(3 + 2lnR + 2)+ 2C−ν

[
− A

R2 + B(1 + 2lnR + 2)+ 2C

]}

(7.3.63)

If we compare the two expressions (7.3.62) and (7.3.63) for du/dR, we see that the
constant B must be zero. Thus we have the following general expressions for the
stresses and for the radial displacement:

σR(R) =
A
R2 + 2C , σθ (R) =− A

R2 + 2C

u(R) =
1
E

[
−(1 + v)

A
R

+ 2(1− v)C R

]
(7.3.64)

These expressions have the same structures as those found in Example 7.1. The
boundary conditions in the present example and in Example 7.1 are the same, and
the final results must therefore be the same as given in Example 7.1.

Example 7.10. Pure Bending of Curved Beam
Figure 7.3.13 shows a curved beam with a circular axis and constant rectangular

cross-section of height h = b− a and width t. The beam is subjected to a bending

Fig. 7.3.13 Bending of a curved beam
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moment M at each end. The stress distribution in the beam is to be determined based
on the condition that it is uniform along the axis of the beam.

As a starting point we use the general solution (7.3.61). The boundary conditions
are formulated as:

σR(a) = 0 , σR(b) = 0 ,

b∫

a

σθ (R)t dR = 0 ,

b∫

a

σθ (R)Rt dR =−M (7.3.65)

Substituting the general expressions (7.3.61) for the stresses σR(R) and σθ (R) into
the first, the second, and the fourth of these boundary conditions, we obtain three
equations for the three unknown constants A,B, and C:

A
a2 + B(1 + 2lna)+ 2C = 0 ,

A
b2 + B(1 + 2lnb)+ 2C = 0

[
A ln

(
b
a

)
+ B
(
b2 lnb−a2 lna

)
+C
(
b2−a2)] t =−M (7.3.66)

It may be shown that the third of the boundary conditions (7.3.65) is automatically
satisfied when the first two are satisfied. The solution of the three linear equations
(7.3.66) for the constants A,B, and C is:

A=−4M
K

a2 b2 ln

(
b
a

)
, B=−2M

K

(
b2−a2), C=

M
K

[
b2−a2+2

(
b2 lnb−a2 lna

)]

K =

{(
b2−a2)2− 4a2 b2

[
ln

(
b
a

)]2
}

t

The stresses are then:

σR =−4Mb2

K

[( a
R

)2
ln

(
b
a

)
− ln

(
b
R

)
−
(a

b

)2
ln

(
R
a

)]
(7.3.67)

σθ =−4Mb2

K

[( a
R

)2
ln

(
b
a

)
− ln

(
b
R

)
−
(a

b

)2
ln

(
R
a

)
+ 1−

(a
b

)2
]

(7.3.68)

The problem does not specify how the stresses, represented by the bending moment
M, are distributed over the end section of the beam. A deviation from the stress
distribution provided by the solution for σθ (R) given above, will according to the
Saint-Venant’s principle have little influence on the stress distribution at a short
distance from the end sections of the beam.

The elementary beam theory, which really presupposes that the axis of the beam
is straight before deformation, gives a linear distribution of σθ (R) over the cross-
section of the beam. The extremal values for σθ (R) according to this theory are:

σθ ,max = σθ (a) = +
6M
th2 , σθ ,min = σθ (b) =−6M

th2
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The exact theory represented by formula (7.3.68) gives:

For b = 2a : σθ ,max = σθ (a) = +7.73
M
th2 , σθ ,min = σθ (b) =−4.86

M
th2

For b = 3a : σθ ,max = σθ (a) = +9.14
M
th2 , σθ ,min = σθ (b) =−4.38

M
th2

7.4 Torsion of Cylindrical Bars

A bar is defined by an axis and a cross-section. A cylindrical bar has a straight axis
and constant cross-section. When the bar is subjected to loads perpendicular to its
axis, the bar is called a beam.

The bending of beams having symmetrical and unsymmetrical cross-sections is
discussed in books on Strength of Materials. The elementary beam theory provides
sufficiently accurate results for the distribution of normal stresses on cross-sections
and of the shear stress distribution on simple thin-walled cross-sections. Normally
the shear stresses on the cross sections of beams that have a ratio of beam height to
beam length less than 1/10, are negligible when compared with the normal stresses
on the cross sections. The elementary beam theory also gives satisfactory results for
computing beam deflections.

A bar twisted by torques M at the ends, Fig. 7.4.1, is said to be in pure torsion.
The elementary theory of torsion found in textbooks on Strength of Materials ap-
plies only to circular cylindrical bars. This theory is also called the Coulomb theory
of torsion, after Charles Augustin Coulomb [1789–1857]. In the present section we
shall primarily discuss the “non-elementary” theory of torsion of cylindrical bars
with arbitrary cross-sections. This theory is called the Saint-Venant’s theory of tor-
sion. However, it is convenient to start this section by a short presentation of the
Coulomb theory.

7.4.1 The Coulomb Theory of Torsion

The circular cylindrical bar in Fig. 7.4.1 is subjected to torques, or torsional mo-
ments, M at the ends. It is most convenient to use the xyz notation for the Cartesian

Fig. 7.4.1 Torsion of a circular cylindrical bar
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coordinates in this section, but also apply the index-notation. The torques result in
a rotation of the end cross-section at z = L relative to the end cross section at z = 0.
The angle of rotation is called the angle of twist and is denoted by Φ. If we on the
cylindrical surface of the bar draw contours of cross-sections, we shall see that when
the bar is twisted the plane contours remain plane and that the lengths of diameters
do not change. This observation leads us to formulate the following deformation
hypothesis:

During torsion of a circular cylindrical bar plane cross-sections are rotated as
rigid planes.

The deformation hypothesis is the basis of the Coulomb theory of torsion for
circular cylindrical bars. The theory will now be developed.

Since the stress resultant on any cross section must be the same and equal to the
torque M, it follows that the angle of twist Φ(z) is proportional to the distance z
from the end of the bar, where z = 0. The constant angle of twist per unit length of
the rod is denoted by φ . Thus:

Φ(z) = φ z (7.4.1)

In order to find the state of strain in the bar we consider an element of the bar
between two cross-sections, a distance dz apart, and within a cylindrical surface of
radius R, as shown in Fig. 7.4.2. From the figure we derive the only non-zero strain
component:

γ = φ R (7.4.2)

The material is assumed to be linearly elastic, and from Hooke’s law it follows that
the only non-zero stress component is:

τ ≡ τθz = Gγ = Gφ R

Since M represents the resultant of the shear stress distribution over the cross-
section, it follows that:

M =
∫

A

(τ ·R) dA = Gφ
∫

A

R2 dA (7.4.3)

Fig. 7.4.2 Element of bar
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The integral on the right hand side is the polar moment of area Ip. For a massive
circular bar of radius r and a thick-walled pipe of inner radius a and outer radius r
the polar moments of area are:

Massive bar: Ip =
πr4

2
, Thick-walled pipe:Ip =

π
2

(
r4−a4) (7.4.4)

From (7.4.2, 7.4.3) we obtain the results:

φ =
M

GIp
, τ(R) =

M
Ip

R , τmax =
M
Ip

r (7.4.5)

These formulas also apply when the torque varies along the bar: M = M(z). It is
not necessary to assume that the angle of twist Φ is small. The theory only requires
that φ should be small, see (7.4.2). Material lines on the cylindrical surface that are
generatrices before deformation, i.e. straight lines parallel to the axis of the bar, are
deformed into helices, see Fig. 7.4.1.

7.4.2 The Saint-Venant Theory of Torsion

The analysis of torsion of elastic cylindrical bars of non-circular cross-sections is
more complex than for bars having circular cross-section. Figure 7.4.3 shows the
result of torsion of a bar with rectangular cross section. Large strains are allowed
in the figure to clearly demonstrate the mode of deformation. The deformation in
Fig. 7.4.3 may be demonstrated with a rubber shaft, or simply by subjecting a rect-
angular everyday eraser to torsion. We may draw generatrices and contours of cross-
sections on the surface of the bar. When the bar is deformed the generatrices become
helices, while the deformed cross-sectional contours indicate that cross-sections are
deformed to curved surfaces. The cylindrical outer surface of the bar is stress free
and the resultant of the normal stresses on a cross-section is zero. We shall use
Cartesian coordinates in the analysis, and with the z(≡ x3)-axis along the axis of the
bar. It is furthermore convenient to mix the xy- and the x1x2-notation. Based on the
observation about stresses presented above it seems reasonable to assume a state of
stress represented by a stress matrix without normal stress components, i.e.:

T11 = T22 = T33 = 0 (7.4.6)

Fig. 7.4.3 Torsion of non-circular cylindrical bar
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This stress assumption is realized by assuming the following deformation
hypothesis:

When a bar is subjected to torsion, plane material cross-sections deform without
strains in their surfaces and in such a way that all cross-sections obtain the same
warped form. The longitudinal strain in the axial direction is zero.

The deformation hypothesis is the starting point of the Saint-Venant theory of
torsion. As a consequence of the deformation hypothesis the projections of cross-
sections onto the xy-plane rotates as rigid planes, and we may introduce an angle of
twist Φ, see Fig. 7.4.4, which is proportional to the distance z from the end surface
of the bar:

Φ= φ z , φ = constant (7.4.7)

Since the longitudinal strain in the axial direction is zero, it follows that the dis-
placement u3 in the z-direction is only proportional to the angle of twist φ per unit
length and independent of z. Thus we may set:

u3 = φ ψ(x,y) (7.4.8)

The unknown function ψ(x,y) is called the warping function. We assume small
displacements, which imply that φ must be a small angle. The displacements of a
particle P in the x- and y-directions may therefore be given as:

u1 =−Φy =−φ zy , u2 =Φx = φ zx (7.4.9)

The formulas (7.4.7, 7.4.8) are mathematical expressions of the deformation hy-
pothesis. From Hooke’s law and the relations between strains and displacements we
find that the state of stress is given by:

T13 = Gγ13 = G(u1,3 +u3,1) = Gφ (−y +ψ ,1)
T23 = Gγ23 = G(u2,3 +u3,2) = Gφ (x +ψ ,2) (7.4.10)

All other coordinate stresses are zero. For a circular cylindrical bar the warping
function ψ = 0, and the stresses T13 and T23 are components of the shear stress τ(R)
given by (7.4.5).

Fig. 7.4.4 Cross-section
of the bar
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The state of stress, given by the formulas (7.4.10) must satisfy the equilibrium
conditions given by the Cauchy equations of motion, of which only one is not triv-
ially satisfied:

div T = 0 ⇔ Tik,k = 0 ⇒ T31,1 +T32,2 = 0 ⇒ T13,1 +T23,2 = 0 on A
(7.4.11)

A is the projected cross-section as shown in Fig. 7.4.4. On the outer, cylindrical
surface of the bar, i.e. along the contour C of the surface A, the stress boundary
condition is:

t = T · n = 0 along C ⇒ T31n1 + T32n2 = 0 ⇒ T13n1 + T23n2 = 0 along C
(7.4.12)

On the end surfaces of the bar, we can only require that the resultant of the stress
distribution is represented by the torque M alone. Thus the resultant forces in the
x- and y-directions must be zero, and the resultant moment about the z-axis is equal
to the torque M:

∫

A

T13 dA =
∫

A

T23 dA = 0 ,

∫

A

(T23 x−T13 y) dA = M (7.4.13)

The real distribution of the stresses over the end surfaces is dependent upon how the
torque M is supplied to the bar. But regardless of how this is done, we shall accept
a solution that gives another distribution of stresses over the end surfaces. We only
demand that the stress distribution is equivalent to the real one in the sense that the
conditions (7.4.13) are satisfied. We may assume that the effect of this discrepancy
between the real and computed stress distribution over the end surfaces is negligible
except in small regions near the end surfaces. This assumption is supported by the
Saint-Venant’s principle, also referred to in Example 7.4.

The stresses (7.4.10) are now substituted into the equilibrium equation (7.4.11)
and the stress boundary condition (7.4.12), and we obtain the following conditions
for the warping function ψ :

∇2ψ = 0 on A (7.4.14)

dψ
dn
≡ ψ ,1

dx
dn

+ψ ,2
dy
dn
≡ ψ ,α nα = yn1− xn2 along C (7.4.15)

The solution of (7.4.14, 7.4.15) is a standard problem in potential theory called the
Neumann’s problem, after Franz Ernst Neumann [1798–1895]. Equation (7.3.14) is
called the Laplace equation.

When the warping function has been found from the (7.4.14, 7.4.15), it will be
shown that the first and the second of the conditions (7.4.13) are satisfied. First we
find, using (7.4.10) and (7.4.14), that:
∫

A

T13 dA = Gφ
∫

A

(−y +ψ ,1)dA = Gφ
∫

A

{[x(−y +ψ ,1)] ,1 +[x(x +ψ ,2)] ,2}dA
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Then, using the Gauss integration theorem in a plane, Theorem C.2, followed by
application of the condition (7.3.15), we obtain:

∫

A

T13 dA = Gφ
∮

C

{[x(−y +ψ ,1)]n1 +[x(x +ψ ,2)]n2}ds

= Gφ
∮

C

{x [(ψ ,1 n1 +ψ ,2 n2)− (yn1− xn2)]}ds = 0

The fulfillment of the second condition in (7.4.13) is shown similarly.
The third of the conditions (7.4.13) provides the following relation between the

torque M and the angle of twist φ .

M = GJ φ , J =
∫

A

[
x2 + y2 + xΨ,2−yΨ,1

]
dA (7.4.16)

The parameter J is called the torsion constant of the cross section, and the combi-
nation GJ is called the torsional stiffness of the bar.

Example 7.11. Elliptical Cross-Section
The simplest non-trivial solution of the Laplace equation (7.4.14) is given by the

warping function:
ψ = k xy , k = constant (7.4.17)

We will now determine the contour curve C that together with this warping function
satisfies the boundary condition (7.4.15). The condition (7.4.15) gives:

kyn1 + kxn2 = yn1− xn2 along C (7.4.18)

From Fig. 7.4.4 we derive the relations:

n1 =
dy
ds

, n2 =−dx
ds

(7.4.19)

Equation (7.4.18) is now be reorganized to give:

d
ds

[
x2 +

1− k
1 + k

y2
]

= 0 along C ⇒ x2 +
1− k
1 + k

y2 = constant along C

The contour C is thus an ellipse. We write the equation of the ellipse C on the
standard form: ( x

a

)2
+
( y

b

)2
= 1 , k =−a2−b2

a2 + b2

a and b are the semiaxes, see Fig. 7.4.5. The function ψ = kxy is thus the warping
function for the torsion of a massive bar with elliptical cross-section. The torsion
constant J is determined from the integral in equation (7.4.16), and the stress distri-
bution is found from the expressions (7.4.10) when φ is supplied from (7.4.16). The
results are:
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Fig. 7.4.5 Elliptical cross-
section

J =
π a3 b3

a2 + b2 , τxz ≡ T13 =− 2M
π ab3 y , τyz ≡ T23 =

2M
π a3 b

x

The combined shear stress on the cross-section is:

τ =
√

T 2
13 + T 2

23 =
2M
π ab2

√( y
b

)2
+
(

b
a

)2( x
a

)2

At the contour C the cross-sectional shear is:

τ =
2M
π ab2

√( y
b

)2
+
(

b
a

)2 [
1−
(y

b

)2
]

=
2M
π ab2

√√√√(b
a

)2

+

[
1−
(

b
a

)2
]( y

b

)2

When b < a the maximum shear stress acts at the particles (x,y) = (0,±b):

τmax =
2M
π ab2 on A for x = 0 and y =±b

For the case a = b = r we get:

J = πr4 = Ip

and the results (7.4.5) for the circular cross-section.

7.4.3 Prandtl’s Stress Function

An alternative mathematical formulation of the torsion problem is obtained by
the introduction of Prandtl’s stress function Ω(x,y) named after Ludwig Prandtl
[1875–1953]. This stress function has the property that the equilibrium equa-
tion (7.4.11) is satisfied identically. This is achieved by setting:

T13 =Ω,2 , T23 =−Ω,1 (7.4.20)
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Because this indirectly implies that we use the stresses as primary unknown func-
tions, we must ensure that the resulting strains are compatible. That is, the strains γ13

and γ23 calculated from the stresses T13 and T23 by Hooke’s law, must be compatible
and give unique displacement function u3(x,y). From the strain-displacement rela-
tions (7.2.1) and the assumptions (7.4.9) concerning the displacements, we obtain:

γ13 = u1,3 +u3,1 =−φ y + u3,1 , γ23 = u2,3 +u3,2 = φ x + u3,2

From these equations we derive the following compatibility condition for the strains.

u3,12−u3,21 = (γ13,2 +φ ) − (γ23,1−φ)≡ 0 ⇒
γ13,2−γ23,1 =−2φ compatibility equation for strains (7.4.21)

By Hooke’s law:
T13 = Gγ13 , T23 = Gγ23

and (7.4.20), the compatibility condition (7.4.21) is rewritten to:

∇2Ω=−2Gφ on A (7.4.22)

The stress function Ω(x,y) must also satisfy a boundary condition on the contour
curve C of the cross-section A. This condition will be derived from the stress condi-
tion (7.4.12) using the relations (7.4.19).

