
TDT4290 Customer Driven Project

PeopleUknow report

Group 10:

Kristoffer Finckenhagen
Ivar Helland Hessevik

Christian Barth Roligheten
Vigleik Lund

Matias Halsteinli Unsv̊ag
June Kieu-van Thi Bui

November 11, 2016

Abstract

Some students struggle with the social aspects of school. Lack of motivation, loneliness
and bullying creates undesirable environments in a classroom. PeopleUknow is developing
a digital toolkit used to improve social skills. The project aims to create well-being,
introspection and motivation in a classroom through social initiatives.

This report was written during TDT4290 Customer Driven Project, fall 2016. The
purpose of this report is to document the working processes, as our group worked along
with PeopleUknow to create the digital toolkit. The project was a software development
project for the company PeopleUknow. Since they are a start-up company our group
was involved in several different activities, including idea-creation-workshops, graphical
design, user testing, and software implementation.

The product was a mobile application which was intended to be used by kids and
teachers in school. Since the most popular mobile operating systems nowadays are iOS
and Android, some of the developers hired by PeopleUknow had decided that the best
way to create this app was by creating an iOS/Android hybrid. This allowed us to create
a cross-platform application using mostly JavaScript and CSS.

Even though our project included a variety of tasks our main task was to create and
implement a prototype of an MVP (minimum viable product) that PeopleUknow could
show to potential customers.

1. Preface

We would like to thank our advisor Soudabeh Khodambashi for the continuous feedback
she has given us through the project.

We would also like to thank the Marianne Johnsen, our contact at PeopleUknow, and
the rest of the team for their input during the development-process.

3

Contents

1. Preface 3

2. Introduction 16
2.1. Project Description . 16
2.2. Involved Parties . 16

2.2.1. The Development Team . 16
2.2.2. Customer . 17
2.2.3. Webstep . 17
2.2.4. End-user . 17
2.2.5. The supervisor . 18

2.3. Project Background . 19
2.4. Project Goal . 19
2.5. General Terms . 19
2.6. Scope . 19
2.7. Chapter Outlines . 19

3. Pre-study 22
3.1. Problem Description . 22
3.2. Current System . 22
3.3. Project Solution . 23

3.3.1. Expected Solution . 23
3.3.2. Possible Solution . 24
3.3.3. Personas . 24

3.4. Evaluation Criteria . 26
3.5. Related Applications . 26
3.6. Choice of Solution . 28

4. Planning 29
4.1. Organisational Demands . 29
4.2. Project Organization . 29

4.2.1. Role Descriptions . 30
4.3. Quality Assurance . 32

4.3.1. Quality of Code . 32
4.3.2. Quality of Documentation . 32
4.3.3. Response Time . 32
4.3.4. Document Review . 33
4.3.5. Project Meetings . 33

4

4.4. Choice of Lifecycle-model . 34
4.4.1. Waterfall . 34
4.4.2. Agile . 35
4.4.3. Comparison of Methodologies . 35
4.4.4. Selecting an Agile Method . 36

4.5. Phases . 36
4.6. Work Breakdown Structure . 37
4.7. Gantt . 38
4.8. Milestones . 40
4.9. Risk Management . 40

4.9.1. Identify Potential Risks . 40
4.9.2. Determine Likelihood and Impact 41
4.9.3. Mitigation, Implementing and Control 41
4.9.4. Risk Table . 41

5. Requirements Analysis 43
5.1. Requirement Elicitation . 43
5.2. Functional Requirements . 43
5.3. Use Case . 45
5.4. Non-functional Requirements . 50

5.4.1. Quality Attribute Requirements 50
5.4.2. Quality Attribute Scenarios . 51

5.5. Estimation of Realization Effort for Use-Case model 55

6. Quality Assurance 56
6.1. Programming Language . 56
6.2. Programming Environment . 56
6.3. Coding standard . 56
6.4. Code review . 57

7. Technologies 58
7.1. Version Control . 58
7.2. Management and Communication Tools 58

7.2.1. Google Drive . 58
7.2.2. Trello . 59
7.2.3. Facebook . 59
7.2.4. Slack . 59

7.3. Documentation Tools . 59
7.3.1. ShareLatex . 59
7.3.2. Google Docs . 59
7.3.3. ESDoc . 60

7.4. Frameworks and Development Tools . 60
7.4.1. Firebase . 60
7.4.2. React Native . 61

5

7.4.3. Drawio . 61

8. System Architecture 62
8.1. Architectural Drivers . 62

8.1.1. Quality Requirements . 62
8.1.2. Functional Constraints . 63
8.1.3. Business Constraints . 63

8.2. Architectural tactics . 63
8.2.1. Modifiability . 63
8.2.2. Usability . 64

8.3. Architectural Pattern . 64
8.3.1. Model View Controller . 64
8.3.2. Client-server . 64

8.4. Architectural Views . 65
8.4.1. Architectural drift and architectural erosion 65
8.4.2. Logical View . 66
8.4.3. Development View . 68
8.4.4. Process View . 69
8.4.5. Physical View . 73

8.5. Database structure . 74

9. Software Security 76
9.1. Threat Modelling . 76

9.1.1. Threat Agents . 76
9.1.2. Architectural Risk Analysis . 77
9.1.3. Abuse Cases . 77

9.2. Protection Poker . 78
9.2.1. Assess Security Risk . 78
9.2.2. Security requirements . 83

10.Testing 85
10.1. Overview of Testing . 85
10.2. Unit Testing . 86
10.3. Functional Testing . 86
10.4. Code Review . 87
10.5. Usability Testing . 87

10.5.1. Prototyping . 87
10.5.2. Formative . 88
10.5.3. Summative . 91

10.6. Acceptance Testing . 94

11.First Scrum-sprint 95
11.1. Sprint planning . 95
11.2. Sprint goals . 95

6

11.3. Sprint Backlog . 95
11.4. Result from the Sprint . 96

11.4.1. Login functionality . 96
11.4.2. Home screen . 97

11.5. Customer Feedback . 97
11.6. Sprint Retrospective . 98
11.7. Sprint Burndown Chart . 98

12.Second Scrum-sprint 100
12.1. Sprint planning . 100
12.2. Sprint goals . 100
12.3. Sprint Backlog . 100
12.4. Result form the Sprint . 101

12.4.1. Scrapbook . 101
12.4.2. Exercises . 103

12.5. Customer Feedback . 104
12.6. Sprint Retrospective . 105
12.7. Sprint Burndown Chart . 105

13.Third Scrum-sprint 107
13.1. Sprint Planning . 107
13.2. Sprint Goals . 107
13.3. Sprint Backlog . 108
13.4. Result from the Sprint . 108

13.4.1. GetToKnow . 108
13.4.2. Side Menu and Changing Profile Picture 110
13.4.3. Scrapbook Comments . 111
13.4.4. Home Screen . 112
13.4.5. Exercise List . 113

13.5. Customer Feedback . 113
13.6. Sprint Retrospective . 114

13.6.1. Sprint Burndown Chart . 115

14.Fourth Scrum-sprint 116
14.1. Sprint Planning . 116
14.2. Sprint Goals . 116
14.3. Sprint Backlog . 117
14.4. Result from the Sprint . 117

14.4.1. Implementing security rules . 117
14.4.2. Exercises . 118
14.4.3. GetToKnow Algorithm . 119
14.4.4. Report and Hide Button . 120
14.4.5. Support for Multiple Classes . 121

14.5. Customer Feedback . 122

7

14.6. Sprint Retrospective . 123
14.6.1. Sprint Burndown Chart . 124

15.The Final Product 125
15.1. Login . 125
15.2. Home . 126
15.3. GetToKnow . 128
15.4. Exercise . 130
15.5. Scrapbook . 132

16.Evaluation 135
16.1. Group Dynamics . 135

16.1.1. What Went Well . 136
16.1.2. What Could be Improved . 136

16.2. What We have Learned . 137
16.3. What the Future Customer-Driven course Student should know about the

course . 138
16.4. Feedback on the Customer Driven course TDT4290 138
16.5. Further Work . 139
16.6. Conclusion . 140

A. Appendices 141
A.1. Pre-Study . 142
A.2. Risk Tables . 143
A.3. Use Case . 148

B. Planning 156
B.1. Meeting templates . 156

B.1.1. Meeting within the Development Team 156
B.1.2. Daily Stands-ups . 156
B.1.3. Customer Meeting . 156
B.1.4. Supervisor Meeting . 157
B.1.5. Weekly Report . 157

C. Software Security 158
C.1. Protection Poker . 158

D. Testing 161
D.1. Functional Testing . 161

D.1.1. Functional Testing, sprint 1 . 161
D.1.2. Functional Testing, sprint 2 . 163
D.1.3. Functional Testing, sprint 3 . 164
D.1.4. Functional Testing, sprint 4 . 166

D.2. Paper Prototype . 168

8

D.3. Testplan for Usability . 171
D.3.1. Formative . 171
D.3.2. Summative . 174
D.3.3. Usability Test Result . 182
D.3.4. SUS result . 190

9

List of Figures

3.1. Sketches of the main functions. 23
3.2. Personas: Emma Nord . 25
3.3. Personas: Anton Hagen . 25

4.1. the team of 6 members . 29
4.2. Overview of the Roles . 31
4.3. Waterfall method [47] . 34
4.4. WBS diagram showing the different parts of the project 38
4.5. Gantt diagram showing the the project plan with phases, important

meetings and milestones . 39

5.1. Categorized User Stories . 45
5.2. Use Case Diagram 1: Login . 46
5.3. Use Case Diagram 4: Sharing on the Scrapbook 47
5.4. Use Case Diagram 6: View the GetToKnow pairs 49
5.5. Use Case Diagram 8: Student View the Chosen Exercises 50
5.6. The Team Playing Planning Poker. 55

8.1. Diagram explaining the MVC pattern [46] 65
8.2. Diagram of the 4+1 view model [22] . 66
8.3. Diagram showing the most important classes, fields and methods 67
8.4. Diagram explaining React Native functionality 68
8.5. Diagram showing the main components of the system 69
8.6. Diagram showing the navigation of the application 70
8.7. The diagram shows the process of creating new week buddies and selecting

exercises . 71
8.8. Diagram of viewing your week buddy . 72
8.9. Diagram of posting on scrapbook . 73
8.10. High-level physical architecture of our system. Parts of the physical

architecture outside the scope of our prototype is marked in red. 74
8.11. Modelling of our database structure as a hierarchy: Names wrapped in

brackets represent variables in the hierarchy. 75

9.1. Abuse Case . 78
9.2. Calibration of Asset and Exposure . 82

10.1. Paper Prototype: Application . 88
10.2. User Testing . 90

10

10.3. I think that I would like to use this system frequently 93
10.4. I found the system unnecessarily complex 93
10.5. I would imagine that most people would learn to use this system very quickly 93

11.1. Resulting login screen from sprint 1 . 96
11.2. Resulting home screen from sprint 1 . 97
11.3. Burndown chart for sprint 1 . 99

12.1. The class scrapbook view that we implemented, showing off pictures, text
and custom styling of posts . 102

12.2. Component for posting on the class scrapbook 102
12.3. Component for listing of exercises, titles and tags are missing from the

view because we changed the database at the time of taking this picture.
The pictures are placeholders. 103

12.4. Component for showing exercise description. The video is currently a
placeholder, but can be replaced by a youtube video. 104

12.5. Burndown chart for sprint 2 . 106

13.1. Component for showing which pair the student is assigned to. 109
13.2. Component for showing the current set of pairs and the ability to generate

new pairs. This view is only accessible for the teacher. 109
13.3. Sidebar menu that is displayed when user presses the icon in the upper-right

corner . 110
13.4. Component showing the user a preview of their new profile picture, in-

cluding button for selecting a new one and saving. 111
13.5. An example post with the comment section visible 112
13.6. Home screen showing scrapbook statistics and user information 113
13.7. Burndown chart for sprint 3 . 115

14.1. New filters . 119
14.2. Report button added in sprint 4 is visible on the Scrapbook. 120
14.3. Hide post button added in sprint 4 is visible on the Scrapbook. 121
14.4. User is prompted to pick the class they want to log in to. 122
14.5. Burndown chart for sprint 4 . 124

15.1. Final Login View . 125
15.2. Final Login View with ”Sign-in failed” error 126
15.3. Final Home View . 127
15.4. Final Side Menu View . 128
15.5. Final GetToKnow Student View . 129
15.6. Final GetToKnow Teacher View . 129
15.7. Exercise View for Students . 130
15.8. Exercise View for Teachers . 131
15.9. Exercise View description . 132
15.10.Final Scrapbook . 133

11

15.11.Create Post in Scrapbook . 133

16.1. The Customer and the Project Group . 135

A.1. Evaluation Criteria . 142
A.2. Use Case Diagram 2: View Scrapbook . 148
A.3. Use Case Diagram 3: Comment on Post 149
A.4. Use Case Diagram 5: View the GetToKnow pairs 150
A.5. Use Case Diagram 7: Teacher Views and Choose Exercises 151
A.6. Use Case Diagram 9: Search on Post-related Data 152
A.7. Use Case Diagram 2: Sign Up for Lunch-date 153
A.8. Use Case Diagram 11: Paired for Lunch-date 154
A.9. Use Case Diagram 12: Overview of the Application 155

D.1. PeopleUKnow Application . 168
D.2. Get-to-know . 169
D.3. Exercise . 170
D.4. Scrapbook . 171
D.5. SUS . 182
D.6. I would imagine that most people would learn to use this system very quickly190
D.7. I think that I would need the support of a technical person to be able to

use this system . 191
D.8. I found the various functions in this system were well integrated 191
D.9. I thought there was too much inconsistency in this system 191
D.10.I found the system very cumbersome to use 192
D.11.I felt very confident using the system . 192
D.12.I needed to learn a lot of things before I could get going with this system 192