Substituting the stresses (7.4.20) into the boundary condition (7.4.12), and then
using the relations (7.4.19), we obtain:

Ω,2
dy
ds

+(−Ω,1)
(
−dx

ds

)
=

dΩ
ds

= 0 along C

This implies that Ω(x,y) must be a constant on the contour C. For the sake of
simplicity we set the constant equal to zero. Thus we have obtained the boundary
condition:

Ω= 0 along C (7.4.23)

We must now show that the first two boundary conditions (7.4.13) are satisfied
by the stress functionΩ(x,y) and find what the third of the conditions (7.4.13) leads
to. Using the expressions (7.4.20), Gauss theorem in a plane, Theorem C.2, and
finally (7.4.23), we obtain:
∫

A

T13 dA =
∫

A

Ω,2 dA =
∮

C

Ωn2 ds = 0 ,

∫

A

T23 dA =−
∫

A

Ω,1 dA =−
∮

C

Ωn1 ds = 0

These results prove that the first two boundary conditions (7.4.13) are satisfied
From the third of the conditions (7.4.13) it follows that:
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M =
∫

A

(T23 x−T13 y)dA =−
∫

A

(Ω,1 x +Ω,2 y)dA =−
∫

A

(Ωxα) ,α dA+ 2
∫

A

ΩdA

=−
∮

C

Ωxα nα ds+ 2
∫

A

ΩdA

Due to (7.4.23) the result is that:

M = 2
∫

A

ΩdA (7.4.24)

We may now conclude that the Prandtl stress function Ω(x,y) has to satisfy the
differential equation (7.4.22) and the boundary condition (7.4.23):

∇2Ω=−2Gφ on A , Ω= 0 along C (7.4.25)

The mathematical problem represented by (7.4.25) is called the Poisson problem in
Potential Theory.

The warping function ψ(x,y) and the Prandtl stress function Ω(x,y) are related
through:

Ω,2 = Gφ (−y +ψ ,1) , Ω,1 = Gφ (−x−ψ ,2) (7.4.26)

These relations follow by comparing the stress expressions (7.4.10) and (7.4.20).
The compatibility condition (7.4.22) may also be derived directly from the relations
(7.4.26) and the compatibility equation (7.4.14).

In the next section we will present a practical further application of the use of the
Prandtl stress function.

Example 7.12. Elliptical Cross-Section
For torsion of a bar having an elliptical cross-section with semiaxes a and b,

Fig. 7.4.5, the Prandtl stress function is:

Ω=− a2b2

a2 + b2 Gφ
[( x

a

)2
+
( y

b

)2−1

]
(7.4.27)

The boundary condition (7.4.23) is obviously satisfied, and it is easily shown that
the differential equation (7.4.22) also is satisfied. From (7.4.24) we obtain:

M = 2
∫

A

ΩdA =− 2a2 b2

a2 + b2 Gφ

⎡
⎣ 1

a2

∫

A

x2 dA +
1
b2

∫

A

y2 dA−
∫

A

dA

⎤
⎦

The integrals are found to be:

∫

A

x2 dA = Iy =
πa3 b

4
,

∫

A

y2 dA = Ix =
πab3

4
,

∫

A

dA = A = πab
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Iy and Ix are the second moments of area of the cross-section A about the y-axis and
the x-axis respectively. Finally, the torque M becomes:

M =
π a3 b3

a2 + b2 Gφ

The stress functionΩ(x,y), the torsion constant J in (7.4.16), and the shear stresses
on the cross section, according to the formulas (7.4.20), are now:

Ω=− M
πab

[( x
a

)2
+
(y

b

)2−1

]
, J =

πa3 b3

a2 + b2

T13 =Ω,2 =− 2M
π ab3 y , T23 =−Ω,1 =

2M
π a3 b

x

Compare with the results in Example 7.11.

7.4.4 The Membrane Analogy

Figure 7.4.6 shows a flexible membrane attached to a plane stiff border C of a hole
with a plane area A. The membrane is subjected to a constant pressure p and is

Fig. 7.4.6 a) Membrane subjected to a pressure p. b) Cross-section of a bar in torsion
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stretched to a curved form given by a function z = z(x,y). We assume the membrane
force S, given as a force per unit length, is a constant and equal in all directions. The
condition of a constant membrane force S is satisfied by a soap film membrane.

We assume that z is small compared to the smallest diameter of the area A. An
element of the membrane with the projection dx · dy on the xy-plane is in equilib-
rium under the action of the pressure p and the membrane force S. The equilibrium
equation in the z-direction is:

p · (dx ·dy)− (S ·dy) · ∂ z
∂x

+(S ·dy) ·
(
∂ z
∂x

+
∂ 2z
∂x2 dx

)
− (S ·dx) · ∂ z

∂y
+

(S ·dx) ·
(
∂ z
∂y

+
∂ 2z
∂y2 dy

)
= 0 ⇒

∂ 2z
∂x2 +

∂ 2z
∂y2 ≡ ∇2z =− p

S
(7.4.28)

The boundary condition for the z-function along the border curve C is:

z = 0 along C (7.4.29)

The mathematical problem consisting of finding the function z(x,y) from the differ-
ential equation (7.4.28) and the boundary condition (7.4.29), is a Poisson problem
and thus mathematically analogous to the problem (7.4.25) of finding the Prandtl
stress function Ω(x,y). When we choose for the plane A of the hole a cross-section
A of a cylindrical bar subjected to torsion, and the constant p/S equal to the constant
2Gφα , where:

α =
p

2Gφ S
(7.4.30)

then the membrane function z(x,y) becomes identical to:

z(x,y) = α Ω(x,y) (7.4.31)

Let C1 be the contour line of the membrane, such that z ≡ αΩ= constant along
C1. In direction of the tangent to the line C1, Fig. 7.4.6:

∂ z
∂ s

= 0 ⇒ ∂Ω
∂ s

=
∂Ω
∂x

dx
ds

+
∂Ω
∂y

dy
ds

= 0 ⇒ −T23
dx
ds

+ T13
dy
ds

= 0

This result and Fig. 7.4.6 show that the resultant of the shear stresses on the cross
section does not have a component normal to the contour line C1 in the cross-section.
This means that the contour lines of the membrane are vector lines of the shear
stresses on the cross-section of the bar. In other words, in every particle on the
cross-section the resultant shear stress τ is directed along the contour line Ω(x,y) =
constant through the particle. We may call the contour lines shear stress lines in the
cross-section. Since the resultant shear stress τ is tangential to the contour line C1
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and thus perpendicular to the unit normal n to the contour line, pointing outward,
we find from Fig. 7.4.6:

τ = T13
dx
ds

+ T23
dy
ds

=
∂Ω
∂y

(
−dy

dn

)
+
(
−∂Ω
∂x

)
dx
dn

⇒ τ =−∂Ω
∂n

=− 1
α
∂ z
∂n

(7.4.32)

The n-coordinate is measured along the normal n. The result (7.4.32) shows that
the maximum cross-sectional shear stress occurs in particles where the membrane
has the steepest slope. If a net of contour lines have been drawn, these points of
maximum shear stress will be where the contour lines are closest together.

The formula (7.4.24) shows that the torque M is proportional to the volume V
between the membrane and the surface A.

M = 2
∫

A

ΩdA =
2
α

∫

A

zdA =
2V
α

(7.4.33)

The membrane analogy may be used in an experimental determination of the
stress distribution on a cross section A of a bar in torsion. A membrane of soap is
often used for this purpose. The constant p/S may be determined by introducing
a calibrating membrane over a circular hole near the hole representing the cross-
sectional area A. The circular hole, representing a circular cross section, and the
hole with cross-sectional area A are covered by a soap film having the same mem-
brane force S, and are subjected to the same pressure p. The known solution of
the torsion problem for a circular cylindrical bar is then used to compute the con-
stant p/S.

The membrane analogy may be used for bars with open and closed thin-walled
cross sections and for bars with cell like cross sections. We shall not elaborate on
the subject, only refer to the literature, e.g. [48].

Example 7.13. Narrow Rectangular Cross-Section
Figure 7.4.7 shows a membrane over a rectangular hole for which the width b is

much smaller the height h. We may discard the small regions near the short sides
and thus consider the membrane as a cylindrical surface, implying that ∂ z/∂x ≡ 0.
Then from the formulas (7.4.28) and (7.4.29) we obtain:

Fig. 7.4.7 Membrane for a narrow rectangular cross-section
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d2z
dy2 =− p

S
, z = 0 for y =±h

2
⇒ z(y) =

ph2

8S

[
1−
(

2y
h

)2
]

This membrane provides the solution to the torsion problem for a cylindrical bar
with a narrow rectangular cross-section with width b and height h. The Prandtl stress
function is:

Ω(y) =
z(y)
α

=
Gφ h2

4

[
1−
(

2y
h

)2
]

This function is substituted into formula (7.4.24) for the torque, which then gives:

M = 2
∫

A

ΩdA =
G φ h2

2

⎡
⎢⎣b

h/2∫

−h/2

[
1−
(

2y
h

)2
]

dy

⎤
⎥⎦=

G φ h3b
3

The angle of twist φ per unit length of the bar, the torsion constant J, and the maxi-
mum shear stress on the cross-section are then, formulas (7.4.16, 7.4.20):

φ =
3M

Gh3b
, J =

M
Gφ

=
h3b
3

, τmax =− dΩ
dy

∣∣∣∣
y=h/2

= Gφ h =
3M
h2b

7.5 Thermoelasticity

7.5.1 Constitutive Equations

When the strains in an isotropic, linearly elastic material, i.e. a Hookean material,
do not originate only from the stresses in the material, Hooke’s law given by (7.2.6,
7.2.7, 7.2.8), has to be modified. We shall in this section discuss the important case
of a Hookean material subjected to a temperature field θ (r,t), which may imply
expansions and contractions in the material. It is assumed that the changes in the
temperature, from a homogeneous temperature θo in the reference configuration
Ko, are small enough not to influence the elastic properties of the material. Fur-
thermore, we assume that the thermal properties are homogeneous and isotropic.
Thermal isotropy implies that when the material experiences free thermal defor-
mation, i.e. stress-free deformation, the longitudinal strain is the same in all direc-
tions in a particle of the material and given by εt = α · (θ − θo). The parameter
α is the linear coefficient of thermal expansion of the material. The state of strain
in free thermal deformation is therefore isotropic and form invariant. The strain
tensor is:

Et
i j = α · (θ −θo)δi j ⇔ Et = α · (θ −θo)1 (7.5.1)
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A volume element of the material subjected to a constant change in temperature
(θ−θo) preserves its shape and the volumetric strain due to the thermal deformation
is εv = 3α(θ −θo). The strains (7.5.1) are in general not compatible, which implies
that elastic strains due to stresses are developed to make the total strains, thermal
plus elastic, compatible. It may be shown, see Problem 5.8 that the condition for
the strains in (7.5.1) to be compatible is that the change in temperature (θ − θo) is
a linear function of the place vector r, or the x-coordinates. The total strains in a
body of a Hookean material, represented by the strain tensor E, may be considered
to comprise of the sum of three contributions:

1) thermal strains according to (7.5.1),
2) elastic strains to create compatible strains when the material resists free ther-

mal deformation,
3) elastic strains produced by the stresses due to the external forces on the body

and the motion of the body.

The two contributions of elastic strains are represented by the elastic strain tensor:

Ee = E−Et = E−α · (θ −θo)1 ⇔ Ee
i j = Ei j−Et

i j = Ei j−α · (θ −θo)δi j

(7.5.2)
Substitution of this strain tensor into Hooke’s law, (7.2.6) and (7.2.7), yields:

E =
1 +ν
η

T− ν
η

(trT)1 +α · (θ −θo)1 ⇔

Ei j =
1 +ν
η

Ti j− νη Tkk δi j +α · (θ −θo)δi j (7.5.3)

The inverse form becomes:

T =
η

1 +ν

[
E+

ν
1−2ν

(trE)1
]
−3κα · (θ −θo)1 ⇔

Ti j =
η

1 +ν

[
Ei j +

ν
1−2ν

Ekk δi j

]
−3κα · (θ −θo)δi j (7.5.4)

The constitutive equations (7.5.3) and (7.5.4) represent the Duhamel-Neumann law,
named after Duhamel [1838] and Neumann [1841].

7.5.2 Plane Stress

In the case of plane stress, Ti3 = 0, the constitutive equations (7.5.3) and (7.5.4) are
replaced by:
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Eαβ =
1 +ν
η

[
Tαβ −

ν
1 +ν

Tρρ δαβ
]
+α · (θ −θo)δαβ

E33 =− ν
η

Tρρ +α · (θ −θo) (7.5.5)

εx =
1
E

(σx−νσy)+α · (θ −θo)

εy =
1
E

(σy−νσx)+α · (θ −θo) , γxy =
1
G
τxy (7.5.6)

Tαβ =
η

1 +ν

[
Eαβ +

ν
1−νEρρ δαβ

]
− η

1−ν α · (θ −θo)δαβ (7.5.7)

σx =
E

1−ν2 (εx +νεy)− E
1−ν α · (θ −θo)

σy =
E

1−ν2 (εy +νεx)− E
1−ν α · (θ −θo) , τxy = Gγxy (7.5.8)

The equilibrium equations (7.3.43) and the constitutive equations (7.5.5) may be
used to express the compatibility equations (7.3.44) as:

∇2Tαα +(1 +ν)ρ bα ,α +ηα (θ −θo) ,αα = 0 (7.5.9)

From these equations it readily follows that a linear temperature field (θ −θo) does
not contribute to the stresses if the surface of the body is not subjected to displace-
ment conditions.

The Navier equations (7.3.14) represent the Cauchy equations of motion
expressed in displacements. When the stresses are expressed by the Duhamel-
Neumann equations (7.5.7) rather than Hooke’s law, the following modified Navier
equations are obtained:

uα ,ββ +
1 +ν
1−ν

[
uβ ,βα−2α (θ −θ0) ,α

]
+

1
μ
ρ (bα − üα) = 0 (7.5.10)

In an axisymmetrical case these equations are reduced to one equation for the radial
displacement u≡ uR(R), confer equation (7.3.19):

d
dR

[
1
R

d (Ru)
dR

]
− (1 +ν)α

d (θ −θo)
dR

+
1−ν
2G

ρ (bR− üR) = 0 (7.5.11)

Example 7.14. Circular Plate Mounted on a Rigid Rod
A circular plate of radius b has a concentric hole of radius a. The plate is mounted

on a rigid rod of radius a, see Fig. 7.5.1. The plate is cooled from the temperature
θo to the temperature θ1 < θo. We shall determine the state of stress in the plate and
the radial displacement.
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Fig. 7.5.1 Circular plate
mounted on a rigid rod

Since body forces are not considered in this problem, and since the term involv-
ing the temperature in the compatibility equation (7.5.9) in this case becomes zero,
we may choose between the general solution from Example 7.9 using Airy’s stress
function, or we may solve the Navier equation (7.5.11) as was done in Example 7.1.
In the case of a more complex but axisymmetric temperature field θ (R), it is most
convenient to use the Navier equation. The solution procedure is then as follows.
The general solution of the Navier equation (7.5.11), with bR = ü = 0, is:

u(R) = AR +
B
R

+(1 +ν)α
1
R

∫
[θ (R)−θo]RdR (7.5.12)

A and B are constants of integration. In the present example: θ (R)− θo = θ1 −
θo < 0. Therefore:

u(R) = AR +
B
R
− (1 +ν)α (θo−θ1)

R
2

(7.5.13)

The strains are given by the formulas (7.3.17) as:

εR =
du
dR

, εθ =
u
R

(7.5.14)

The stresses are determined from the constitutive equations (7.5.8), and become:

σR(R) = 2G

[
1 +ν
1−νA−B

1
R2

]
+ G(1 +ν)α (θo−θ1)

σθ (R) = 2G

[
1 +ν
1−νA + B

1
R2

]
+ G(1 +ν)α (θo−θ1) (7.5.15)

The boundary conditions are: 1) u(a) = 0 and 2) σR(b) = 0. The final solution to the
problem is then:

u(R) =−C

[
R− a2

R

]
, C = α · (θo−θ1)

[
1 +

1−ν
1 +ν

(a
b

)2
]−1

(7.5.16)

σR(R) = 2GC
(a

b

)2
[

1−
(

b
R

)2
]

, σθ (R) = 2GC
(a

b

)2
[

1 +
(

b
R

)2
]

(7.5.17)
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If we let a→ 0, we see that the stresses disappear, in accordance with the fact that the
rigid core has vanished and the plate therefore has free thermal deformation, with:

u(R) =−α · (θo−θ1)R (7.5.18)

7.5.3 Plane Displacements

In the case of plane displacements, u3 = 0 ⇒ E33 = 0, the constitutive equa-
tions (7.5.3) and (7.5.4) are reduced to:

Eαβ =
1

2μ
[
Tαβ −νTρρ δαβ

]
+(1 +ν)α · (θ −θo)δαβ (7.5.19)

εx =
1−ν
2G

(
σx− ν

1−ν σy

)
+(1 +ν)α · (θ −θo)

εy =
1−ν
2G

(
σy− ν

1−ν σx

)
+(1 +ν)α · (θ −θo) , γxy =

1
G
τxy (7.5.20)

Tαβ = 2μ
[

Eαβ +
ν

1−2ν
Eρρ δαβ

]
− 3κ α · (θ −θo)δαβ , κ =

2μ (1 +ν)
3(1−2ν)

(7.5.21)

T33 =
2ν μ

1−2ν
Eρρ −3κα · (θ −θo) (7.5.22)

σx =
2G

1−2ν
[(1−ν)εx +ν εy]−3κα · (θ −θo)

σy =
2G

1−2ν
[(1−ν)εy +ν εx]−3κα · (θ −θo) , τxy = Gγxy (7.5.23)

The equilibrium equations (7.3.43) and the constitutive equations (7.5.20) may be
used to express the compatibility equations (7.3.44) as:

∇2Tαα +
1

1−ν [ρ bα ,α +ηα (θ −θo) ,αα ] = 0 (7.5.24)

As in the case of plane stress we see that a linear temperature field (θ − θo) does
not contribute to the stresses Tαβ if the surface of the body is not subjected to dis-
placement conditions for uα .