12

List of Tables

2.1. Group Competences . 17
2.2. Stakeholders and Criteria of Concerns . 18

3.1. Application Functions . 28

4.1. Team roles and contact info . 30
4.2. Time of Response . 32
4.3. Comparison of different software methodologies. 36
4.4. Project Phases . 37
4.5. Milestones . 40
4.6. Founded Risk . 40
4.7. Risk Table . 41
4.8. Risk Table . 42

5.1. User Stories . 44
5.2. Use Case 1 . 45
5.3. Use case 4 . 46
5.4. Use case 6 . 48
5.5. Use case 8 . 49
5.6. Non-functional requirements . 51
5.7. Scenario - U1: User learning . 52
5.8. Scenario - U2: Intuitive usage. 52
5.9. Scenario - U3: Feedback from interface. 52
5.10. Scenario - U4: Help when needed. 53
5.11. Scenario - M1: modifiability of code. 53
5.12. Scenario - M2: Possibility for integration with Feide. 53
5.13. Scenario - S1: Verification of data. 54
5.14. Scenario - S2: Access control. 54
5.15. Scenario - P1: Compatibility with devices. 54

9.1. Threat Agents . 76
9.2. Architecture security risks: Each risk is associated with the relevant

category in STRIDE . 77
9.3. Protection Poker Score Sheet- Assets . 80
9.4. Protection Score Sheet . 82
9.5. Requirements grouped by security risk . 83
9.6. Security requirements . 83

13

10.1. Overall Test Plan . 85
10.2. A functional test from sprint 1. The tests are listed in Appendix D.1 . . . 87

11.1. Sprint 1 backlog: Estimation and actual effort are in hours. 96

12.1. Sprint 2 backlog: Estimation and actual effort are in hours. 101

13.1. Sprint 3’s backlog: Estimation and actual effort are in hours. 108

14.1. Sprint 4’s backlog: Estimation and actual effort are in hours. 117

A.1. Risk 1 . 143
A.2. Risk 2 . 143
A.3. Risk 3 . 143
A.4. Risk 4 . 144
A.5. Risk 5 . 144
A.6. Risk 6 . 144
A.7. Risk 7 . 145
A.8. Risk 8 . 145
A.9. Risk 9 . 145
A.10.Risk 10 . 146
A.11.Risk 11 . 146
A.12.Risk 12 . 146
A.13.Risk 13 . 147
A.14.Risk 15 . 147
A.15.Use case 2 . 148
A.16.Use case 3 . 149
A.17.Use case 5 . 150
A.18.Use case 7 . 151
A.19.Use case 9 . 152
A.20.Use case 10 . 153
A.21.Use case 11 . 154
A.22.Use case 12 . 155

D.1. Functional Test 1 . 161
D.2. Functional Test 2 . 162
D.3. Functional Test 3 . 163
D.4. Functional Test 4 . 163
D.5. Functional Test 5 . 164
D.6. Functional Test 6 . 164
D.7. Functional Test 7 . 165
D.8. Functional Test 8 . 166
D.9. Functional Test 9 . 167
D.10.Functional Test 10 . 167
D.11.Usability Testplan 1 . 171

14

D.12.Usability Testplan 2 . 172
D.13.Usability Testplan 3 . 172
D.14.Usability Testplan 4 . 172
D.15.Usability Testplan 5 . 173
D.16.Usability Testplan 6 . 173
D.17.Usability Testplan 7 . 173
D.18.Usability Testplan 8 . 174
D.19.Test plan T1.1 . 174
D.20.Test plan T1.2 . 175
D.21.Test plan T2 . 175
D.22.Test plan T3 . 176
D.23.Test plan T4 . 176
D.24.Test plan T5 . 177
D.25.Test plan T6.1 . 177
D.26.Test plan T6.2 . 178
D.27.Test plan T6.3 . 178
D.28.Test plan T7.1 . 179
D.29.Test plan T7.2 . 179
D.30.Test plan T8 . 180
D.31.Test plan T9 . 180
D.32.Test plan T10 . 181
D.33.User Testing 1 . 183
D.34.User Testing 2 . 183
D.35.User Testing 3 . 184
D.36.User Testing 1 . 185
D.37.User Testing 2 . 186
D.38.User Testing 3 . 187
D.39.User Testing 4 . 188
D.40.User Testing 5 . 189
D.41.User Testing 6 . 190

15

2. Introduction

In this chapter we will describe the overall context of the project. This includes the
description of the project, the people who are involved in this project, and the background
and goals of the project.

2.1. Project Description

Our project is called “A digital tool to improve social skills & learning in the classroom“.
The scope of this project is to create a prototype for a digital toolkit that teaches social-
competence in classrooms. The prototype will take form of a mobile app for Android and
iOS. The core of the project is to create a platform which facilitates social skills. The
project will focus on implementing features that can later be developed into an MVP of
the toolkit, and be used for demonstration to potential customers and investors.

2.2. Involved Parties

In this section, we will describe the parties that have been involved in our project.
Our main stakeholders in the project is the development team, PeopleUknow and the
end-user. At the end of this section, Table 2.2 lists some of the stakeholders and their
most important criteria of concerns for the project.

2.2.1. The Development Team

Our team consists of six 4th year students currently taking a master’s degree in computer
science at NTNU.

All members of the team have a broad range of work preferences and experience; with
some preferring coding and others more comfortable with design and testing. Some also
have experience from internships and part-time jobs within the IT industry, while others
have worked as student assistants at NTNU. Team roles were assigned according to
preference and past experience.

The Table 2.1 describes competences and experience of each member. Most of us have
experience with Scrum and different programming languages.

16

Table 2.1.: Group Competences
Name Relevant Competences and Experiences

Kristoffer Scrum, Kanban, Android Development, Java, Python, MySQL, MatLab
Matias Scrum, Android Development, User testing, Java, Python, MySQL
Ivar Scrum, Android Development, Javascript, HTML, git, Java, C, Python, MySQL, TDD
Kieu-van Scrum, Java, Matlab, Design Thinking, User testing, Project management, LaTeX
Vigleik Scrum, Java, Matlab, Python, .NET, SQL
Christian Kanban, Project Managment, Javascript, Java, C, C++, Python, HTML, CSS, Git, AngularJS

2.2.2. Customer

PeopleUknow [34] is a start-up company whose vision is to teach children to find a balance
between asserting themselves and caring for others. The company currently consists of
a small group of people sharing that same vision, and they are constantly adding new
members to their team. Their current team consists of designers and teachers. The
company is currently looking for funding and support for developing their ideas further.

Marianne Johnsen is our contact at PeopleUknow. She was the one that gave us
feedback and ideas on how to develop the prototype. Marianne is also the product owner,
i.e. the CEO. Her responsibilities as product owner in this software development project
includes making sure that tasks in the backlog have a user centered focus, and are not
too technical, as well as making sure all requirements from the customer are represented
[20].

Students

PeopleUknow hired two students during the summer for developing the application. They
have knowledge about PeopleUknow’s codebase and were giving us useful support during
the early stages of development.

2.2.3. Webstep

Webstep is a software consulting firm based in Trondheim. They were giving technical
guidance to PeopleUknow. They have knowledge about similar projects and they were
giving us support regarding technical issues. For this project, we had some meetings
with them and they offered us help by giving us a technical person we could ask if there
was a problem.

2.2.4. End-user

By end-user, we mean students and teachers. They are the ones who will eventually use
the product. It is therefore very important to understand them and get feedback from
them.

17

2.2.5. The supervisor

We also had a supervisor, which was responsible for giving feedback on the project and
answering questions if the group had some questions. Soudabeh Khodambashi was our
supervisor. She guided us through the weekly meetings and helped us to get on the right
track.

Stakeholders Criteria of Concerns

Development
team

Readability: The code should be commented and structured well
to make it easy for all group members to understand each others
code.
Modifiability: The architecture that is used should be appropri-
ate for the app, to make it easier to change or add new features.
Version control: The developing team should use a framework
for version control, e.g. Git, to make sure work is not lost in case
of accidents. By using version control it is also possible to go back
to previous stages of the system if we create functionality that we
realize is undesired or different from the preferred result

End user

Usability: The app must be interesting and easy to use. If teachers
find the app cumbersome and struggle to use it, they will most
likely not introduce it to their class.
Entertainment: The app should be fun to use because the more
the students use the app, the bigger the improvement in social
skills and well being will be.

Other developers
at PeopleUknow

Readability: The code for the app should follow standards for
commenting and documenting, to make it easier for different de-
velopers to complete or extend the code. It will also make it easier
for different developers to work in parallel.
Work with React: The app should be able to test for either
iOS or Android using React Native, to make it easier for the
other developers to evaluate our work, and continue their work
accordingly

PeopleUknow

Functionality: The app should contain the functionality they
would like the app to have, within reasonable limits.
Security: The app should protect the information of users.
Modifiability: As this is an MVP and not a final product the
app should be easy to modify, and/or add new functionality later.

Webstep Overall success of the product.

Table 2.2.: Stakeholders and Criteria of Concerns

18

2.3. Project Background

According to our customer [34], the background for this project is that many students
are lonely, unmotivated or bullied. This creates much stress and it worries them.

In today’s school system with a lot of curriculum to rush through, the school focus on
getting through the curriculum. Other important things such as introspection and social
competency is not prioritized as much. Many students don’t even know all the people in
their class, which can make them feel unsafe in their own class environment.

2.4. Project Goal

The goal of this project with PeopleUknow is to help students to get to know their
classmates. By developing an application which provides the students with digital tools,
we are hoping that the students will be using it in class to learn more about themselves
and their classmates.

For this project, our specific goal was to develop an application which comes with five
main features: Home, Login, GetToKnow, Exercise, and Scrapbook. GetToKnow feature
will make it possible for each student to get new group partners, and get to know them.
With the group each student got the Exercise feature contains a set of exercise that the
group is supposed to do. When a group has completed an exercise, they have the option
to share their experiences with their class.

Another main goal of this project is to get a real life experience on how software
development works, such as working in teams, how to manage the information, what
technologies to choose, and working with a real customer.

2.5. General Terms

The application is intended to be used by students and teachers at lower secondary school
(ages from 13-16) and upper secondary school (ages from 16-19).

2.6. Scope

The project started 23th August and it will end on 17th November with a presentation
of the result of the project. The report of the project will be delivered 11th November.
Therefore, the estimated amount of work is calculated for the period between 25th August
to 17th November.

2.7. Chapter Outlines

This section describes how the rest of the report is organized.

19

Chapter 3 - Pre-study

Chapter 3 is about the information that has been gathered in order to understand the
total problem we are solving.

Chapter 4 - Planning

Planning chapter describes how we organized our project, documentation and management
tools we used, and describes the choice of lifecycle-model. The last section of this chapter
describes the risks for this project.

Chapter 5 - Requirement Analysis

Requirement Analysis describes how we identified the requirements; both functional and
non-functional requirements.

Chapter 6 - Quality Assurance

QA chapter describes the programming environment, coding standard and code review
procedure.

Chapter 7 - Technologies

Chapter 7 describes the different technologies and tools that we used for the development
of the project.

Chapter 8 - System Architecture

Chapter 8 presents the design of the system, and describes the architecture we imple-
mented.

Chapter 9 - Software Security

Software security chapter describes the security aspects of our project.

Chapter 10 - Testing

The testing chapter describes the various testing methodologies used and considered in
the development of the application.

Chapter 11-14 - Scrum-sprints

Chapter 11-14 describes each of the four sprints in detail.

Chapter 15 - The Final Product

The final product is presented in chapter 15.

20

Chapter 16 - Evaluation

The final chapter presents the reflection on the project work and discusses what went
well, what could be improved and further work.

21

3. Pre-study

This chapter describes the information that has been found in order to understand the
total problem we are solving.

3.1. Problem Description

22% of the students in 2013 say they have been bullied during the school year [24].
Bullying can lead to loneliness, lack of motivation and/or suicide [5], which are really
serious issues. One reason for bullying is that students are lacking of understanding each
other [30], which can lead to judgement among the students . A study performed by Yale
University, discovered that bullied children were two to nine times more likely to develop
suicidal thoughts [33].

In order to reduce this problem, PeopleUknow wants to create an application to reduce
the lack of motivation, loneliness, bullying and expectation press, make students care
about each other, and create a safe and positive class environment. The application will
teach them more about self development and learn about situations related to social
competence.

We wanted to help PeopleUknow to develop an application to provide students with
digital tools, which can help students to get to know each other in their class, learn more
about themselves, and learn and practice in social situation.

3.2. Current System

PeopleUknow has focused on design of the app and research. They have made sketches of
key aspects of solution and are doing research on how to best motivate children. During
the summer they hired two students to begin work on the coding of the app. They mainly
focused on design sketches, but did some initial work on the implementation. The students
chose React Native [10] as coding framework and Firebase [17] as backend-database.
They have created a Git repository and have started experimenting with the framework.
The code in the repository seems of little value to us and is not likely to be used further
in development.

The provided design sketches described ideas of the layout of each screen and how
different functions could be implemented. The sketch for the main components can be
seen in Figure 3.1.

22

Figure 3.1.: Sketches of the main functions.

3.3. Project Solution

This section looks at the expected solution and the possible solutions. In 3.3.3 we tried
to understand our users through creating personas.

3.3.1. Expected Solution

The desired outcome of the project, as described by PeopleUknow, consists of five main
parts:

• Scrapbook: A feed that displays activity within a class. It is intended that
classmates can share pictures, text etc. with each other.

• GetToKnow: An algorithm to divide a class in groups of two or three students
each week. The algorithm should avoid grouping students that has already been in
groups. The teacher should be able to rearrange group members.

23

• Exercises: Each group can be given a social activity which they must do together.
A video explaining the task may be given. The teacher can choose which activity
to do and plan when it should be done.

• Home: A frontpage where students can navigate.

• Login: A way to login the students or teachers. To easily interact with schools,
PeopleUknow were considering integrating the app with Feide [13].

PeopleUknow has informed us that their ideas are not rigid and that they might change
their mind.