Modified Navier equations, which represent the Cauchy equations of motion ex-
pressed in displacements, now become:

uα ,ββ +
1

1−2ν
[
uβ ,βα−2(1 +ν)α · (θ −θ0) ,α

]
+

1
μ
ρ (bα − üα) = 0 (7.5.25)



7.6 Hyperelasticity 249

7.6 Hyperelasticity

7.6.1 Elastic Energy

In the case of a uniaxial stress history σ(t) with the strain ε(t) in the direction of
the stress σ , the stress power per unit volume is ω = σε̇ . The stress work w per unit
volume when the material is deformed from the reference configuration Ko at time
to to the present configuration K at time t will be:

w =
t∫

to

ω dt =
t∫

to

σ ε̇ dt =
ε∫

εo

σ dε (7.6.1)

ε and εo are the strains in K and Ko espectively. Figure 7.6.1 shows that the stress
work is represented by the area under the stress curve σ(ε) in the σε-diagram.

Under the assumption of small deformations the stress power per unit volume
for a general state of stress T and the corresponding state of strain E is given by
ω = T : Ė. The stress work done between the configurations K and Ko is given by:

w =
t∫

to

ω dt =
t∫

to

T : Ė dt =
E∫

Eo

T : dE (7.6.2)

A material is called hyperelastic, Green elastic, or conservative if the response
of the material is such that the stress power and the stress work may be derived from
a scalar valued potential φ = φ [E] such that:

Fig. 7.6.1 Stress work w, elastic energy φ , and complementary energy φc
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ω = φ̇ =
∂φ
∂E

: Ė =
∂φ
∂Ei j

Ėi j (7.6.3)

w =
t∫

to

ω dt = [φ ]tto = φ [E]−φ [Eo]≡ Δφ (7.6.4)

The potential φ [E] is called elastic energy or strain energy per unit volume. We
choose to set φ [0] = 0, such that the elastic energy is zero when the material is free
of strain. A body with volume V has a total elastic energy:

Φ=
∫

V

φ dV (7.6.5)

The stress power supplied to the body is:

Pd =
∫

V

ω dV =
∫

V

φ̇ dV = Φ̇ (7.6.6)

The result for the material derivative of the integral in (7.6.5) is obtained under the
assumption of small volumetric strains, which means that we may neglect the fact
that the volumes V and dV change with time. The result (7.6.6) shows that the stress
power Pd supplied to the body is equal to the time rate of change in the elastic
energy of the body. The balance equation of mechanical energy (6.1.12) may now
be written as:

P = K̇ + Φ̇ (7.6.7)

Integration with respect to time yields the work and energy equation:

t∫

to

PdV = [K +Φ] t
to ⇒ W = Δ(K +Φ) (7.6.8)

W represents the work of the external forces on the body. For a body of a hypere-
lastic material the work of the external forces is converted to two kinds of energy:
kinetic energy and elastic energy. Positive work on the body is conserved in the body
as kinetic energy and elastic energy. When the work is negative, the body delivers
energy to the surroundings.

For a hyperelastic material the stress power per unit volume is represented by
two expressions:

ω = Ti j Ėi j =
∂φ
∂Ei j

Ėi j (7.6.9)

Note that in the differentiation of φ in (7.6.9) we must treat Ei j and E ji for
i �= j as independent variables. In other words, φ must be treated as a function of
9 independent variables Ei j. Since ∂φ/∂E is not dependent upon the rate of strain
Ė, the stress power ω is a linear function of Ė. This implies that the stresses Ti j are
also independent of Ė. Equation (7.6.9) will therefore imply that:
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T =
∂φ
∂E

⇔ Ti j =
∂φ
∂Ei j

(7.6.10)

The result may be obtained as follows. First we choose the case:

Ė11 �= 0 all other Ėi j = 0

which results in the stress power:

ω = T11 Ė11 =
∂φ
∂E11

Ė11 ⇒ T11 =
∂φ
∂E11

(7.6.11)

Then we choose:
Ė12 = Ė21 �= 0 all other Ėi j = 0

which implies the stress power:

ω = T12Ė12 + T21Ė22 = (T12 + T21) Ė12 =
[
∂φ
∂E12

+
∂φ
∂E21

]
Ė12 ⇒

T12 =
1
2

[
∂φ
∂E12

+
∂φ
∂E21

]
⇒ T12 =

∂φ
∂E12

(7.6.12)

From the results (7.6.11, 7.6.12) and similar results for other (ij)-index pairs the
general result (7.6.10) follows. Remember that in the differentiation of φ in (7.6.10)
we must treat Ei j and E ji for i �= j as independent variables, i.e. φ must be treated
as a function of 9 independent variables Ei j.

According to the constitutive equations (7.6.10) for hyperelastic materials the
stresses are functions of the strains: T = T[E]. Thus the following implication:

Hyperelasticity⇒ Elasticity

All material models that have been proposed in the literature for real elastic materi-
als are hyperelastic. In principle however, an elastic material model may be dissipa-
tive, i.e. some of the work done on such a material may turn into heat.

Complementary energy per unit volume φc is defined by the expression:

φc = T : E−φ [E] (7.6.13)

For uniaxial stress the complimentary energy is:

φc = σ ε−φ [ε] (7.6.14)

In the σε – diagram φc is represented by the vertically hatched area above the σ(ε) –
curve in Fig. 7.6.1. From the definitions (7.6.13) and equation (7.6.10) we obtain the
result:
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∂φc

∂T
=
∂T
∂T

: E+ T :
∂E
∂T
− ∂φ
∂E

:
∂E
∂T

= E+ T :
∂E
∂T
−T :

∂E
∂T

= E ⇒

E =
∂φc

∂T
⇔ Ei j =

∂φc

∂Ti j
(7.6.15)

It will be shown in Sect. 7.8 that for linearly hyperelastic materials, for which the
stresses are linear functions of the strains or the strains are linear functions of the
stresses, i.e.:

Ti j = Si jkl Ekl ⇔ Ei j = Ki jkl Tkl (7.6.16)

the number of independent stiffnesses Si jkl or compliances Ki jkl is at most 21.
In Sect. 7.2.2 the following expression was developed for the elastic energy per

unit volume for an isotropic, linearly elastic material, i.e. a Hookean material:

φ =
1
2

T : E = μE : E+
1
2

(
κ− 2

3
μ
)

(trE)2 (7.6.17)

Expressed in terms of stresses we find:

φ =
1
2

T : E =
1

4μ

[
T : T− ν

1 +ν
(trT)2

]
(7.6.18)

The complementary energy per unit volume for a Hookean material becomes:

φc = T : E−φ = φ (7.6.19)

The Hookean material model is thus hyperelastic, and elastic energy and comple-
mentary energy are equal. In Sect. 7.8 it will be shown that this is true for all linearly
hyperelastic materials.

It is reasonable to require that the elastic energy always is positive when E �= 0,
i.e. the elastic energy per unit volume φ must be a positive definite scalar-valued
function of the strain tensor E. It is given as Problem 7.21 to show that this require-
ment implies the following conditions for the elasticities of Hookean materials:

E ≡ η > 0 , G≡ μ > 0 , κ > 0 ⇒ −1 < ν ≤ 0.5 (7.6.20)

In the expression (7.2.15) we suggested that the Poisson’s ratio ν should be expected
to be a number between 0 and 0.5. Negative values of ν appear to be very unrealistic,
and no real materials have been found with negative Poisson’s ratio.

7.6.2 The Basic Equations of Hyperelasticity

The primary objective of the theory of elasticity is to provide methods for calcu-
lating stresses, strains, and displacements in elastic bodies subjected to body forces
and prescribed boundary conditions for contact forces and/or displacements on the
surface of the bodies. The basic equations of the theory are:
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The Cauchy equations of motion:

divT+ρ b = ρ ü ⇔ Tik,k +ρ bi = ρ üi (7.6.21)

Hooke’s law for isotropic, linearly elastic materials:

T = 2μ
[

E+
ν

1−2ν
(trE)1

]
⇔ Tik = 2μ

[
Eik +

ν
1−2ν

E j j δik

]
(7.6.22)

E =
1

2μ

[
T− ν

1 +ν
(trT)1

]
⇔ Eik =

1
2μ

[
Tik− ν

1 +ν
Tj j δik

]
(7.6.23)

The strain-displacement relations:

E =
1
2

(
H + HT) ⇔ Eik =

1
2

(
ui,k + uk,i

)
(7.6.24)

The component form of these equations applies only to Cartesian coordinate
systems.

If temperature effects have to be included, Hooke’s law (7.6.22) should be re-
placed by the Duhamel-Neumann law (7.5.4). Equations (7.6.21, 7.6.22, 7.6.23,
7.6.24) represent 15 equations for the 15 unknown functions Tik, Eik, and ui. The
boundary conditions are expressed by the contact forces t and the displacements u
on the surface A of the body. The part of the surface A on which t is prescribed, is
denoted Aσ . On the rest of the surface, denoted Au, we assume that the displacement
u is prescribed. For static problems (ü = 0) the boundary conditions are:

t = T · n = t∗ on Aσ , u = u∗ on Au (7.6.25)

t∗ and u∗ are the prescribed functions, and n is the unit normal vector on Aσ . We
may have cases where the boundary conditions on parts of A are given as combi-
nations of prescribed components of the contact force t and displacement u. For
dynamic problems conditions with respect to time must be added, for instance as
initial conditions on the displacement field u(r,t):

u = u#(r,0) and u̇ = u̇#(r,0) in V (7.6.26)

V denotes the volume of the body. u# (r,0) and u̇# (r,0) are prescribed functions.
In analytical solutions of problems in the theory of elasticity we may use Saint-

Venant’s semi-inverse method. In this method the stresses, displacements and strains
are to a certain extent assumed and then completely determined by the basic equa-
tions and the boundary conditions. The assumptions are based on reasonable phys-
ical considerations, usually related to the state of deformations. Examples on such
assumptions are provided by the deformation hypotheses in the elementary beam
theory and in the theory of torsion of cylindrical bars. The semi-inverse method
may be employed for most problems in continuum mechanics.

It is convenient to transform the basic equations in accordance to which unknown
functions we like to choose as primary unknown variables in a problem.
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The Displacement Vector u as Primary Unknown Variable

The strain-displacement relation (7.6.24) is introduced in Hooke’s law (7.6.22), and
the result is:

Ti j = μ
[

ui, j + u j,i +
2ν

1−2ν
uk,k δi j

]
(7.6.27)

When these expressions for the stresses are substituted into the Cauchy equations of
motion (7.6.21), we obtain the equations of motion in terms of displacements.

∇2u+
1

1−2ν
∇(∇ · u)+

ρ
μ

(b− ü) = 0 ⇔

ui,kk +
1

1−2ν
uk,ki +

ρ
μ

(bi− üi) = 0 (7.6.28)

These three equations are the Navier equations in the general three-dimensional
case. When the three ui – functions are found from the Navier equations, the stresses
and the strains may be computed from (7.6.27) and (7.6.24) respectively. The bound-
ary conditions (7.6.25) and the initial conditions (7.6.26) complete the solution to
the problem.

In the case of symmetry with respect to a point O the displacement vector u may
be expressed by:

u = u(r) er = ui ei , ui = u(r)
xi

r
(7.6.29)

u(r) is the displacement radially from the symmetry point O,er is the unit vector in
the radial direction, and ui are the displacement components in a Cartesian coordi-
nate system Ox. The acceleration vector is now:

ü = ü(r) er = üi ei , üi = ü(r)
xi

r
(7.6.30)

The body force will be expressed by a radial component related to the three Carte-
sian components:

b = b(r) er = bi ei , bi = b(r)
xi

r
(7.6.31)

Referring to spherical coordinates, see Sect. 5.3.3 and the formulas (7.3.17), we find
the longitudinal strains:

εr =
du
dr

, εθ = εφ =
u
r

(7.6.32)

and the volumetric strain:

εv = trE = ui, i = εr + εθ + εφ =
du
dr

+ 2
u
r

(7.6.33)

The displacement field (7.6.29) implies that the radial direction and any direction
normal to the radial direction are principal directions of strain. Material line ele-
ments in these directions do not rotate due to the deformation, which means that the
rotation tensor for small deformations is zero:
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R̃ik =
1
2

(
ui,k−uk,i

)
= 0 ⇒ ui,k = uk,i ⇒

ui,kk = uk,ik = uk,ki = (εv),i (7.6.34)

Using the result:

r2 = xi xi ⇒ ∂ r
∂xi

=
xi

r
(7.6.35)

we can write:

(εv),i =
dεv

dr
xi

r
(7.6.36)

The results (7.6.30, 31, 34, 36) are now used to reduce the Navier equations (7.6.28)
to one Navier equation for point symmetric deformation:

d
dr

[
du
dr

+ 2
u
r

]
+

1−2ν
1−ν

ρ
2G

(b− ü) = 0 (7.6.37)

Symmetry implies that the state of stress in any particle is expressed by the radial
stress σr and the stress σφ on meridian planes. Hooke’s law (7.6.22) then gives:

σr =
2G

1−2ν

[
(1−ν) du

dr
+ 2ν

u
r

]
, σφ =

2G
1−2ν

[
ν

du
dr

+
u
r

]
(7.6.38)

Example 7.15. Thick-Walled Spherical Shell with Internal Pressure
A spherical shell with internal radius a and external radius b is subjected to an

internal pressure p as shown in Fig. 7.6.2. We want to determine the state of stress
σr(r) and σφ (r) and the radial displacement u(r).

The boundary conditions are:

σr(a) =−p , σr(b) = 0 (7.6.39)

The Navier equation (7.6.37) in this case becomes:

d
dr

[
du
dr

+ 2
u
r

]
= 0 (7.6.40)

Fig. 7.6.2 Spherical thick-
walled shell with internal
pressure p



256 7 Theory of Elasticity

The general solution of this equation is:

u(r) = C1 r +
C2

r2 (7.6.41)

The constants of integration C1 and C2 will be determined from the boundary con-
ditions (7.6.39), but first we have to obtain expressions for the stresses using the
formulas (7.6.38):

σr(r) =
2G

1−2ν

[
(1 +ν)C1−2(1−2ν)

C2

r3

]

σφ (r) =
2G

1−2ν

[
(1 +ν)C1 +(1−2ν)

C2

r3

]
(7.6.42)

When these stresses are substituted into the boundary conditions (7.6.39), we obtain
two equations for the unknown constants of integration C1 and C2. The solution of
the two equations is:

C1 =
1−2ν
1 +ν

(a/b)3

1− (a/b)3

p
2G

, C2 =
a3

1− (a/b)3

p
4G

The complete solution to the problem is then:

u(r) =
b(a/b)3

1− (a/b)3

[
1−2ν
1 +ν

r
b

+
1
2

(
b
r

)2
]

p
2G

σr(r) =− 1

1− (a/b)3

[(a
r

)3−
(a

b

)3
]

p ≤ 0 ,

σφ (r) =
1

1− (a/b)3

[
1
2

(a
r

)3
+
(a

b

)3
]

p ≥ 0

The maximum compressive and tensile stresses occur at the inner surface of the
shell:

σmin = σr(a) =−p , σmax = σφ (a) =
1
2 +
(

a
b

)3
1− (a/b)3 p

If the thickness of the shell t = b−a is very small, such that a≈ b, we find that:

σφ =
a
2t

p� σr , t = b−a

Confer equation (3.3.16) for a thin–walled shell in Example 3.6.
An interesting special case is obtained if we let the external radius b become very

large. Then we get at the inner surface of the shell:

σr(a) =−p , σφ (a) =
p
2
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which are the stresses in the spherical boundary surface to a spherical cavity in a
large elastic body.

In this example it would have been natural to apply the basic equations expressed
in spherical coordinate. Due to symmetry we could also have derived the Navier
equation (7.6.37) indirectly from the equation of motion of an infinitesimal shell
element. But the main purpose of the example has been to demonstrate the applica-
tion of the basic equations as they have been presented above, and furthermore to
illustrate the semi-inverse method, which in this case consists of starting with the
displacement (7.6.29).

The Stresses Ti j as Primary Unknown Variables

This choice is only natural for static problems: ü = 0, or for problems where the
acceleration ü is prescribed. In the latter cases we may replace the body force b by a
corrected body force (b− ü), where - ü represents an extraordinary body force, also
called an inertia force. In what follows we assume that ü = 0. The Cauchy equations
of motion (7.6.21) are three equations for six unknown stresses. Let us assume that
we have found a solution for the stresses Ti j from of these equations. The strains
Ei j may then be determined from the Hooke’s law (7.6.23) and the displacements
ui should follow from (7.6.24). But it is not certain that the six functions for the
strains are compatible and therefore provide unique displacement functions. The
six (7.6.24) represent six equations for the three unknown displacement functions
ui. The compatibility equations (5.3.41) must also be satisfied. Since we have cho-
sen the stresses as the primary unknowns, it is natural to express the compatibility
equations in terms of stresses. Hooke’s law (7.6.23) is used to express the coordinate
strains Ei j as functions of the coordinate stresses Ti j. These relations are substituted
into the compatibility equations (5.3.40) and the Cauchy equations (7.6.21) are used
to simplify in the process. The result is the compatibility equations expressed in
stresses, also called the Beltrami-Michell equations:

∇2T+
1

1 +ν
∇(∇trT)+

ν
1−ν [∇ · (ρ b)]1 +∇(ρ b)+ (∇(ρ b))T = 0 ⇔

Ti j,kk +
1

1 +ν
Tkk,i j +

ν
1−ν (ρ bk),kδi j +(ρ bi), j +(ρ b j),i = 0

(7.6.43)

In principle the problem may now be solved from the three (7.6.21) and the
three (7.6.43) with the boundary conditions (7.6.25). A method to simplify the
problem is to introduce three stress functions, which satisfy identically the Cauchy
equations (7.6.21), and which reduce the compatibility equations (7.6.43) to three
equations. Very few three-dimensional problems have been solved by this solu-
tion procedure. For two-dimensional problems the (7.6.43) are replaced by (7.3.45)
or (7.3.46), and Airy’s stress function is introduced to simplify the solution
procedure.
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7.6.3 The Uniqueness Theorem

The uniqueness theorem. The basic equations (7.6.21, 7.6.22, 7.6.23, 7.6.24)
with the boundary conditions (7.6.25) and the initial conditions (7.6.26) have
only one solution in the general dynamic case. In a static case the solution
is unique if the displacement boundary Au �= 0, and unique except from an
undetermined rigid-body displacement if Au = 0.

The theorem insures that an obtained solution to an elasticity problem is the only
solution of that problem. The proof of the theorem depends on the elastic energy φ
per unit volume being a positive definite quantity.

Proof. Let us assume that the following two solutions satisfy the basic equations
(7.6.21, 7.6.22, 7.6.23, 7.6.24):

u(1)(r,t) and T(1)(r,t) , u(2)(r,t) and T(2)(r,t) (7.6.44)

Because the basic equations are linear, the displacement state and the stress state:

u = u(1)−u(2) , T = T(1)−T(2) (7.6.45)

will also satisfy equation (7.6.21), now with b = 0, i.e. such that: divT = ρü. The
displacement u will also satisfy the boundary conditions and the initial conditions:

u(r,t) = 0 on Au ⇒ u̇(r,t) = 0 on Au (7.6.46)

u(r,0) = 0 and u̇(r,0) = 0 in V (7.6.47)

The stress tensor T will satisfy:

t(r,t) = T · n = 0 on Aσ (7.6.48)

From the conditions (7.6.46) and (7.6.48) it follows that:

t · u̇ = 0 on A (7.6.49)

The equation of balance of mechanical energy (6.1.12) gives for the solution
(7.6.45), with no body force b = 0 and the boundary condition (7.6.49):

K̇ + Φ̇= 0 (7.6.50)

where the stress power has been expressed by the total elastic energyΦ, i.e. Pd = Φ̇.
The integration of equation (7.6.50) leads to:

K +Φ= C
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C is a constant of integration, which due to the condition (7.6.47) is equal to zero.
In general K ≥ 0 and Φ≥ 0. Hence we may conclude that:

K(t) =Φ(t) = 0 (7.6.51)

The scalars K and Φ are expressed as integrals in which the integrands are positive
definite forms with respect to the variables v ≡ u̇ and E, respectively. The result
(7.6.51) therefore implies that:

u̇(r,t) = 0 and E(r,t) = 0 in V (7.6.52)

The integration of u̇ in (7.6.52) with respect to time and with equation (7.6.47)1 as
initial condition yields:

u(r,t) = 0 in V (7.6.53)

It now follows from equation (7.6.51) that elastic energy per unit volume is zero,
and then from the equations (7.6.52) and (7.6.22) that:

T(r,t) = 0 in V (7.6.54)

The results (7.6.53, 7.6.54) show that the two solutions assumed in equation (7.6.44)
are identical. This proves the uniqueness theorem.

In a static case time does not enter any of the relevant equations. The displace-
ment u in equation (7.6.45) must satisfy the boundary condition:

u(r) = 0 on Au (7.6.55)

and result in stresses satisfying the equilibrium equation and the boundary condition:

divT = 0 in V, t(r) = T · n = 0 on Aσ (7.6.56)

We may now write:

t · u = 0 on A ⇒
∫

A

t · udA =
∫

A

u · T · ndA = 0

which by Gauss’ theorem C.3 yields:

∫

A

u · T · ndA =
∫

A

ui Ti j n j dA =
∫

V

(ui Ti j), j dV = 0 ⇒
∫

V

ui Ti j, j dV+
∫

V

ui, j Ti j dV = 0 (7.6.57)

The first integral vanishes due to the equilibrium equation (7.6.56). The integrand
in the second integral may according to equation (7.6.17) be changed to:
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ui, j Ti j =
1
2

(ui, j Ti j + u j,i Tji) = Ti j Ei j = T : E = 2φ

Then equation (7.6.57) has been reduced to:

2
∫

V

φ dV = 0 (7.6.58)

In general φ ≥ 0, which by equation (7.6.58) implies that φ = 0 in V , which again
shows that:

E = 0 in V ⇒ T = 0 in V (7.6.59)

Thus the two displacement fields u(1) and u(2) result in the same strains and stresses.
The difference between the two displacement fields may only be a small rigid-body
displacement, which does not result in strains and changes in the stresses. If the
displacement boundary condition applies, i.e. Au �= 0, the rigid-body displacement
must vanish. These arguments prove the uniqueness theorem in a static case.

7.7 Stress Waves in Elastic Materials

In this section we discuss some relatively simple but fundamental aspects of prop-
agation of stress pulses or stress waves in isotropic, linearly elastic materials. We
may also consider these pulses or waves as displacement, deformation, or strain
pulses or waves, according to which of these quantities we are interested in. In the
general presentation we do not distinguish between pulses and waves, and since the
materials are assumed to be elastic, we use the common name elastic waves.

Sound in gasses and liquids is elastic waves and will be discussed in Sect. 8.3.3
in the chapter on Fluid Mechanics.

Our analysis starts with longitudinal elastic waves in a bar. Then we treat plane
waves in an infinite elastic body. A general discussion of elastic waves in bodies of
infinite extent concludes the chapter.

7.7.1 Longitudinal Waves in Cylindrical Bars

Figure 7.7.1 shows an elastic bar of length L and cross-sectional area A. The material
has density ρ and modulus of elasticity E . The right end of the bar, at x = L, is
subjected to an axial force F(t). The force may be given as an impact representing
an impulsive force F̂ or may be oscillatory, for instance of the form:

F(t) = Fo sinωt (7.7.1)
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Fig. 7.7.1 Cylindrical bar subjected to a force F(t) or an impulsive force F̂ at the end x = L

The normal stresses over the cross-section at the end of the bar, x = L, will propagate
through the rod as what we may call a wave σ(x,t) towards the other end of a bar,
at x = 0. At the end x = 0 the stress wave is reflected as a new, reflected wave
σr(x,t). The reflected wave propagates in the positive x-direction towards the end at
x = L. How the incoming wave σ(x,t) is reflected at the end x = 0 depends on the
boundary condition, i.e. whether the end is free, as indicated in Fig. 7.7.1, or the bar
is attached to another body.

As a basis for a simplified analysis of the stress wave propagation problem we
make the following assumptions:

1. The cross sections of the bar moves as planes. The displacement in the axial
direction is given by:

u = u(x,t) (7.7.2)

2. The state of stress is uniaxial and given by the normal stress over the cross section
of the bar:

σ = σ(x,t) (7.7.3)

In addition we assume that the material is linearly elastic with a modulus of elasticity
E , and that the deformations are small. Thus we may state:

σ = E ε, ε =
∂u
∂x

⇒ σ = E
∂u
∂x

(7.7.4)

Due to the Poisson effect, i.e. the transverse strain due to the Poisson ratio ν > 0,
the axial motion will also create motion in the directions normal to the axis of the
bar. This motion will result in shear and normal stresses on surfaces parallel to
the axis of the bar, and also result in warped cross-sections. We shall discard such
secondary effects in the following development of the theory and comment on them
at the end of the presentation.

Now we consider a short element of the bar of length dx and mass dm = ρ · (A ·
dx). The acceleration of the element is ü. The element is subjected to normal stresses
on the two cross-sections. The1. axiom of Euler is applied to the element:
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f = mü ⇒
[
∂σ
∂x

dx

]
·A = [ρ · (Adx)] · ü ⇒ ∂σ

∂x
= ρ ü

which by using equation (7.7.4) is transformed to:

c2 ∂ 2u
∂x2 =

∂ 2u
∂ t2 , c =

√
E
ρ

(7.7.5)

The partial differential equation (7.7.5) is called a one-dimensional wave equation,
and the parameter c is called wave velocity. The reason for this will be demon-
strated below.

The general solution of the wave equation (7.7.5) is given as:

u(x,t) = f (ct + x)+ g(ct− x) (7.7.6)

f (α) and g(α) are two arbitrary functions of one variable α . The solution u(x, t) =
f (ct + x) may be interpreted as shown in Fig. 7.7.2. The graph of u in a xu-diagram
has constant shape independent of time. The figure shows the graphs at the times t1
and t2 > t1. The distance x1− x2 between two corresponding points on the graphs is
determined by the condition:

f (ct1 + x1) = f (ct2 + x2) ⇒ ct1 + x1 = ct2 + x2 ⇒ x1− x2 = c(t2− t1)

From this result it follows that the displacement u(x, t) = f (ct +x) propagates in the
negative x-direction with the velocity c. We therefore call u(x,t) = f (ct +x) a plane
longitudinal displacement wave with the wave velocity c. We introduce the notation:

f ′(α)≡ d f
dα

(7.7.7)

The corresponding strain wave and stress wave are now:

ε(x,t) =
∂u
∂x

= f ′(ct + x), σ(x,t) = Eε = E f ′(ct + x) (7.7.8)

Fig. 7.7.2 Displacement
wave u = f (ct + x) in the
negative x-direction
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The function f (α) is determined by the force F(t) applied at the end x = L of the bar.

F(t) = Aσ(L, t) = AEε(L,t) = AE f ′(ct + L) ⇒ f ′(α) =
1

AE
F ([α−L]/c)

⇒ σ(x,t) = Eε(x,t) = E f ′(ct + x) =
1
A

F (t +[x−L]/c) (7.7.9)

For the harmonic force function (7.7.1), we obtain:

σ(x,t) = E f ′(ct + x) =
Fo

A
sin

([
2πc
λ

]
[ct + x−L]

)
(7.7.10)

λ is the wave length and defined by:

λ =
2πc
ω

(7.7.11)

If we choose the initial condition u(L,0) = 0, the displacement wave becomes:

u(x, t) = f (ct + x) =
Fo

EA
λ
2π

[
1− cos

([
2π
λ

]
[ct + x−L]

)]
(7.7.12)

The particle velocity at the cross section x is:

v(x,t) =
∂u
∂ t

= c f ′(ct + x) =
c
E
σ(x,t) (7.7.13)

The part u(x, t) = g(ct − x) of the general solution (7.7.6) of the wave equa-
tion (7.7.5) represents a plane longitudinal displacement wave propagating in the
positive x-direction with the wave velocity c given by the formula in (7.7.5). This
wave may be established by a reflection at the end x = 0 of the incoming displace-
ment wave u(x, t) = f (ct + x). We shall consider two different types of end condi-
tions at x = 0:

1) Reflection from a free end at x = 0, and
2) Reflexion from a fixed end at x = 0.

Reflection from a Free End at x = 0

When a displacement wave u(x,t) = f (ct + x) moving in the negative x-direction
reaches the free end at x = 0, the reflection u(x,t) = g(ct−x) is a displacement wave
in the positive x-direction. The total displacement will be the sum of the two waves:

u(x,t) = f (ct + x)+ g(ct− x) (7.7.14)

At the free end, x = 0, the resulting stress must vanish at all times:
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σ(0,t) = 0 ⇒ ε(0,t) =
∂u
∂x

= 0 ⇒ f ′(ct)−g′(ct) = 0 at all times t

(7.7.15)
This result implies that the functions f (α) and g(α) must be equal except for a
constant:

g(α) = f (α)+C

In order to have the natural initial condition that u(0,0) = 0, we subtract a constant
f (0) from both f (α) and g(α) in equation (7.7.14), and set:

u(x,t) = f (ct + x)+ f (ct− x)−2 f (0) (7.7.16)

Figure 7.7.3 shows the incoming wave f (ct + x), the reflected wave f (ct− x), and
the total displacement u(x,t) from equation (7.7.16). In the xu-plane in Fig. 7.7.3
the graphs of the functions f (ct + x) and f (ct− x) are mirror images of each other
with respect to the u-axis. The displacement (7.7.16) gives the axial strain and axial
stress:

ε(x,t) =
∂u
∂x

= f ′(ct + x)− f ′(ct− x) (7.7.17)

σ(x,t) = Eε = E f ′(ct + x)−E f ′(ct− x) (7.7.18)

The development of the stress function σ(x,t) is illustrated in Fig. 7.7.3, where the
stress wave E f (ct + x) is assumed to represent tension, i.e. a tension wave. The
reflected stress wave E f (ct − x) will then represent compressive stress, that is a
compression wave. In general:

A tension/compression wave is reflected from a free end as a compression/tension
wave.

A heavy impulsive blow to one end of a bar or a detonation of an explosive at
the end will initiate a wave of high compressive stress. The reflection of this wave

Fig. 7.7.3 Reflection of displacement wave and stress wave from a free and from a fixed end
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is a tension wave. Interference of the two waves may result in a total stress of high
tension values a short distance from the free end. A bar of a material with a tensile
strength that is lower than the compressive strength may therefore experience a ten-
sile fracture a short distance from the free end. We shall return to this phenomenon
in Sect. 7.7.7.

Reflection from a Fixed End at x = 0

When a displacement wave f (ct + x) reaches a fixed end at x = 0, the reflected
displacement wave g(ct− x) will be determined by the condition that the combined
displacement u(x,t) must be zero at the end:

u(0,t) = f (ct)+ g(ct) = 0 at any time t (7.7.19)

This implies that g(α) =− f (α), and hence the total displacement is:

u(x,t) = f (ct + x)− f (ct− x) (7.7.20)

Figure 7.7.3 illustrates the incoming wave, the reflected wave, and the total displace-
ment. The resulting axial strain and axial stress are:

ε(x,t) =
∂u
∂x

= f ′(ct + x)+ f ′(ct− x) (7.7.21)

σ(x,t) = Eε = E f ′(ct + x)+ E f ′(ct− x) (7.7.22)

From the expression (7.7.21), and as illustrated in Fig. 7.7.3, it is seen that a stress
wave representing tension/compression is reflected as a tensile/compressive stress
wave. In general:

A tension/compression wave is reflected from a fixed end as a tension/compression
wave.

An interesting consequence of this result will be demonstrated in Sect. 7.7.2.