3.3.2. Possible Solution

While there has been done some initial work on the project, these are mostly sketches.
Therefore, it could be possible to start from scratch and use a different framework or
programming environment. As mention previously, React Native was used by the summer
students. They suggested that we used the React Native framework, in combination with
Firebase on our project. This suggestion was later endorsed by Webstep, which led us to
our decision to continue with those frameworks.

It would be possible to create the app using a different framework than React Native.
Many frameworks provide similar functionality to React Native, including camera access
and cross-platform support. Xamarin[49] and Cordova[2] are similar to React Native.
However, we do not have any experience with these framework. By using the existing
solution, we can ask for help when we encounter a problem.

An alternative could be to create the app as a web page instead of an app. This could
make it easier to distribute and future implementation with desktop/laptop interface.
However, camera and other native components on phones are not easily accessed with a
web page.

Implementation of the solution is stated in the previous section. The main possibilities
are connected to layout and look of the app and will likely be incrementally improved
through development and feedback from the customer. However, login with Feide is
something that would be nice to have, but is not essential for a working prototype. Such
integration would take a lot of time and the effort could be spent better elsewhere. We
could design the login system such that integration with Feide is possible in the future.

3.3.3. Personas

In order to understand our users we have created some personas. The people we have
describes in this section are fictitious. Figure 3.2 and Figure 3.3 describe two types of
characters that will use our application: student and teacher. The template we used was
from Xtensio.com[19].

24

Figure 3.2.: Personas: Emma Nord

Figure 3.3.: Personas: Anton Hagen

25

3.4. Evaluation Criteria

For this project the customer wanted us to focus on the design and the functionalities
A.1. In today’s society there are a lot of applications out there, some of them are good
and some are bad. An application with a good concept can be bad for instance if the
design is crappy. If the application does not give the user a good user experience, then
the potential users will not use it either. It was therefore important for the customer
that we were creative and tried to customize the design such that it looked like their
sketches. This gives the user of the application the ”feeling” and ”branding” that the
customer intended. We should also focus on the user experience, such as menus, buttons,
and clicks and the response time should be fast.

The application should be developed with teachers and students in mind. This
means that the system should be intuitive and easy to use for them. When it comes
to the functionalities, it is important for the customer that the discussed features get
implemented. It should be finished such that the customer has something to show the
teachers, students, and principal in order to test the application at different schools.

The code should be well-documented and readable for PeopleUknow and other pro-
grammers, so that is it easy to understand the code and it will be easy for them to
continue working on it. The customer stated also that they wanted this application to
work on many devices as possible. But since we had a restriction on time, we decided
that we should focus on both Android and iOS, and not desktop.

3.5. Related Applications

There are a lot of applications out there, which are focusing on learning social skills
for children and students. They all have some similarities to the application we are
developing.

Team Shake

Team Shake makes it possible to choose teams for board games, sporting events, tourna-
ments, school projects or anytime groups are required [31]. This is done by entering all
participants names in the application and give it a shake.

After School

After School is an anonymous message board app made for students [1]. Each school have
their own message board that is only accessible to students of the given school. These
boards are meant to encourage social interaction among students, sharing thoughts and
uploading pictures. Teachers and parents can’t access these boards and every student is
anonymous.

26

Social Skill Builder

This application teaches children social thinking, language and behavior related to
everyday situations [41]. It contains 19 modules with videos and questions for the user
to see and react to by answering multiple choice questions. The videos in the application
shows scenarios over real interactions in school.

Let’s be Social: Social Skills Development

The application has written lessons and video lessons and it has the ability to create
customized lessons from scratch [42]. It is designed to help special need professionals and
parents teach social skills to those that struggle with social communication.

The Social Navigator

The Social Navigator is an application that assists children with social and behavioral
challenges by helping them to adapt their behavior and developing life-long social skills[29].
The user can enter their current social situation and the application will instantly generate
corresponding strategies and recommendations. This will guide them through how to
handle the occurred situations.

Comparison of Different Application

We found several applications containing some of the functionality our application was
supposed to contain, but none had all of it(see Table 3.1). Furthermore, most were
dedicated either to teach and improve social skills, or to improve learning and well-being
in the classroom. None of the applications focused on both, and in addition, many of the
applications had little or no interaction between the users. From this research, we can
conclude that our application have no directly competing applications already on the
market, but a lot of applications that provide parts of the functionality.

Table 3.1, shows the similar applications and the different functions our customer
wanted. The last column shows the users of the application. From the table, we can
see that they provide some of the functions our customer wanted, but not all of them is
covered.

27

Team / Get-
Toknow

Comments-
and-Sharing

Exercise Users

Team Shake

Add names,
choose amount
of team and
then the team
get assigned

Not provided Not provided
Friends, class,
groups

After School Not provided

Students are
able to share
everything
anonymously

Not provided Students

Social Skill Builder
Provide games
for team

Partly

Exercise with
videos and
questions
with scenarios
over real in-
teractions in
school.

Students, par-
ents

Let’s be Social Not for teams Not provided

Voice record-
ing, video exer-
cise and story
with image

Children with
special needs,
parents and
teachers

The Social Naviga-
tor

Not provided Not provided

Prepare chil-
dren for up-
coming events
by teaching so-
cial skills

Children with so-
cial challenges,
doctors, teacher
and parents

Table 3.1.: Application Functions

3.6. Choice of Solution

We are expecting to create a prototype with Scrapbook, GetToKnow, Exercises, Home,
and Login. We will not create Login with Feide since PeopleUknow has not currently
made an agreement with Feide. This would add complexity to the project and we feel
the resources would be better spent elsewhere. The prototype we will make is part of the
MVP. The different aspects of the solution will likely be just a beginning of the larger
project and PeopleUknow does not expect a final product with all of the functionality
that is described. We will continue development using React Native as programming
framework.

The customer agreed with our assessment. We emphasized the that Feide login system
would not be prioritized and that we would focus on the MVP.

28

4. Planning

In this chapter, we describe how we organized our project, documentation and manage-
ment tools we used, and we describe the choice of lifecycle-model.

The last section of this chapter describes the risks for this project.

4.1. Organisational Demands

Our purpose for doing this project is to learn more about how to work with a real software
development product, which involves planning, idea phase, implementing and testing.
From the faculty and the course compendium there were some demands that the group
needed to follow:

• The group needed to attend all the course lecture.

• If there was some women in the group, one of them needed to be the project
manager.

• Every Friday the group needed to send a weekly report to the supervisor.

• The group needed to meet the supervisor every week.

4.2. Project Organization

Each member had been assigned to a role. The roles in this group were project leader,
test leader, scrum master, security lead, quality assurance lead, system architect and
customer interaction. Who had which role can be found in Table 4.1. The person with
that specific role had the responsibility in that area, but all members were helping each
other.

Figure 4.1.: the team of 6 members

29

Team roles Name and E-mail Study

Project Leader
June Kieu-van Thi Bui Computer Science

Software

System Architect
Ivar Helland Hessevik Computer Science

Algorithms & HPC

Scrum Master, Security Lead
Christian Barth Roligheten Computer Science

Databases & Search

Quality Assurance Lead
Vigleik Lund Computer Science

Databases & Search

Test leader
Matias Halsteinli Unsv̊ag Computer Science

Software

Customer Relationship Manager
Kristoffer Flinckenhagen Computer Science

Databases & Search

Table 4.1.: Team roles and contact info

4.2.1. Role Descriptions

Under each roles get described. Figure 4.2 shows the overview of the different roles.