Critical Comments to the Simplified Theory Presented Above

It was mentioned in the introduction to the theory developed above that the Poisson
effect will influence the wave propagation. The assumptions (7.7.2) and (7.7.3), on
which the simplified theory is based, neglect the Poisson effect. H. Kolsky discusses
in “Stress waves in solids” [23] the exact theory for displacement waves in a circular
cylindrical rod. The displacement wave is represented by a trigonometric function:

u(x,t) = uo sin

(
2π
λ

[ct− x]
)

(7.7.23)
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λ is the wave length. The diameter of the rod is denoted by 2r. If the ratio λ/r > 10,
the simplified theory presented above is sufficiently accurate, and the wave veloc-
ity c is given by the formula (7.7.5)2 and thus independent of the wave length. For
1 < λ/r < 10 the exact theory has to be considered, according to which the wave
velocity decreases with the wave length. For wave lengths less than the radius of the
rod, λ/r < 1, the wave velocity again becomes practically constant, but now approx-
imately equal to cr, which is the wave velocity of the so-called Rayleigh waves. The
Rayleigh waves are surface waves and are discussed in Sect. 7.7.8. These waves rep-
resent motion in the vicinity of free surfaces, and with one displacement component
in the direction of the wave propagation and one component in the direction normal
to the surface. For steel with ν = 0.3, E = 210GPa, and ρ = 7.83 · 103 kg/m3 we
will find:

c =

√
E
ρ

= 5179 m/s, cr = 2952 m/s

In order to have a numerical example with some relevant numbers we shall con-
sider sound waves with a frequency f between 10 and 10 000 Hz propagating down
a steel bar. For steel the velocity of propagation is c = 5179m/sec. From the re-
lationship f = c/λ we find that the wave length λ lies between 0.52 m and 520m:
0.52m < λ < 520m. Based on the condition that λmin/r > 10, we obtain the result
rmin = 52mm. We may thus conclude that the simplified wave propagation theory
presented above, may be used for sound waves of frequencies less than 10 000 Hz
in steel bars when the bar diameter is less than 104 mm.

Due to the induced motion perpendicular to the direction of propagation and
internal damping, the wave length of displacement waves will increase while the in-
tensity decreases along the direction of propagation. The effect of internal damping
will be further discussed in Sect. 9.5 on stress waves in viscoelastic materials.

7.7.2 The Hopkinson Experiment

J. Hopkinson published in 1872 the results of an experiment that showed how the
interference of stress waves may lead to fracture. The experiment is discussed by
G.I. Taylor in the paper: The Testing of materials at high rates of loading [47].
Figure 7.7.4 shall illustrate the experiment. A steel wire with cross sectional area A
and modulus of elasticity E is fixed at one end. The axis of the wire is vertical. The
lower end of the wire is attached to a plate with negligible mass, but sufficiently
heavy to keep the wire straight. A body of mass m can slide freely on the wire.
The body is released from rest from a height h above the plate. The wire used by
Hopkinson had static fracture strength of 500 N. The weight of the body could be
varied between 31 N and 182 N. The experiment showed that the minimum height
hmin resulting in fracture, was independent of the mass of the falling body and that
the location of the fracture for this height occurred near the upper fixed end.
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Fig. 7.7.4 The Hopkinson experiment

The Hopkinson theory is as follows. For any given height h the falling body
hits the plate at a velocity vo, which may be determined from the work and energy
equation for a rigid body:

W = ΔK ⇒ mg ·h =
1
2

mv2
o ⇒ vo =

√
2gh (7.7.24)

The velocity vo is independent of the mass of the body. When the body hits the
plate, say at time t = 0, the lower end of the wire is suddenly given the velocity vo.
If we denote the particle velocity of the wire at a distance x from the upper end by
v(x,t), then:

v(L,0) = vo (7.7.25)

From (7.7.13) and the formula for the wave velocity c in (7.7.5) it follows that the
velocity wave v(x, t) introduces a tensile stress wave in the wire:

σ(x,t) = ρ cv(x,t) (7.7.26)

The velocity field v(x,t) and thus the stress field σ(x,t) may be determined from the
law of motion for the body on the plate, see Fig. 7.7.4:

f = m a ⇒ mg−σ(L,t) ·A = m
∂v(L, t)
∂ t

(7.7.27)

Using equation (7.7.26), we get:

∂v(L,t)
∂ t

+
ρAc
m

v(L,t) = g (7.7.28)

The solution of equation (7.7.28) that satisfies the condition (7.7.25), is:

v(L, t) = {vo exp(− [ρA/m]ct)+ (mg/ρAc) [1− exp(− [ρA/m]ct)]}H(t)
(7.7.29)
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The function H(t) is the Heaviside unit step function, Oliver Heaviside
[1850–1925]:

H(t) =
{

0 for t ≤ 0
1 for t > 0

(7.7.30)

From the results (7.7.29) and (7.7.26) we get the expression for the stress wave in
the wire:

σ(x,t) = {ρcvo exp(− [ρA/m] [ct + x−L])}H(t +(x−L)/c)
+{(mg/A) [1− exp(− [ρA/m] [ct + x−L])]}H(t +(x−L)/c) (7.7.31)

This is a tensile wave with a front stress ρcvo. The wave reflected from the fixed up-
per end of the bar represents also tension. A maximum tensile stress 2ρcvo will occur
at the upper fixed end. Successive reflections from both ends will superimpose and a
very complex stress picture develops in the wire. Due to internal material damping
and other effects discussed at the conclusion of Sect. 7.7.1, the system wire/rigid
body comes to rest after a relatively short time. In the analysis of the experiments
performed by J. Hopkinson a theoretical value of maximum tensile stress 4.33ρcvo

occurs after the 3. reflection from the upper fixed end. B. Hopkinson (1905) repeated
his father’s experiments, with better equipment and a somewhat different objective.
In these experiments the theoretical value of the maximum tensile stress is 2.15ρcvo

and occurs after the 2. reflection from the upper end. These results are based only
on the first term on the right hand side of equation (7.7.31) and reflections of this
stress wave.

7.7.3 Plane Elastic Waves

We assume that a relatively small region in an infinite body of isotropic elastic
material is subjected to a mechanical disturbance of some sort. The disturbed region
may be considered to be a point source of a displacement field propagating into the
undisturbed material as a displacement wave. Sufficiently far away from the source
the displacement propagates as a plane wave. Figure 7.7.5 illustrates the situation.
In the neighborhood of the x3-axis and a distance from the source we assume the
displacement field:

u = u(x3,t) ⇔ ui = ui(x3,t) (7.7.32)

This field really represents three plane waves: a longitudinal wave u3(x3,t) and two
transverse waves u1(x3,t) and u2(x3,t). We shall see that the wave velocities are
different for the two types of waves.

The equations of motion in this case are the Navier equations (7.6.28). If we
neglect the body forces, the equations are reduced to:

ui,kk +
1

1−2ν
uk,ki =

ρ
μ

üi (7.7.33)
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Fig. 7.7.5 Plane displacement wave from a distant point source

The displacement field (7.7.32) is substituted into the Navier equations (7.7.33), and
the result is three one-dimensional wave equations:

cl
∂ 2u3

∂x2
3

=
∂ 2u3

∂ t2 , cl =

√
2(1−ν)
1−2ν

μ
ρ

=

√
1−ν

(1 +ν) (1−2ν)
η
ρ

=

√
κ+ 4μ/3

ρ
(7.7.34)

ct
∂ 2uα
∂x3

2 =
∂ 2uα
∂ t2 , ct =

√
μ
ρ

=

√
1

2(1 +ν)
η
ρ

(7.7.35)

μ(= G) is the shear modulus, η(= E) is the modulus of elasticity, and κ is the bulk
modulus. The wave equations (7.7.34) and (7.7.35) have general solutions of the
form (7.7.6).

The displacement u3(x3,t) represents a motion in the direction of the propagation
x3, and cl is the wave velocity of longitudinal waves. The displacements uα(x3, t)
represent motions in the directions normal to the direction of propagation, and ct

is the wave velocity of transverse waves. Because 0 ≤ ν ≤ 0.5 we will find that in
general:

ct < cl (7.7.36)

For steel with ν = 0.3, E = 210GPa, and ρ = 7.83 · 103 kg/m3, we find ct =
3212m/s, cl = 6009m/s, and c = 5179m/s (from 7.7.5).

The longitudinal wave implies volume changes: εv = u3,3 = E33, and the wave is
therefore called a dilatational wave or volumetric wave. Because:

rot (u3 e3)≡ curl (u3 e3)≡ ∇× (u3 e3) = 0

the displacement u3(x3,t) is also called an irrotational wave. A physical conse-
quence of an irrotational wave is that the principal directions of strain do not rotate.
For the displacement field u3(x3,t) the xi-directions are the principal strain direc-
tions. According to Hooke’s law expressed by the equations (7.6.27) the stresses are
determined by:
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T33 =
2(1−ν)μ

1−2ν
u3,3, T11 = T22 =

ν
1−ν T33 (7.7.37)

The transverse waves u1(x3,t) and u2(x3,t) are isochoric, i.e. εv = 0, and are
therefore also called dilatation free waves or equivoluminal waves. The stresses are
according to Hooke’s law (7.6.27):

T13 = μ u1,3, T23 = μ u2,3 (7.7.38)

Because these waves also represent shear stresses on planes normal to the direction
of propagation, they are also called shear waves. Other names are distortional waves
and rotational waves.

7.7.4 Elastic Waves in an Infinite Medium

We consider a body of an isotropic, linearly elastic material. The extension of the
body is so large that the influence from boundary surfaces to other media may be
neglected. It is assumed that the material region bounded by a closed surface A is
in motion, while the material outside A is undisturbed and at rest. The surface A
will spread out into the previously undisturbed region. The motion of the surface
is now called a wave, and the surface A is called the wave front. We will find that
the mathematical points on A have a constant velocity in the direction normal to
A. This wave velocity c is independent of the shape of the wave front A. A further
investigation will show that A represents two surfaces: 1) a longitudinal wave front
for particle motions normal to the wave front, and which represents volume changes
and has the wave velocity cl , and 2) a transverse wave front for motions parallel to
the wave front, and which represents shear stresses on the wave front and rotation,
and has the wave velocity ct .

7.7.5 Seismic Waves

An earth quake initiates three elastic displacement waves. The fastest wave is a lon-
gitudinal wave, a volumetric wave, called the primary wave, the P-wave. The second
fastest wave is a transverse wave, a shear wave, called the secondary wave, the S-
wave. Both waves propagate from the earth quake region in all directions, and their
intensities, or energy per unit area, decrease with the square of the distance from the
earth quake. These two waves therefore are registered by relatively weak signal on
a seismograph far away from the epicenter of the earth quake. The third and gen-
erally the strongest wave propagates along the surface of the earth and represents a
combination of a Rayleigh wave and a Love wave.
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Rayleigh waves, presented below in Sect. 7.7.8, are surface waves with displace-
ment components in the direction of propagation and in the direction normal to
the surface, the latter component being the strongest. The intensity of the Rayleigh
waves will in principle decrease with the distance from the surface. The propa-
gation velocity cr is somewhat smaller than ct , approximately 10% smaller, de-
pending upon the Poisson ratio of the medium. In the neighborhood of the free
surface of a homogeneous material the Rayleigh wave is the only possible surface
wave. The wave is named after Lord Rayleigh, 3rd baron (John William Strutt)
[1842–1919].

Love waves are surface waves, which near the surface of the earth are equally
important as the Rayleigh waves, and represent displacements in the surface and in
the direction normal to the direction of propagation. Love waves were introduced
by A. E. H. Love [1863–1940]. This type of surface waves is also called SH-waves
(surface - horizontal). The Love waves may be explained by considering a region of
the upper surface of the earth to have different material properties than the rest of
the earth surface. The velocity of the Love waves is somewhat smaller than ct for
the earth surface and lies between the transverse wave velocity c′t for the earth crust
and ct . A condition for the existence of Love waves is that c′t < ct . For a harmonic
wave the wave velocity depends on the wavelength. This means that non-harmonic
waves are distorted as they travel through the material, a phenomenon called
dispersion.

The surface waves must travel a longer distance than the P-waves and the S-
waves, and are therefore registered somewhat later. The energy per unit area of the
surface waves decreases proportionally to the travelled distance. This fact explains
that the surface waves give a relatively stronger seismic signal than the primary and
secondary waves.

7.7.6 Reflection of Elastic Waves

When a plane volumetric wave meets a plane free surface, it is reflected as a plane
volume wave and a plane shear wave, see Fig. 7.7.6. It may be shown that angle α2

between the surface normal and the direction of propagation of the reflected dilata-
tional wave is equal to the angle α1 between the surface normal and the direction
of the incoming volumetric wave. For the angle β2 of the reflected shear wave we
will find:

sinβ2

sinα1
=

ct

cl
< 1 (7.7.39)

The intensity of the shear wave approaches zero as the angle α1 approaches 0◦. The
intensity of the reflected volumetric wave is equal to the intensity of the incoming
wave when the angle α1 = 0, otherwise it is less. Similarly as for reflection of waves
from a free end of a bar, we find that a tensile/compressive wave is reflected as a
compressive/tensile wave.
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Fig. 7.7.6 Reflection of a
dilatation wave from a free
surface

When a plane shear wave meets a plane free surface, the displacement component
parallel to the surface is reflected as a shear wave and such that the angle β2 of the
reflected wave is equal to the angle β1 of the incoming wave. The wave intensity is
unchanged but the phase, that is the direction of shear strain/stress, is opposite. In
Fig. 7.7.7 this displacement component is in the in z-direction that is normal to the
figure plane. The displacement component parallel to the xy – plane in Fig. 7.7.7
is reflected as two waves: a shear wave and a dilatational wave. The angle of the
reflected shear wave is equal to the angle of the incoming wave: β2 = β1. The angle
α2 of the reflected dilatational wave is given by:

sinα2

sinβ1
=

cl

ct
> 1 (7.7.40)

7.7.7 Tensile Fracture Due to Compression Wave

Figure 7.7.8 shows a thick steel plate. At the position P on the top face of the plate
an explosive charge is detonated, resulting in a compressive stress wave of very high

Fig. 7.7.7 Reflection of shear
waves from a free surface
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Fig. 7.7.8 Fracture due to
reflected tensile wave

intensity. From the free bottom face of the plate the compression wave is reflected as
a tension wave. The two waves combine, and a short distance inside the plate from
the bottom face the tensile stresses may become larger than the tensile strength of
the material, resulting in a fracture surface, with the result that a piece of the plate,
indicated by the hatched area in Fig. 7.7.8 is detached from the plate and falls off

7.7.8 Surface Waves. Rayleigh Waves

In the vicinity of a free surface of an elastic body elastic waves are propagated in a
special way. Figure 7.7.9 shows a free surface of a body at y = 0. We assume that
the body, for y≥ 0, has plane displacements represented by the displacement field:

u3 = 0, uα = uα(x,y, t) (7.7.41)

It is further assumed that the deformation is concentrated near the free surface, and
we take as a condition for the displacement field that:

uα → 0 as y→ ∞ (7.7.42)

Using the formulas (7.7.34, 7.7.35) for the wave velocities, we may write the Navier
equations (7.7.33) as:

ct
2uα ,ββ +

(
cl

2− ct
2)uβ ,βα = üα (7.7.43)

The condition of a stress free surface at y = 0 provides the following boundary con-
ditions for the displacement field uα , where Hooke’s law for plane displacements
(7.3.29) has been used:

Fig. 7.7.9 Elastic body with free surface
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T22|y=0 = 0 ⇒ (1−ν)u2,2 +νu1,1 = 0 at y = 0 (7.7.44)

T12|y=0 = 0 ⇒ u1,2 + u2,1 = 0 at y = 0 (7.7.45)

The solution of the differential equation (7.7.43) satisfying the boundary conditions
(7.7.42, 44, 45), is obtained as the following displacement waves, called Rayleigh
waves:

u1(x,y,t) = A

[
exp(−ay)− 2ab

k2 + b2 exp(−by)
]

sin [k (cr t− x)] (7.7.46)

u2(x,y,t) = A
a
k

[
exp(−ay)+

2k2

k2 + b2 exp(−by)
]

cos [k (cr t− x)] (7.7.47)

A and k are undetermined constants, and a and b are given by the formulas:

a = k

√
1−
(

cr

cl

)2

, b = k

√
1−
(

cr

ct

)2

(7.7.48)

The wave speed cr is determined from the cubic equation:

(
cr

cl

)6

−8

(
cr

ct

)4

+ 24

(
cr

ct

)2

−16

(
cr

cl

)2

−16

[
1−
(

ct

cl

)2
]

= 0 (7.7.49)

For the Poisson’s ratio ν = 0, we obtain cl =
√

2 ct and the solution of (7.7.49) only
gives one acceptable value for the wave speed: cr = 0.874 ct . The other two roots
of equation (7.7.49) give complex values for a and b. For incompressible materials,
ν = 0.5, we find cr = 0.955 ct .

7.8 Anisotropic Materials

In this section we shall discuss anisotropic, linearly elastic materials having sim-
ple symmetries. The presentation will cover some types of elastic crystals, wood
materials, biological materials like bones, and fiber reinforced materials.

It is convenient in the presentation to introduce a special notation for coordinate
stresses and coordinate strains referred to a Cartesian coordinate system Ox:

T1 ≡ T11 ≡ σx, T2 ≡ T22 ≡ σy, T3 ≡ T33 ≡ σz

T4 ≡ T23 ≡ τyz, T5 ≡ T31 ≡ τzx, T6 ≡ T12 ≡ τxy (7.8.1)

E1 ≡ E11 ≡ εx, E2 ≡ E22 ≡ εy, E3 ≡ E33 ≡ εz

E4 ≡ 2E23 ≡ γyz, E5 ≡ 2E31 ≡ γzx, E6 ≡ 2E12 ≡ γxy (7.8.2)
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The material response of a fully anisotropic, linearly elastic material is defined by
the constitutive equations:

Tα = Sαβ Eβ ⇔ T = SE (7.8.3)

when Greek indices represent the numbers 1 to 6. T and E are (6×1) vector matri-
ces, and S is a (6×6) elasticity matrix or stiffness matrix.

S ≡ (Sαβ)≡

⎛
⎜⎜⎜⎜⎜⎜⎝

S11 S12 S13 S14 S15 S16

S21 S22 S23 S24 S25 S26

S31 S32 S33 S34 S35 S36

S41 S42 S43 S44 S45 S46

S51 S52 S53 S54 S55 S56

S61 S62 S63 S64 S65 S66

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.8.4)

The 36 elements of S are called elasticities or stiffnesses. It will be shown that if the
material is hyperelastic, the stiffness matrix S is symmetric: ST = S, such that only
21 stiffnesses are independent for full anisotropy.

The constitutive equation of a linear elastic material may also be presented as:

Eα = Kαβ Tβ ⇔ E = K T (7.8.5)

K = [Kαβ] is a (6×6) compliance matrix or flexibility matrix. The elements Kαβ are
called compliances or flexibilities. It follows from (7.8.3) and (7.8.5) that S and K
are inverse matrices:

K = S−1 (7.8.6)

If the material is hyperelastic only 21 compliances are independent for full
anisotropy.

The stiffness matrix and the compliance matrix of an isotropic, linearly elastic
material, i.e. a Hookean material, are:

S =
μ

1−2ν

⎛
⎜⎜⎜⎜⎜⎜⎝

2(1−ν) 2ν 2ν 0 0 0
2ν 2(1−ν) 2ν 0 0 0
2ν 2ν 2(1−ν) 0 0 0
0 0 0 1−2ν 0 0
0 0 0 0 1−2ν 0
0 0 0 0 0 1−2ν

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.8.7)

K =
1

2μ (1 +ν)

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 +ν) 0 0
0 0 0 0 2(1 +ν) 0
0 0 0 0 0 2(1 +ν)

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.8.8)
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Note that S and K are symmetric matrices. We shall show in the following section
that this a general property of anisotropic, hyperelastic materials.

7.8.1 Hyperelasticity

For a hyperelastic material the stress tensor may, according to (7.6.10), be derived
from the elastic energy φ per unit volume:

T =
∂φ
∂E

⇔ Ti j =
∂φ
∂Ei j

⇔ Tα =
∂φ
∂Eα

(7.8.9)

Note that if we differentiate φ with respect to the coordinate strains Ei j we must treat
Ei j as 9 independent variables; confer the development of (7.6.10). For a linearly
hyperelastic material (7.8.3) and (7.8.9) imply:

Tα = Sαβ Eβ =
∂φ
∂Eα

(7.8.10)

Because:
∂ 2φ

∂Eβ ∂Eα
=

∂ 2φ
∂Eα ∂Eβ

it follows from (7.8.10) that:

Sαβ = Sβα ⇔ ST = S (7.8.11)

Thus, the stiffness matrix S is symmetric. This property reduces the number of in-
dependent stiffnesses from 36 for a fully anisotropic, linearly elastic material to 21
for a fully anisotropic, linearly hyperelastic material.

For a hyperelastic material the strain tensor may, according to (7.6.15), be derived
from the complementary energy φc per unit volume.

E =
∂φc

∂T
⇔ Ei j =

∂φc

∂Ti j
⇔ Eα =

∂φc

∂Tα
(7.8.12)

For a linearly hyperelastic material (7.8.5) and (7.8.12) imply:

Kαβ = Kβα ⇔ KT = K (7.8.13)

The compliance matrix is symmetric. Since the stiffness matrix S is symmetric, this
result also follows from the relation (7.8.6).

Partial integrations of equations (7.8.10) and (7.8.12), with the boundary condi-
tions:

φ = φc = 0 for Eα = Tα = 0 (7.8.14)
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result in the following expressions for the elastic energy and the complementary
energy per unit volume for linearly hyperelastic materials, defined by the (7.8.4)
and (7.8.8):

φ = φc =
1
2

Eα Sαβ Eβ =
1
2

ET SE =
1
2

ET T =
1
2

Tα Kαβ Tβ =
1
2

T T K T =
1
2

T T E

(7.8.15)
The stiffnesses Sαβ and the compliances Kαβ are determined by testing under uni-
axial stress, biaxial stress, and pure shear stress. In these tests so-called engineer-
ing parameters are introduced: moduli of elasticity, Poisson’s ratios, normal stress
couplings, and shear moduli. Section 7.8.3, in an example with biomaterial, and
Sect. 7.9 on composite materials, present some engineering parameters and relate
them to the stiffnesses Sαβ and the compliances Kαβ.

7.8.2 Materials with one Plane of Symmetry

If the structure of the material in a particle is symmetric with respect to a plane
through the particle, such that the mirror image of the structure with respect to the
plane is identical to the structure itself, the number of stiffnesses, and compliances,
is reduced from 21 to 13.

Crystals with one symmetry plane are called monoclinic crystals. Materials hav-
ing fibrous structure and with one characteristic fiber direction are symmetric about
the plane normal to the fibers.

Figure 7.8.1a shows a volume element of a material with one plane of symmetry
normal to the e3-direction. I Figure 7.8.1b the element is rotated 180◦ about the
e3-direction. Two material lines symmetrically placed with respect to the plane of
symmetry are drawn in the element. A state of strain E will give the same state of
stress T whether it is introduced to the element before or after the rotation. In other
words: the material is insensitive to a rotation 180◦ about the normal to the plane

Fig. 7.8.1 Material with one plane of symmetry
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of symmetry before the material is subjected to the strain E. With respect to the
coordinate directions ei the coordinate stresses, see Fig. 7.8.1c, and the coordinate
strains are:

T = {T1,T2,T3,T4,T5,T6} , E = {E1,E2,E3,E4,E5,E6} (7.8.16)

With respect to the coordinate directions ēi the same state of strain E and stress T
applied to the element in Fig. 7.8.1a is represented by the coordinate stresses and
the coordinate strains:

T̄ = {T1,T2,T3,−T4,−T5,−T6} , Ē = {E1,E2,E3,−E4,−E5,−E6} (7.8.17)

The constitutive equations expressed with respect to the directions ei and ēi are:

Tα = Sαβ Eβ , T̄α = S̄αβ Ēβ (7.8.18)

Since the configurations in Fig. 7.8.1a and b are equivalent as far as elastic proper-
ties are concerned, the stiffness matrices related to the directions ei and ēi must be
identical:

S̄ = S ⇔ S̄αβ = Sαβ (7.8.19)

We now choose special values for special Greek indices:

λ = 4 and 5, ρ , γ = 1,2,3,6

The constitutive equations (7.8.18) are expressed as:

Tα = Sαβ Eβ ⇒
Tλ = Sλρ Eρ + Sλ4 E4 + Sλ5 E5, Tγ = Sγρ Eρ + Sγ4 E4 + Sγ5 E5 (7.8.20)

T̄α = S̄αβ Ēβ ⇒
−Tλ = Sλρ Eρ + Sλ4 (−E4)+ Sλ5 (−E5) , Tγ = Sγρ Eρ + Sγ4 (−E4)+ Sγ5 (−E5)

(7.8.21)

When (7.8.20) is compared with (7.8.21), we find that:

Sλρ = Sγ4 = Sγ5 = 0 ⇒ S4ρ = S5ρ = Sρ4 = Sρ5 = 0 for ρ = 1,2,3,6 (7.8.22)

Thus the stiffness matrix for materials having one symmetry plane is:

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

S11 S12 S13 0 0 S16

S22 S23 0 0 S26

S33 0 0 S36

symmetry S44 S45 0
S55 0

S66

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.8.23)



7.8 Anisotropic Materials 279

The stiffness matrix contains 13 independent stiffnesses. The corresponding com-
pliance matrix likewise contains 13 independent compliances.

7.8.3 Three Orthogonal Symmetry Planes. Orthotropy

If an elastic material has a structure that is mirror symmetrical about two orthogonal
planes, the number of independent elasticities is reduced from 13, for one plane
of symmetry, to 9. We shall see that two orthogonal symmetry planes imply three
orthogonal planes of symmetry.

Let the two planes of symmetry be normal to the e3- and e2-directions in
Fig. 7.8.1. We then find, using the same arguments that gave the results in equa-
tions (7.8.22), that:

S4ρ = S5ρ = S6ρ = Sρ4 = Sρ5 = Sρ6 = 0 for ρ = 1,2,3

S45 = S54 = S46 = S64 = S65 = S56 = 0 (7.8.24)

The stiffness matrix is now:

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

S11 S12 S13 0 0 0
S22 S23 0 0 0

S33 0 0 0
symmetry S44 0 0

S55 0
S66

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.8.25)

The matrix contains 9 independent stiffnesses. The corresponding compliance ma-
trix has 9 independent compliances.

It follows from the result (7.8.25) that the material is symmetric also with re-
spect to a plane normal to the e1-direction. Hence, two orthogonal planes of sym-
metry imply three orthogonal planes of symmetry. This type of symmetry is called
orthotropy.

Materials having fiber structures and one distinct fiber direction may be or-
thotropic. If the fibers are directed in three orthogonal directions, the material is
orthotropic. Wood gives an example of an approximate orthotropic material. Many
crystals are orthotropic.

The elements of the stiffness matrix S in (7.8.25) and the elements Kαβ = Kβα in
the compliance matrix:
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K =

⎛
⎜⎜⎜⎜⎜⎜⎝

K11 K12 K13 0 0 0
K22 K23 0 0 0

K33 0 0 0
symmetry K44 0 0

K55 0
K66

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.8.26)

may be determined experimentally from uniaxial tests and pure shear tests. For uni-
axial stress T1 in the direction e1 normal to one of the symmetry planes the relation
E = KT results in three longitudinal strains:

E1 = K11 T1 =
1
η1

T1

E2 = K21 T1 =−ν21 E1 =−ν21

η1
T1, E3 = K31 T1 =−ν31 E1 =−ν31

η1
T (7.8.27)

η1 is a modulus of elasticity, and ν21 and ν31 are Poisson’s ratios. Similar expres-
sions are formed for a uniaxial stress T2 in the direction e2 and a uniaxial stress T3 in
the direction e3. These expressions introduces the moduli of elasticity η2 and η3 and
the Poisson’s ratios ν12,ν32,ν13, and ν23 Because K must be a symmetric matrix,
the following relations must be satisfied:

ν21

η1
=
ν12

η2
,

ν31

η1
=
ν13

η3
,

ν32

η2
=
ν23

η3
(7.8.28)

Pure states of shear T4, T5, or T6 with respect to two orthogonal directions ei and e j

will only result in shear strains:

E4 = K44 T4 =
1
μ4

T4, E5 = K55 T5 =
1
μ5

T5, E6 = K66 T6 =
1
μ6

T6 (7.8.29)

where μ4,μ5, and μ6 are shear moduli. The compliance matrix in (7.8.26) may now
be represented by:

K =

⎛
⎜⎜⎜⎜⎜⎜⎝

1/η1 −ν12/η2 −ν13/η3 0 0 0
1/η2 −ν23/η3 0 0 0

1/η3 0 0 0
symmetry 1/μ4 0 0

1/μ5 0
1/μ6

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.8.30)

The 9 independent compliances in the expression (7.8.26) are now replaced by 9 en-
gineering parameters: 3 moduli of elasticity, 3 shear moduli, and 3 Poisson’s ratios.
The 3 remaining Poisson’s ratios are found from the three equations (7.8.28). When
the compliance matrix K has been found, the stiffness matrix S may be found by
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inversion. An example of values of elastic parameters for fiber reinforced compos-
ites is presented in Sect. 7.9.

Example 7.16. Elastic Parameters of Human Femur and Bovine Femur
Bone as an elastic material is considered to be orthotropic. The table below shows

elastic parameters for human femur (thighbone) found from standard material test-
ing (Reilly, D. T. and Burstein, A. H., 1975), and elastic parameters from bovine (ox)
femur found from ultra sound testing (Burris, 1983). The e1-direction represents the
long axis of the bone, e2 is in the radial direction, and e3 is in the circumferential
direction.

Elastic parameters of human femur and bovine femur
η1 η2 η3 μ4 μ5 μ6 ν12 ν13 ν23 ν21 ν31 ν32

[GPa] [GPa] [GPa] [GPa] [GPa] [GPa]
Human 11.5 11.5 17.0 3.3 3.3 3.6 0.58 0.46 0.46 0.58. 0.31 0.31
Bovine 10.79 12.24 18.90 5.96 4.47 3.38 0.51 0.42 0.33 0.45 0.24 0.22

The formulas (7.8.28) have been used to obtain some of the parameters in the table.

7.8.4 Transverse Isotropy

A material is transverse isotropic if an axis of symmetry exists with respect to the
elastic properties through every particle. A symmetry axis implies that every plane
through the axis is a plane of symmetry. Materials with fiber structure may exhibit
such properties, For example is this approximately true for wood, for which the
direction of the grains may be considered an axis of symmetry. Transverse isotropy
implies orthotropy, but the reverse is not true.

The number of independent stiffnesses or compliances is 5 for transverse isotropy.
To show this, we start with the stiffness matrix (7.8.25) for orthotropy. The axis of
symmetry must be parallel with one of the ei - directions. A 90◦-rotation of the ma-
terial about the symmetry axis does not change the apparent elastic structure of the
material with respect to a fixed reference, represented for instance by the directions
of the coordinate axes ei. With e3 parallel to the symmetry axis, we may argue that:

S11 = S22 , S13 = S23 , S44 = S55

K11 = K22 , K13 = K23 , K44 = K55 (7.8.31)

η1 = η2, ν13 = ν23, μ4 = μ5, ν21 = ν12

The last result follows from formula (7.8.28)1.
For plane strain or plane stress with respect to a plane normal to the symmetry

axis, the material responds isotropically. This means that principal axes of stress
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and of strain are coinciding. A state of pure shear stress T6, see Fig. 7.8.2, results
according to (7.8.29) to a state of pure shear strain:

E6 = K66 T6 =
1
μ6

T6 (7.8.32)

Principal stresses and principal strains are obtained from the formulas (3.3.9) and
(5.3.36), see Fig. 7.8.2:

σ1 =−σ2 = T6, ε1 =−ε2 =
1
2

E6 (7.8.33)

The principal directions ē1 and ē2 are rotated 45◦ with respect to the directions
e1 and e2. The compliance matrix (7.8.30) also applies for the principal directions
ē1, ē2, and e3. We may therefore use the matrix (7.8.30) and the formulas (7.8.31,
7.8.32 ,7.8.33) to obtain:

ε1 = 1
η1
σ1− ν12

η2
σ2 = 1+ν12

η1
T6 ≡ 1

2 E6 = K11T6 + K12 (−T6) = (K11−K12)T6

E6 = 1
μ6

T6 ≡ K66T6

}
⇒

μ6 =
η1

2(1 +ν12)
⇔ K66 = 2(K11−K12) (7.8.34)

Similarly we find:

S66 =
1
2

(S11−S12) (7.8.35)

The four conditions for the elements of the matrices K and S provided by the for-
mulas (7.8.31, 34, 35) result in the following forms for the compliance matrix and
the stiffness matrix in the case of transverse isotropy:

Fig. 7.8.2 Pure shear stress and pure shear strain
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K =

⎛
⎜⎜⎜⎜⎜⎜⎝

1/η1 −ν12/η1 −ν13/η3 0 0 0
1/η1 −ν13/η3 0 0 0

1/η3 0 0 0
symmetry 1/μ4 0 0

1/μ4 0
2(1 +ν12)/η1

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.8.36)

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

S11 S12 S13 0 0 0
S11 S13 0 0 0

S33 0 0 0
symmetry S44 0 0

S44 0
1
2 (S11−S12)

⎞
⎟⎟⎟⎟⎟⎟⎠

(7.8.37)

The compliance matrix K has 5 independent compliances, represented by 5 inde-
pendent engineering parameters, and the stiffness matrix S has 5 independent stiff-
nesses. Note that the engineering parameters given in Example 7.16 show that the
human femur is a transverse isotropic elastic material.