Project Leader

The project leader has an overview over the whole project, they are responsible for
managing the resources and make sure there is no internal conflicts in the group. They
are responsible for delegating tasks to other team-members, and making sure the tasks
get done.

Customer Relationship Manager

Customer Relationship Manager (CRM) has the responsibility to bridge the communica-
tion between the group, the customer and the supervisor. They are responsible for official
communication between the the project group and the customer. As well as sending
weekly reports to the supervisor.

System Architect

The system architect is responsible for the architecture of our solution. They should make
sure that any architectural choices are sound, and that they reflect customer demands.

Test Leader

The test leader is responsible for formalising and all types of testing performed on our
solution. They are also responsible for coordinating testing with the customer when
necessary.

30

Scrum Master

The scrum master is responsible for implementing and maintaining the scrum methodology
within the group. They are also responsible for leading meetings related to the scrum
process; such as holding the sprint meeting, sprint review and sprint retrospect. They
are also responsible for maintaining the project and sprint backlog, and organizing the
Kanban board.

Security Lead

The security lead is responsible for making sure the solution meets the criteria for security
that we have defined. They are also responsible for making sure the security criteria we
have defined are sound.

Quality Assurance Lead

The quality assurance lead is responsible for monitoring the software development,
ensuring high code quality and to make sure that the product meets the specified
requirements.

Figure 4.2.: Overview of the Roles

31

4.3. Quality Assurance

Quality assurance was an important part of the project because we were to deliver the final
product to the customer and let them take over development; It is therefore important
that we maintain good quality standard on our code as well as any documentation we
deliver to the customer.

4.3.1. Quality of Code

In order to maintain a good coding standard we decided early on a appropriate code
standard. The standard we chose was based on the standard used in examples on the
documentation for the React Native framework.

4.3.2. Quality of Documentation

The standards for documentation depends on whether we expect the documentation to
be used by developers or non-developers. Documentation relating to the code was written
so that a developer with at least minimum understanding of software development could
understand it.
Documentation written for non-developers was written so that anyone who knows how
to use a computer could understand it. Any documentation written was also tested with
the target persons so that we knew they understood how to make use of it.

4.3.3. Response Time

It is important for us to get response from the customer since the system is developed
for the customer. If there was something we were uncertain about, it was therefore
necessary to clarify this with the customer. To prevent delays in our development process,
we agreed on the response time to be 24 hours, but when the customer was away due
travelling the response time could be within 48 hours.

In Table 4.2 we have listed the time of response we used, which is from the compendium
[20] provided by the course.

Description Time

Approval of minutes of customer meeting 24 hours
Feedback on phase documents the customer would like to review 48 hours

Approval of phase documents 48 hours
Answer to a question 24 hours

To get agreed documents etc 24 hours

Table 4.2.: Time of Response

32

4.3.4. Document Review

For our routines for approval of phase documents, we made sure that group members
were aware of the changes that were made. When the specific documents were updated,
the group would review the changes.

We also sent some part of the report to the customer so they could see what we have
done, if we understood each other, and if there was something the customer was missing.

4.3.5. Project Meetings

During our project there were a lot of meetings. Therefore it was also important to have
templates for each meeting to save time and to use our time effectively, and to get most
of it from each meeting.

Meeting with Development Team

Since members of our team has different schedules, some were unavailable during the
week. We chose to have our weekly group meeting every Friday. The weekly meeting was
used for preparation of meeting with the supervisor and other project related activities.
These meeting was generally related to the management of the project. The agenda for
the meetings can be found in B.1.1.

Daily stand-ups Meetings

An important part of the Scrum-methodology we decided to use (see Section: 4.4.4) is
daily stand-ups. Each stand-up should be about 15 minutes and it is discussed what
each member has done since the last time. Since members of the group have different
schedules, that varies from week to week, stand-ups were not strictly daily. The meeting
should be held each morning and discuss plans for the day and what the members did
the previous day. Other smaller issues regarding development should be discussed after
the stand-up.

Customer Meetings

We scheduled to meet with the customer at the beginning of every sprint. An alternative
would be to have one meeting at the end of each sprint, and one at the beginning. To
save time we merged these meetings, and talked about both the previous sprint, and the
upcoming sprint in the same meeting. It was the customer relationship manager, which
had the responsibility to schedule this. The customer meetings were used to discuss
progress and decide tasks for the sprint. These meetings could also be used to show
prototypes and get feedback for the next sprint cycle. The duration of the customer
meeting should be about one hour. The template used for these meetings can be found
in B.1.3.

33

Supervisor Meetings

Supervisor meeting were held every week. The comments from the weekly group meeting
were reviewed and we were given feedback on the progress of the report. Agenda for
meeting can be found in B.1.4.

Weekly Report

Every Friday, the report was sent to the supervisor before 12.00. This was to ensure
that our supervisor got time to have a look at our report in order to give us feedback
and comments on the document. The weekly report followed a template (See B.1.5).
The format of the weekly report contained what had been done, what we should do, any
questions and the report.

4.4. Choice of Lifecycle-model

This section presents possible choices for development methodologies in software develop-
ment and which one we used for our project.

4.4.1. Waterfall

Waterfall is a methodology for software development. This method is a linear approach.
The sequence of this approach consist of five phases, each of which are finished sequentially.
For example, when the requirements phase is done, no more requirements are added to
the project (See figure 4.3).

Figure 4.3.: Waterfall method [47]
.

34

4.4.2. Agile

Agile development describes a set of principles for software development [20]. It allows
the requirements and solutions to evolve through collaborative effort of self-organizing
cross-functional teams. By having agile approaches, it can help teams to respond to
unpredictability through incremental, iterative work and empirical feedback.

Scrum

Scrum is an agile methodology that focuses on incremental changes. [21] The methodology
introduces feedback-loops to encourage developers to inspect and adapt the product. A
product owner creates a prioritized list (product backlog) for the product. During the
sprint planning, the project team takes elements from the product backlog and places
them in the sprint backlog. The team has a time-frame for each sprint. Daily Scrum
meetings should be give progress-reports to the team, and the scrum master keeps the
team focused. The work should be finish in the end of the sprint. The team does a sprint
review and sprint retrospective on the process. This concludes a sprint and the team can
begin a new sprint. The process is documented in the burndown chart.

XP

Extreme Programming (XP) is an extreme case of agile development [20]. XP focuses
on flexibility. Code, testing, listening and designing are the core features of XP. Pair
programming and test driven development are important in XP. The communication
within the team is often done as stand-up meetings.

Kanban

Kanban is an agile methodology like Scrum, but less structured [20]. Kanban focuses
on visualization of the work flow and organizes the work on Kanban boards. These
boards consist of cards placed in different columns. The columns represent the different
development processes while the cards represent the work-tasks. The cards move from
left to right along the columns as they pass the different development stages. Each
column is limited to a pre-defined number of cards. The limits are crucial for avoiding
overproduction, revealing bottlenecks and optimizing work flow.