7.8.5 Isotropy

For an isotropic elastic material all axes are symmetry axes. Starting from the ma-
trices (7.8.36) and (7.8.37) we may set:

η3 = η1 = η2 = η , ν12 = ν13 = ν, μ4 = μ =
η

2(1 +ν)

S33 = S11, S44 =
1
2

(S11−S12) , S13 = S12 (7.8.38)

These conditions reduce the number of independent compliances to two and inde-
pendent stiffnesses to two. The stiffness matrix S has the symmetry shown by the
matrix (7.8.7). Inverting the compliance matrix (7.8.36), we find:

S11 =
1−ν

(1 +ν)(1−2ν)
η =

2(1−ν)
(1−2ν)

μ , S12 =
ν

(1 +ν)(1−2ν)
η =

2ν
(1−2ν)

μ

S44 =
1
2

(S11−S12) = μ =
η

2(1 +ν)
(7.8.39)

When the results (7.8.39) and (7.8.38) are substituted into (7.8.37), we obtain the
stiffness matrix (7.8.7) for a Hookean material.
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7.9 Composite Materials

A composite material, a composite for short, is a macroscopic composition of two or
more materials. The material properties of a composite may to some extent be cal-
culated from the knowledge of the material properties of its components. Plywood
and reinforced concrete are two typical examples of composites.

It is customary to distinguish between three main types of composites:

1. Fiber composites
2. Laminates
3. Particular composites.

Materials of type 1 consist of fibers of one material baked into another base mate-
rial called a matrix. Reinforced concrete belongs to this type. A laminate is made
of layers, which may have different properties in different directions. A particular
composite is mixture of particles of one material in a base material. In the present
section we shall concentrate the presentation to fiber reinforced two-dimensional
layers, called laminas, see Fig. 7.9.1, and a combination of these laminas into a
plate laminate, see Fig. 7.9.2.

Fibers of a material are much stronger than the bulk material. Glass, for example,
may have 300 times higher fiber strength than the base material. A fiber consists of
crystals of the material arranged parallel to the fiber axis. The fiber diameter is of
the same order of magnitude as the crystal diameter. The fiber therefore has fewer
internal defects than the material. Very short fibers are called whiskers, and they are
even stronger then ordinary fibers.

Fig. 7.9.1 Lamina
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Fig. 7.9.2 Plate laminate

7.9.1 Lamina

Figure 7.9.1 shows two typical laminas: a unidirectional fiber lamina and a woven
fiber lamina. Both types have one direction of dominating strength, represented by
the x-direction. Fibers are normally linearly elastic, while the matrix material often
shows a viscoelastic or visco-elasto-plastic response. In the present exposition we
shall assume that the lamina as a composite material is a linearly elastic material.
Furthermore, we shall concentrate the attention to laminas with unidirectional fiber
reinforcement, called unidirectional laminas. However, all the general results we
obtain also apply to laminas with woven fiber reinforcement.

Figure 7.9.3 shows an element of a unidirectional lamina oriented after the lam-
ina axes x and y, with the x-axis in the fiber direction. The coordinate stresses with
respect to the lamina axes, and for the state of plane stress, are denoted Tx, Ty, and
Ts(= Txy). The corresponding coordinate strains are Ex, Ey, and Es(= γxy).

A unidirectional lamina represents an orthotropic, linearly elastic material. In
the present case of plane stress only 4 independent stiffnesses or 4 independent
compliances are relevant. With respect to the lamina axes x and y, see Fig. 7.9.3, we
introduce the constitutive equations:

T̄ = S̄ Ē ⇔
⎛
⎝Tx

Ty

Ts

⎞
⎠=

⎛
⎝Sxx Sxy 0

Sxy Syy 0
0 0 Sss

⎞
⎠
⎛
⎝Ex

Ey

Es

⎞
⎠ (7.9.1)

Ē = K̄ T̄ ⇔
⎛
⎝Ex

Ey

Es

⎞
⎠=

⎛
⎝Kxx Kxy 0

Kxy Kyy 0
0 0 Kss

⎞
⎠
⎛
⎝Tx

Ty

Ts

⎞
⎠ (7.9.2)

Fig. 7.9.3 Lamina axes



286 7 Theory of Elasticity

Fig. 7.9.4 Laminate axes

The compliance matrix and the stiffness matrix expressed in engineering parameters
are according to the form (7.8.30):

K̄ =

⎛
⎜⎝

1
ηx
− νx
ηx

0

− νx
ηx

1
ηy

0

0 0 1
μ

⎞
⎟⎠ , S̄ =

⎛
⎝ αηx α νxηy 0
α νxηy α ηy 0

0 0 μ

⎞
⎠ , α =

1
1−νxνy

(7.9.3)

In the formulas for K̄ and S̄ the symmetry of the matrices has been invoked. The
new symbols in the formulas are:

ηx =
1

Kxx
longitudinal modulus of elasticity

ηy =
1

Kyy
transverse modulus of elasticity (7.9.4)

νx =−Kyx

Kxx
longitudinal Poisson’s ratio

We shall demonstrate how the engineering parameters may be estimated when the
elastic properties of the matrix and the fibers are known. The matrix is assumed to
be an isotropic elastic material having the modulus of elasticity ηm and the Poisson’s
ratio νm. The fibers are also isotropic elastic with the modulus of elasticity η f and
Poisson’s ratio ν f .

Figure 7.9.5 shows a cubic element of the composite. The length of the edges is
L. The volume of the element is then V = L3 and each side has the area A = L2. The
volume fraction of matrix and of fibers are cm and c f respectively, such that:

cm + c f = 1

Uniaxial stress in the fiber direction, Tx, results in longitudinal strains Ex and Ey.
Matrix and fibers get the same strains Ex but have unequal stresses Txm and Tx f . The
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Fig. 7.9.5 Unidirectional
lamina

area A of the sides subjected to the stresses Tx, Txm, and Tx f is the sum of the area
Am of matrix and the area A f of fibers. It follows that:

A = L2 , Am = cm L2 = cm A, and A f = c f L2 = c f A

The modulus of elasticity ηx may be determined as follows. The normal force Nx on
the area A is expressed by:

Nx = Tx A = Tx f A f + Txm Am = ⇒ (ηx Ex)A =
(
η f Ex

)
A f +(ηm Ex) Am ⇒

ηx = η f c f + ηm cm (7.9.5)

The other engineering parameters can only be estimated. Their determination de-
pends on the way the fibers are distributed in the direction normal to the fibers.
Figure 7.9.6 shows two extreme cases. In the case in Fig. 7.9.6a we can derive the
results:

νx = ν f c f +νm cm, ηy =
η f ηm

η f cm +ηm c f
, μ =

μ f μm

μ f cm + μm c f
(7.9.6)

Fig. 7.9.6 Extreme distribution of fibers in the x-direction



288 7 Theory of Elasticity

where:
μ f =

η f

2
(
1 +ν f

) , μm =
ηm

2(1 +νm)
(7.9.7)

It may be shown that the formula for ηy represents a lower limit for this modulus of
elasticity.

Example 7.17. Elastic Parameters for Fiber Reinforced Epoxy
The table below shows the elastic parameters for three composite materials with

epoxy matrix and 0.6 volume fraction of unidirectional fibers of three different fiber
materials. The values are obtained from the book: “Mechanical behavior of mate-
rials” by Norman E. Dowling [11]. The numbers in parenthesis indicate the elastic
properties of the fiber material. Epoxy is isotropic with the modulus of elasticity
η = 3.5GPa and Poisson’s ratio ν = 0.33. Using the formulas (7.9.5) and (7.9.6),
we find that the ηx - and νx-values are in accordance with the table, while the other
parameters do not correspond to the table-values.

parameter E-glass (GPa) Kevlar 49 (GPa) Graphite, T-300 (GPa)
ηx 45 (72.3) 76 (124) 132 (218)
ηy 12 5.5 10.3
μ 4.4 2.1 6.5
νy 0.067 (0.22) 0.025 (0.35) 0.020 (0.20)
νx 0.25 (0.22) 0.34 (0.35) 0.25 (0.20)

7.9.2 From Lamina Axes to Laminate Axes

When we want to construct a laminate using lamina with different fiber orientations,
we need to transform lamina stresses and strains to the stresses T1, T2, and T6(=
T12), and the strains E1, E2, and E6(= 2E12) related to the laminate axes xi, see
Fig. 7.9.4. The strain matrix E is the same for all laminas, while the stress matrix T
varies with the orientation angle φ . For each lamina we define the stiffness matrix S
and the compliance matrix K through the relations:

T = SE ⇔
⎛
⎝T1

T2

T6

⎞
⎠=

⎛
⎝ S11 S12 S16

S12 S22 S26

S16 S26 S66

⎞
⎠
⎛
⎝E1

E2

E6

⎞
⎠ (7.9.8)

E = K T ⇔
⎛
⎝E1

E2

E6

⎞
⎠=

⎛
⎝K11 K12 K16

K12 K22 K26

K16 K26 K66

⎞
⎠
⎛
⎝T1

T2

T6

⎞
⎠ (7.9.9)
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The coordinate transformation from the lamina axes x and y to the laminate axes
x1 and x2 in Fig. 7.9.3 and Fig. 7.9.4, is given by:

(
x1

x2

)
=
(

cosφ −sinφ
sinφ cosφ

)(
x
y

)
⇔ x = Qx̄ (7.9.10)

The transformation formulas for coordinate stresses and coordinate strains are:

Tαβ = Qαγ Qβλ T̄γλ ⇔ T = Qσ T̄ , Eαβ = Qαγ Qβλ Ēγλ ⇔ E = Qε Ē
(7.9.11)

T, T̄ , E , and Ē are vector matrices for the stresses and the strains in (7.9.1) and
(7.9.8), and:

Qσ =

⎛
⎝ cos2 φ sin2 φ −sin2φ

sin2 φ cos2 φ sin2φ
1
2 sin2φ − 1

2 sin2φ cos2φ

⎞
⎠ , Qε =

⎛
⎝cos2 φ sin2 φ − 1

2 sin2φ
sin2 φ cos2 φ 1

2 sin2φ
sin 2φ −sin2φ cos2φ

⎞
⎠

(7.9.12)

The difference between the matrices Qε and Qσ is due to the fact that T12 = T6 and
E12 = (1/2)E6. The two matrices Qε and Qσ are related through:

Qε = Q−T
σ ⇔ QT

ε = Q−1
σ ⇔ Q−1

ε = QT
σ (7.9.13)

This may be shown as follows. The elastic energy per unit volume may be expressed
alternatively by:

1
2

T T E =
1
2

T̄ T Ē (7.9.14)

Then using the formulas (7.9.14) and (7.9.11), we obtain:

T̄ T Ē = T T E = T̄ T QT
σ Qε Ē ⇒ QT

σ Qε = 1 ⇒ (7.9.13)

Now we are ready to develop relations between the stiffness matrices and the
compliance matrices related to the lamina axes and laminate axes. Using the formu-
las (7.9.8), (7.9.11), (7.9.1), and (7.9.13), we find:

SE = T = Qσ T̄ = Qσ S̄ Ē = Qσ S̄ Q−1
ε E = Qσ S̄ QT

σ E (7.9.15)

Since S and Qσ S̄QT
σ both are independent of E , it follows from the result (7.9.15) that:

S = Qσ S̄ QT
σ (7.9.16)

Using similar arguments, we get:

K = Qε K̄ QT
ε (7.9.17)
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7.9.3 Engineering Parameters Related to Laminate Axes

The engineering parameters for a lamina related to the laminate axes are defined
similarly to the engineering parameters related to the lamina axes. The lamina is
subjected in turn to uniaxial stress in the x1- and the x2-directions, and to the shear
stress T6. Then:

T1 �= 0, T2 = T6 = 0 ⇒
η1 = T1/E1 = 1/K11 modulus of elasticity

ν21 =−E2/E1 =−K21/K11 Poisson’s ratio

ν61 = E6/E1 = K61/K11 shear coupling coefficient (7.9.18)

T2 �= 0, T1 = T6 = 0 ⇒
η2 = T2/E2 = 1/K22 modulus of elasticity

ν12 =−E1/E2 =−K12/K22 Poisson’s ratio

ν62 = E6/E2 = K62/K22 shear coupling coefficient (7.9.19)

T6 �= 0, T1 = T2 = 0 ⇒
μ6 = T6/E6 = 1/K66 shear modulus

ν16 = E1/E6 = K16/K66 normal stress coupling coefficient

ν26 = E2/E6 = K26/K66 normal stress coupling coefficient (7.9.20)

We use the fact that K is symmetric. Per definitions (7.9.18 ,7.9.19, 7.9.20):

K12 =−ν12

η2
, K21 =−ν21

η1
, K16 =

ν16

μ6
, K61 =

ν61

η1
, K26 =

ν26

μ6
, K62 =

ν62

η2

Hence: ν12

η2
=
ν21

η1
,
ν16

μ6
=
ν61

η1
,
ν26

μ6
=
ν62

η2
(7.9.21)

From the above it follows that:

K̄ =

⎛
⎜⎝

1
η1
− ν21
η1

ν61
η1

− ν21
η1

1
η2

ν62
η2

ν61
η1

ν62
η2

1
μ6

⎞
⎟⎠ (7.9.22)

7.9.4 Plate Laminate of Unidirectional Laminas

We shall consider a laminate made of many laminas bound together by the same
material as in the matrix of the laminas. The plate is symmetric with respect to its
middle surface, see Fig. 7.9.7, and is loaded by forces in the middle surface.

The forces acting on an element of the plate are called stress resultants and are
given as forces N1, N2, and N6 per unit length along the edges of the element.
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Fig. 7.9.7 Laminate and stress resultants

N1 =

h/2∫

−h/2

T1 dz, N2 =

h/2∫

−h/2

T2 dz, N6 =

h/2∫

−h/2

T6 dz (7.9.23)

If the middle surface is plane, the laminate is a plate. A laminate with a curved
middle surface for which the curvature is small relative to the inverse thickness
1/h, and with stress resultants given by the formulas (7.9.23), is a membrane shell.
Problem 7.25 presents an example of a cylindrical laminated membrane shell.

We assume that the strains E1, E2, and E6 are constant over the thickness of
the laminate. But due to the different orientations of the laminas of the laminate,
the stresses T1, T2, and T6 may vary through the thickness. Let the strains E1, E2,
and E6 and the stress resultants N1, N2, and N6 be related through the matrix
equations:

N ≡
⎛
⎝N1

N2

N6

⎞
⎠= AE ⇔ E = BN,B = A−1 (7.9.24)

The 3× 3-matrices A and B are called the plate stiffness matrix and the plate flexi-
bility matrix, respectively. Introducing the relation T = SE into (7.9.23), we obtain:

A =

h/2∫

−h/2

S dz (7.9.25)

Since S is symmetric it follows that A and B are symmetric matrices. The integral
in formula (7.9.25) may be replaced by a sum. Let the laminate have n different
orientations of laminas, specified by n angles φi, i = 1,2, . . . ,n. The laminas with
orientation angle φi have the stiffness matrix Si. The total height is hi of the laminas
with orientation angle φi. Then from the formula (7.9.25) we get the result:

A =
n

∑
i=1

Si hi (7.9.26)
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7.10 Large Deformations

In general an elastic material, or more precisely a Cauchy-elastic material, is de-
fined by the constitutive equation of the form:

T = T [F,ro] (7.10.1)

The Cauchy stress tensor T is given by a tensor-valued function of the deformation
gradient tensor F and the position vector ro of the particle in the reference con-
figuration Ko. This definition does not assume small deformations or small strains.
The deformation gradient F may be polar decomposed into a stretch tensor U and
the rotation tensor R, i.e. F = RU. Due to the geometrical interpretation of po-
lar decomposition in Fig. 5.5.3 it is reasonable to require of the constitutive equa-
tion (7.10.1) that the two states of deformation represented by F = RU and F = U
respectively result in states of stress that are equal apart from the a rotation of the
principal axes of stress. We may therefore expect of the tensor-valued function in
(7.10.1) that:

T = T [F,ro] = R T [U,ro]RT (7.10.2)

The response function T[F,ro] may thus be determined from experiments with pure
strain, F = U = UT. The argument used to obtain the result (7.10.2) is really an ap-
plication of a fundamental principle in the general theory of constitutive equations,
which is presented in Sect. 11.5 as: the principle of material objectivity.

In the case of small deformations between the reference configuration Ko and the
present configuration K we have from the formulas (5.5.69) that:

R = 1 + R̃, RT = 1− R̃, U = 1 + E (7.10.3)

We assume that the state of stress in Ko is given by To = T[1,ro]. The two first
terms in a Taylor series expansion of the response function in (7.10.2) provide the
following approximation to the response function, valid for small deformations.

T [U,ro] = To + S [ro] : E (7.10.4)

The stiffness tensor S(ro) is defined by:

S [ro] =
∂T
∂U

∣∣∣∣
U=1

=
∂T
∂E

∣∣∣∣
E=0

, Si jkl [X ] =
∂Ti j

∂Ukl

∣∣∣∣
U=1

=
∂Ti j

∂Ekl

∣∣∣∣
E=0

(7.10.5)

When R from the formulas (7.10.3) and T[U,ro] from (7.10.4) are substituted into
the result (7.10.2), this result is obtained:

T = To + R̃ To−To R̃+ S : E ⇔ Ti j = Toi j + R̃ik Tok j − Toik R̃k j + Si jkl Ekl

(7.10.6)
The formula is applicable in incremental solutions in non-linear problems where the
non-linearity is due to non-linear elastic material properties and/or to large defor-
mations. The response equation (7.10.6) may also be used in stability investigations.



7.10 Large Deformations 293

7.10.1 Isotropic Elasticity

For an isotropic material with a stress free reference configuration the response func-
tion (7.10.1) may be replaced by a isotropic tensor-valued function of the left defor-
mation tensor B = FFT :

T = T [B,ro] (7.10.7)

In order to understand this we use the polar decomposition theorem to write:
F = VR, where V is the left stretch tensor. Now, to deform the material from the
reference configuration Ko to the present configuration K we may first let the ma-
terial in the neighborhood of the particle under consideration be rotated according
to the rotation tensor R, and then subject the material to pure strain through the
stretch tensor V. Because the material is isotropic, the rotation R does not influence
the stresses resulting from the deformation gradient F. This implies that we may
replace F by V as the argument tensor in the tensor-valued function (7.10.1).

T = T [F,ro] = T [V,ro] (7.10.8)

Since B = V2, we may now consider the stress to be a tensor-valued function of B
and the result is the function (7.10.7), although the mathematical functions (7.10.8)
and (7.10.7) are not the same. Because the material is isotropic, the function T [B,ro]
must be isotropic with respect to the argument tensor B, i.e. if the deformation B
result in the stress tensor T, a Q – rotated deformation QBQT will result in the
stress tensor QTQT . According to the results (4.6.17) and (4.6.27) the constitutive
equation (7.10.7) may be represented by the two alternative forms:

T = γo1 + γ1 B+ γ2 B2 (7.10.9)

T = φo1 +φ1 B+φ−1 B−1 (7.10.10)

γi and φi are scalar-valued functions of the principal invariants IB, IIB, and IIIB, or
of the principal values of the deformation tensor B.

From the definitions of the displacement gradient H = F−1 and the strain tensor:

E =
1
2

(
H + HT + HT H

)
(7.10.11)

we obtain:

B = FFT = (1 + H)
(
1 + HT) ⇒ B = 1 + 2E+ H HT −HT H (7.10.12)

Because we assume that the material is stress free in the reference configuration Ko,
a linearization of the general constitutive equation of an isotropic elastic material
(7.10.9) may be presented as the following form of Hooke’s law:

T = λ (trE)1 + 2μ E (7.10.13)



294 7 Theory of Elasticity

Confer equation (7.2.19). The parameters λ and μ are the Lamé-constants. λ is
presented by formula (7.2.21) and μ is identical to the shear modulus.

7.10.2 Hyperelasticity

The stress power of a body with volume V is by definition:

Pd =
∫

V

ω dV =
∫

V

T : D dV (7.10.14)

The stress work done on the body when it moves from the reference configuration
Ko at the time to to the present configuration K at the time t is:

W =
t∫

to

Pd dt (7.10.15)

A material is called hyperelastic, or Green-elastic, if the stress work may be derived
from a scalar potentialΦ(t), called the elastic energy in the body:

Φ(t) =
∫

V

ψρ dV (7.10.16)

The potential ψ , which is the specific elastic energy, i.e. is elastic energy per unit
mass, is a scalar-valued function of the deformation tensor C = FT F:

ψ = ψ [C,ro] (7.10.17)

The rotation part R of F does obviously not contribute to the elastic energy ψ .
For a hyperelastic material the stress work on the body may now be expressed by:

W =Φ(t)−Φ(to) (7.10.18)

such that:
Pd =

∫

V

ω dV =
∫

V

T : D dV = Φ̇=
∫

V

ψ̇ ρ dV (7.10.19)

It follows that the stress power per unit volume ω is equal to ψ̇ρ :

ω = T : D = ψ̇ ρ (7.10.20)

From (7.10.17) it follows that:

ψ̇ =
∂ψ
∂C

: Ċ =
∂ψ
∂Ci j

Ċi j (7.10.21)
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An expression for Ċ is found using (5.5.28): Ḟ = LF, where L is the velocity gradi-
ent tensor:

Ċ = ḞT F + FT Ḟ = FT LT F + FT LF = 2FT D F

Then (7.10.21) may be further developed:

ψ̇ =
∂ψ
∂Ci j

Ċi j =
∂ψ
∂Ci j

(
2Fki Dkl Fl j

) ⇒ ψ̇ =
(

2F
∂ψ
∂C

FT
)

: D (7.10.22)

This expression is substituted into (7.10.20):

ω = T : D =
(

2ρF
∂ψ
∂C

FT
)

: D (7.10.23)

Because the tensor in the parenthesis is symmetric and independent of the rate of
deformation tensor D, and D may be chosen arbitrarily, we may conclude from the
equation (7.10.23) that:

T = 2ρ F
∂ψ
∂C

FT (7.10.24)

Note: When ψ is differentiated with respect to the symmetric tensor C, the com-
ponents Ci j must be treated as 9 independent quantities. Confer the commentaries
to (7.6.10) and to (7.8.9). The result (7.10.24) represents the general constitutive
equation of a hyperelastic material. The equation may be given an alternative form
by introducing the strain tensor E:

E =
1
2

(C−1) (7.10.25)

the second Piola-Kirchhoff stress tensor S from (5.6.15):

S = J F−1 TF−T (7.10.26)

and the continuity equation in a particle (5.5.65):

ρ J = ρo (7.10.27)

From the constitutive equation (7.10.24) we then obtain the alternative form:

S = ρo
∂ψ
∂E

(7.10.28)

In the case of small deformation, we may set S = T. By introducing the elastic
energy per unit volume:

φ = φ [E,ro] = ρoψ (7.10.29)
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equation (7.10.28) may be expressed as:

T =
∂φ
∂E

(7.10.30)

Confer equation (7.6.10).
For isotropic materials we may express the elastic energy of the body as an

isotropic scalar-valued function of the left deformation tensor B:

ψ = ψ [B,ro] = ψ (IB, IIB, IIIB) (7.10.31)

IB, IIB, and IIIB are the principal invariants of B. Now:

ψ̇ =
∂ψ
∂B

: Ḃ (7.10.32)

The expression for Ḃ is found using (5.5.28), i.e. Ḟ = LF:

Ḃ = Ḟ FT + F ḞT = L F FT + FFT LT = L B+ B LT

Hence:

ψ̇ =
∂ψ
∂B

: Ḃ =
∂ψ
∂Bi j

Ḃi j =
∂ψ
∂Bi j

(
Lik Bk j + Bik L jk

)
=
(

2
∂ψ
∂B

B
)

: L (7.10.33)

The latter equality is due to the symmetric property of the tensor B. Now, from
(7.10.20) and (7.10.33) we obtain:

ω = T : D = T : L = ψ̇ ρ =
(

2ρ
∂ψ
∂B

B
)

: L (7.10.34)

Because L may be chosen arbitrarily, we conclude from the expressions above that:

T = 2ρ
∂ψ
∂B

B (7.10.35)

Alternative forms of this result are represented by (7.10.9) and (7.10.10).
The Mooney-Rivlin material is an example of an isotrop, incompressible, non-

linear hyperelastic material used as a material model for rubber. The model is de-
fined by the specific elastic energy:

ψ =
1
2
μ
ρ

(
1
2

+α
)

(IB−3)+
1
2
μ
ρ

(
1
2
−α
)

(IIB−3) (7.10.36)

The material parameters μ and α are elasticities. From (7.10.35) we obtain the stress
tensor:

T = μ
(

1
2

+α
)

B− μ
(

1
2
−α
)

B−1− p 1 (7.10.37)
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Because the material is incompressible, an isotropic stress −p1, representing an
indeterminate pressure p, has to be added to the stress tensor. The special case with
α = 1/2 (7.10.37) defines the model called the neo-Hookean material.

Problems

Problem 7.1. Develop the form (7.2.8) of Hooke’s law from the form (7.2.7).

Problem 7.2. Develop the decomposition (7.2.18) from Hooke’s law, (7.2.8).

Problem 7.3. Develop Hooke’s law for plane stress (7.3.6, 7.3.7, 7.3.8, 7.3.9) from
the general law (7.2.6, 7.2.7, 7.2.8).

Problem 7.4. Develop Hooke’s law for plane displacement (7.3.29, 7.3.30) from the
general law (7.2.6, 7.2.7, 7.2.8).

Problem 7.5. A 45◦–90◦ strain rosette, see Problem 5.5, is fixes to the surface of a
machine part of steel. For a certain load the following strains are recorded:

εx = 560 ·10−6, εy = 120 ·10−6, ε45 = 200 ·10−6

Determine the principle stresses and the principle stress directions.

Problem 7.6. A thin-walled steel pipe, closed in both ends, is a part of a larger
structure. The outer diameter of the pipe is 500 mm, and the wall thickness is 20 mm.
The pipe is subjected to an axial tensile force N, a torque M, and an internal pressure
p. A 45◦–90◦ strain rosette, see Problem 5.5, is fixed to the surface of the pipe. The
x-direction of the rosette is parallel to axis of the pipe. For a certain load on the
structure the following strains are recorded:

εx = 620 ·10−6,εy = 320 ·10−6,ε45 = 230 ·10−6

Assume homogeneous state of strain in the pipe wall. Determine N,M and p for
this load.

Problem 7.7. Show how the elastic energy per unit volume may be decomposed
into volumetric energy and distortion energy as shown by the formulas (7.2.30).

Problem 7.8. Determin the displacement u2(x,y) according to the alternative bound-
ary condition 2) by adding to the displacement u2(x,y) for the alternative boundary
condition 1) found in Example 7.4 a rigid-body counterclockwise rotation given by
the angle:

α =− u1,2|x=L,y=0 =
3(1 +ν)F

E bh

found from the displacement u2(x,y) for the alternative boundary condition 1).
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Problem 7.9. Derive the Navier equations for plane displacements and for plane
stress.

Problem 7.10. Derive the basic equations of thermoelasticity under the condition of
plane stress and plane displacements. Check with Sect. 7.5.2 and Sect. 7.5.3.

Problem 7.11. Show that the state of stress given in Problem 3.3 satisfies the com-
patibility equation (7.3.45) for plane stress.

Problem 7.12. Show that the state of stress given in Problem 3.5 satisfies the com-
patibility equation (7.3.45) for plane stress.

Problem 7.13. A copper plate is restrained from expansion in the plane of the plate.
E = 118GPa,ν = 0.33, and α = 17 · 10−6 ◦C−1. Compute the stresses in the plate
due to a temperature increase of 15 ◦C.

Answer: –45 MPa.

Problem 7.14. A circular plate with a concentric hole is mounted on an unde-
formable shaft. The radius of the plate is b. The radius of the hole and of the shaft is
a. The plate has the modulus of elasticity E and the Poisson’s ratio ν . The plate is
subjected to an external pressure p. Assume plane stress and determine the pressure
against the shaft. Answer:

2

(1−ν) (a/b)2 + 1 +ν
p

Problem 7.15. A simply supported horizontal beam has the length L and a rectangu-
lar cross section with horizontal width b and vertical height h. A coordinate system
has the origin O on the beam axis a distance L/2 from left support, the x-axis along
the beam axis, and a y-axis vertically downward. The beam is subjected to uniform
pressure p on the surface y =−h/2.

a) Show that the Airy’s stress function:

Ψ=− p
h3 x2y3 +

p
5h3 y5 +

3p
4h

x2y− p
4

x2−
[

3
2

(
L
h

)2

− 3
5

]
p

6h
y3

satisfies the compatibility equation (7.3.49).
b) Compute the stresses and show that they satisfy the boundary conditions on the

surfaces y = ±h/2. Show also the stress resultants over the cross section at x =
±L/2 satisfy the support conditions.

c) Show that the stresses computed in b) satisfy the Cauchy equations for
the beam.

d) Show that the stresses computed in b) gives the correct axial force, shear force
and bending moment over the cross-section of the beam. Compare the stresses
with those obtained from elementary (engineering) beam theory.
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Fig. Problem 7.16

Problem 7.16. A triangular plate with constant thickness b is rigidly fixed along
the side x = L. The plate is subjected to a uniform pressure p on the surface y = 0.
The surface y = x tan30◦ is free of stresses. The following state of plane stress is
suggested:

σx = a

[
π
6
− arctan

y
x
− xy

x2 + y2

]
p, a =

6

2
√

3−π
σy =−a

[
1
a

+ arctan
y
x
− xy

x2 + y2

]
p,τxy =−a

y2

x2 + y2 p

a) Show that the Cauchy equations are satisfied.
b) Show that the equation of compatibility (7.3.45) is satisfied.
c) Check that the boundary conditions on the surfaces y = 0 and y = x tan30◦ are

satisfied.
d) Determined the principal stresses, the principal stress directions, and the maxi-

mum shear stress at the surfaces y = 0 and y = x tan30◦.
e) Consider the plate as a beam and compare the stresses σx and τxy with those

obtained from the elementary (engineering) beam theory.

Problem 7.17. The rectangular plate in Fig. 7.3.12 is subjected to stresses σx =σ on
the sides x =±b/2 and σy =−σ on the sides y =±h/2. Use the solution provided
by Example 7.8 to determine the stresses σR, σθ , and τRθ . Determine the extremal
principal stresses at the hole.

Problem 7.18. The rectangular plate in Fig. 7.3.12 is subjected to shear stresses
τxy = τ on the surfaces x = ±b/2 and y = ±h/2. Use the solution in Example 7.8,
or Problem 7.17, to determine the stresses σR, σθ , and τRθ . Determine the extreme
principal stresses at the hole.

Problem 7.19. A thin-walled pipe with external diameter d = 210mm and wall
thickness h = 10mm is subjected to a torque M = 24kNm and an axial force
S = 280kN. A circular hole is cut through the wall of the pipe. Assume that the
diameter of the hole is very small compared to the diameter d of the pipe. Compute
the maximum normal stress in the wall. Hint: Superimpose the states of stress in
Example 7.8 and the Problems 7.17 and 7.18. Answer: 221 MPa.
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Problem 7.20. Consider the Prandtl stress function of torsion:

Ω= k (x−a)
(

x− y
√

3+ 2a
)(

x + y
√

3+ 2a
)

, k = constant

a) Show that Ω is the stress function of torsion of a cylindrical bar with an equilat-
eral triangular cross section with side a.

b) Determine the distribution of stress on the cross section.
c) Show that relation between the torque M and the torsion angle φ per unit length

of the bar is:

M =
9
√

3
5

a4μ φ

Problem 7.21. Show that the condition φ ≥ 0 for elastic energy per unit volume
implies the conditions (7.6.20) for the elastic parameters: E ≡ η ,G≡ μ , and κ .

Problem 7.22. Derive the differential equation (7.4.14) for the warping function ψ
directly from the Navier equations (7.6.28).

Problem 7.23. Show that the compatibility equations (7.6.43) implies for the
Prandl’s stress functionΩ that:

∂
∂xα

(
∇2Ω
)

= 0 ⇒ ∇2Ω= constant

Compare the result with the differential equations (7.4.22).

Problem 7.24. A unidirectional lamina denoted T300/5208 consists of graphite
fibers imbedded in epoxy. The lamina has the following engineering parameters
with respect to the lamina axes x and y:

ηx = 181 GPa, ηy = 10.3 GPa, μ = 7.17 GPa, νx = 0.28

Compute the following quantities:

a) νy.
b) The stiffness and compliance matrices S̄ and K̄.
c) The stiffness and compliance matrices S and K for φ = (e1,ex) = 45◦.
d) The engineering parameters with respect to the laminate axes x1 and x2.

Problem 7.25. A laminate is made of layers of the lamina T300/5208 described
in Problem 7.24. The laminate is symmetric with respect to the x1x2-plane. The
direction of the fibers makes an angle with respect to the x1-axis of φ = 90◦ for 30
laminas and of φ = 0◦ for 20 laminas. The thickness of each lamina is 0.125 mm.

a) Determine the plate stiffness matrix A and the plate compliance matrix B.
b) A circular cylindrical container with internal diameter d = 1200mm is made of

the laminate. The x1-direction is parallel to the axis of the cylinder. The container
is subjected to an internal pressure p = 8MPa. Determine the stresses T1,T2,
and T6.



Problems 301

Problem 7.26. Derive the following formulas for the modulus of elasticity η1 and
the shear modulus μ6 with respect to the laminate axes for a unidirectional lamina
with fibers making a 45◦ angle with the laminate axes.

1
η1

=
1
4

[
1−2νx

ηx
+

1
ηy

+
1
μ

]
,

1
η6

=
1 + 2νx

ηx
+

1
ηy

Check if the formulas give the correct values for an isotropic laminate.
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