4.4.3. Comparison of Methodologies

In table 4.3, we compare the different pros and cons with the different methodologies.

35

Methodology Pros Cons

Waterfall Structured, simple, easy test-
ing

Difficult to make changes, not
fit for long projects

Scrum Incremental, suitable for small
projects

Not suitable for big project

Extreme Program-
ming (XP)

Customer in center, Quick it-
erations

Frequent meeting creates over-
head,

Kanban Graphical view of tasks, flexi-
bility

Boards must be updated,
board can be overcomplicated

Table 4.3.: Comparison of different software methodologies.

First we had to choose whether to use some agile method or the more traditional
waterfall method. Whilst the waterfall method is suitable for projects that are well-
specified, this was not the case for our project: The customer, being a startup, had a
general idea of the features to be included in the application, but had little detailed
knowledge of how these could best be implemented. A lot of new features the customer
wanted were also discovered during workshops and meetings between the customer and
project team. With this in mind we chose to use an agile method, as these are better
suited for changing requirements and specifications.

4.4.4. Selecting an Agile Method

For our project we mostly considered XP and Scrum as candidate agile methods. We
found that whilst XP have many good qualities we want in the project, we had too little
time and experience to use it effectively on such a short project. Scrum then came out as
the winner because the idea of sprints were well suited for the tasks we needed to work
on for the prototype. Many of the team members also had past experience with Scrum.
We chose to make use of a Kanban board to organize our work, this was to get a better
overview of the different tasks, and what each team-member was working on.

4.5. Phases

We decided to split our project into seven phases: introduction, preliminary study and
planning, four sprints, and final phase. For each phase we planned a general set of
goals that we should complete. These goals were as high-level as possible, since details
about how these should be implemented could easily change throughout the project. The
final phase was used for preparing the report for delivery and preparation for the final
presentation.

Introduction phase was the first phase of our project. This phase was where we got to
know each other on the team and the customer. Also, we use this time to get a clear
understanding on what this course was really about and reading the compendium.

36

During the preliminary and planning phase, we worked closely with the customer to
nail down the scope of the project; we defined requirements and priorities, decided the
architecture to use and figured out how we would work as a team. We also did the
pre-study during this phase.

Following the preliminary and planning phase was four sprint phases; each sprint
phase we had agreed on a set of features to implement and focused most of our ef-
fort on implementing these. User-testing was also performed throughout these phases.
User-testing is discussed in more detail in chapter 10. In the final phase, we focused on fin-
ishing the report, fixing small things in the application and preparing for the presentation.

The table 4.4 shows summaries of the different phases and describes their duration.

Phase Description Week

Introduction Getting to know the course, the team, and the costumer 34

Preliminary
and Planning

Planning, setup of project, and research 35-36

Sprint 1 Learn React-native, create prototypes, implement login 37-38

Sprint 2 Security, user-testing, implement Exercise and Scrapbook 39-40

Sprint 3 Implementation of GetToKnow and home page 41-42

Sprint 4 Usability testing, fixes and report 43-44

Final phase Report writing and presentation 45-46

Table 4.4.: Project Phases

4.6. Work Breakdown Structure

By using Work Breakdown Structure it helped us to allocate the project resources by
breaking the project into smaller components. We could therefore track and identify
which parts of the project require most time and identify issues and problem areas in the
project organization.

• Research: contains all the tasks we did related to research such as background
information from PeopleUknow, research on which technologies to use and similar
application etc. I also included evaluating and learning how to use the different
technologies.

• Meetings and planning: includes all the meeting activities we had with our
customer, supervisor, internal in the group and with the customer’s technical
advisor. Planning goes under all the planning before each sprints.

• Design: consists of all the tasks for prototyping and for how the application should
look like.

37

• Implementation: includes all of the implementation of the application and the
testing of the application.

• Documentation: is all the activities we did for writing the report and documen-
tation of the application which can be found in the appendix.

The following work breakdown structure shows the parts of the project we determined
were most important regarding allocating resources and time during the project. This
allowed us to easier see how much time would need to be spent on the different parts of
the project to get the best result.

Figure 4.4.: WBS diagram showing the different parts of the project

4.7. Gantt

The overall plan for this project is represented as a Gantt Diagram in Figure 4.5. The
Gantt chart can be used to see how we planned to schedule the development of the
project, from start to end. It also gives a summary of the project work; for instance in
the beginning of each sprint the group had a sprint meeting.

38

F
ig

u
re

4.
5.

:
G

an
tt

d
ia

gr
am

sh
ow

in
g

th
e

th
e

p
ro

je
ct

p
la

n
w

it
h

p
h

as
es

,
im

p
or

ta
n
t

m
ee

ti
n

gs
an

d
m

il
es

to
n

es

39

4.8. Milestones

In the table 4.5 we have listed specific points along the project development time-line.
These milestones help us to get progress by trying to reach them at the given time.

Milestones Date finished

Pre-study 09.09.2016

Sprint 1 ended 23.09.2016

Sprint 2 ended 07.10.2016

Formative Usability testing 25.09.2016

Sprint 3 ended 21.10.2016

Summativ Usability testing 26.10.2016

Sprint 4 ended 04.11.2016

Table 4.5.: Milestones

4.9. Risk Management

In this section we describe how we did the risk management, how we found the risk in
the table 4.6 (which is ordered by the risk) and how we prioritize the risk (see table 4.8).

Risk Factor Risk

Misunderstanding between the group and the customer Very H
The customer unavailable Very H
Underestimaded the time to complete the tasks H
Unforeseen technical issues H
Lack of knowledge H
Conflicts in the group H
Members of the group get sick, or are not showing up M
Loss of data on Google Drive or Sharelatex M
Communication problems M
Tool risk M
Wrong choices have/has been made in the middle of process M
A project member drops the course M
Low motivation M
Things/materials get stolen L
Unable to find work place L

Table 4.6.: Founded Risk

4.9.1. Identify Potential Risks

The first thing we did was to identify risks. This is necessary to understand what can
possibly go wrong during this project and to create a common understanding of the

40

risks. The identifying of risks was conducted by listing all the possible things that could
happen to our project, while we discussed it with each other.

We were also looking at the cause of the problem to get a better understanding, and
who had responsibility for this risks. This made it clearer to see how big impact the
project has on the risk because if we cannot find the cause of the problem, it may be
that we do not mitigate the actual problem.

4.9.2. Determine Likelihood and Impact

To determine the likelihood and impact of the risk, we follow a template provided by
Difi.no[6]. In this report, we describe the Likelihood as the probability of the risk occurs
(which is from 1 to 10). Where the likelihood between 1-3 is low, likelihood between 4-7
is medium and likelihood between 8-10 is high. Impact is defined as the consequence of
the risk from 1 to 10. Where 1-3 describes the impact is low, 4-7 is medium and 8-9 is
high for the project goal, deadline,and framework.

When we multiply the likelihood and the impact, we get the risk (Risk = Likelihood x
Impact). Figure 4.7 shows the likelihood and the impact, which gives the risk. The red
areas on the figure is where the risk are high and the green is where the risk is low.

Likelihood
Impact

Low Medium High

High M H H

Medium L M H

Low L L M

Table 4.7.: Risk Table

4.9.3. Mitigation, Implementing and Control

For planning to mitigate the risks, we discussed the ”strategy and action” on how we
were going to avoid, reduce, transfer or accept the risks. More on the mitigation on
different risk can be found in Section 4.9.4.

4.9.4. Risk Table

In this subsection, we have created risk tables for all the risks that were identified for the
project which can potentially occur. Each risk has been assigned to a risk ID. In the
tables, the activity row describes which of the activities in the project are affected by
that risk. We use H (High), M (Medium) or L (Low) for describing the impact and the
likelihood (see Section 4.9.2). Strategy and action row is the mitigation part, how we
want to avoid, reduce accept etc. While the last row, responsibility describes the person
that have the responsibility for the risk if it occurs.

In the end we had to prioritize the risk according to their risk. For this we made
a table 4.8 which contains the risk ID, risk factor, impact (I), likelihood (L), the risk

41

and the priority. The priority is from 1-3, where 1 is very important and 3 is not so
important.

Risk Factor I L Risk Priority

Human Risk

The customer unavailable H H Very H 1

Misunderstanding between the
group and the customer

H H Very H 1

Conflicts in the group M H H 1

Communication problems M M M 2

A project member drops the course H L M 2

Low motivation M M M 2

Members of the group get sick, or
are not showing up

M M M 2

Process Content Risk

Lack of knowledge H M H 1

Wrong choices have/has been made
in the middle of process

M M M 2

Loss of data on Google Drive or
Sharelatex

H L M 2

Things/materials get stolen M L L 3

Unable to find work place L M L 3

Technical Risk

Unforeseen technical issues H M H 1

Tool risk M M M 2

Estimation Risk

Underestimaded the time to com-
plete the tasks

H M H 1

Table 4.8.: Risk Table

42

5. Requirements Analysis

This chapter describes how we identified the requirements; both functional and non-
functional requirements.

The functional requirements are represented textually and as use case diagrams. The
functional requirements are described with user stories. The non-functional requirements
will be described in a context of usability, modifiability, security and portability. We will
also describe our approach for estimating the time for each use cases.

5.1. Requirement Elicitation

At the start of the project the customer had a lot of features they wanted to implement,
but because we had a total of 12 weeks to work on the application we had to constrain
ourselves to some of the core features the customer wanted. To get an overview of all the
functional and non-functional requirements, we held a workshop with the customer where
we discussed the different features they wanted and agreed on what was most important.

We had an internal meeting after the workshop, where we discussed what the customer
wanted. From this discussion we managed to create a list of functional requirements
and a corresponding list of non-functional requirements, which can be found in Section
5.2 and 5.4. To further confirm that the customer was happy with the progress, we
reaffirmed what was important at each sprint meeting. We also agreed to implement a
Lunch Date feature if we had extra time. The reason for this extra feature was that we
did not know how quickly we could implement the core features.

5.2. Functional Requirements

At the end of the planning phase we had defined a set of functional requirements that
we agreed we should focus on. The requirements we found in Table 5.1 are represented
as user stories: as a user I want ”to do something”. Each stories have story points and
a priority. The Story points are an arbitrary measure, which is used for measuring the
effort to implement the story. The priority is from low to high, where H is the stories
that we are prioritizing highest before Medium and Low. The method we used estimate
the story points is described in Section 5.5.

The user stories have also been categorized into: Home, GetToKnow, Exercises, Lunch
date, Login and Scrapbook. The Figure 5.1 shows the categorization of the user stories.

43

ID User-story Story points Priority

F1 As a user I want to be able to log in to my account with
email and password.

58 H

F2 As a user I want to be notified if I am not successfully logged
in.

2 M

F3 As a user I want to view pictures and text other users in
my class has made to the class scrapbook, and see custom
styling chosen by classmates on posts.

40 H

F4 As a user I want to be able to comment on posts made by
classmates to the scrapbook.

10 L

F5 As a user I want to be able to post pictures and text to the
class scrapbook, and choose the styling for the post.

20 H

F6 As a student I want to view which pairs me and my classmates
have been assigned to by the teacher.

20 M

F7 As a teacher I want to group students into pairs, I want to be
able to select who is attending and modify the pairs before
my students can see the pairings.

70 H

F8 As a teacher I want to view all exercises I can choose, and
select those I want student pairs to do.

25 H

F9 As a student I want to be able to view exercises picked for
us by the teacher.

10 M

F10 As a user I want to be able to search the scrapbook on text
and other post-related data.

10 L

F11 As a student I want the ability to sign up for a lunch-date
with another student.

20 L

F12 As a student I want the app to pair me with another student
for a lunchdate, I want to be notified when this happens and
be able to view who I was paired with.

20 L

F13 As a user I want to easily get an overview of the app features,
and be able to open the page for the feature I want to use.

20 H

Table 5.1.: User Stories

44

PeopleUKnow app

Home

F13

GetToKnow

F6 F7

Exercises

F8 F9

Lunch date

F11 F12

Login

F1 F2

Scrapbook

F3 F4 F5 F10

Figure 5.1.: Categorized User Stories

5.3. Use Case

In this section we will be presenting the use cases from the functional requirements. Use
case is used for analyzing, identifying, clarifying and organizing the system requirements
[35]. Based on the requirements from Table 5.4.1 we have created user stories, textual use
cases and use case diagrams . The important use cases have been listed in this section
while the rest of them can be found in the Appendix A.3.

Use Case # 1

Application PeopleUKnow App
Name Login
Reqquirements F1, F2
Description A user wants to log in to the PeopleUKnow application with his

or her email and password.
Primary Actors Students, teachers and parents
Preconditions User has an account
Trigger
Basic flow • The user is presented with login page.

• The user types in email and password.
• The user push the login button or press enter.
• The system confirms that the user is logged in.

Alternative
Post conditions The user is logged in.

Table 5.2.: Use Case 1

45

Figure 5.2.: Use Case Diagram 1: Login

Use Case # 4

Application PeopleUKnow App
Name Sharing on the Scrapbook
Requirements F5
Description The user wants to share a picture and text on the scrapbook and choose the

style for the post.
Primary Actors Students
Preconditions • The user is logged in

• The user is viewing the scrapbook
Trigger The user has finished an exercise and wants to share it.
Basic flow • The user presses the share button

• The application shows a form for uploading posts
• The user chooses a different styling
• The user writes a description of the post
• The user chooses a picture
• The user chooses one or more tags to describe the post
• The application uploads the post

• The user can see the post
Alternative
Post conditions The user has shared a post with the preferred style.

Table 5.3.: Use case 4

46

Figure 5.3.: Use Case Diagram 4: Sharing on the Scrapbook

47

Use Case # 6

Application PeopleUKnow App
Name teacher Groups Students into Pairs
Requirements F7
Description A teacher wants to group his/her students into pairs, and modifying the

pairs if is necessary.
Primary Actors Teachers
Preconditions • The user has an account and is logged in

• The user has a class
Trigger The teacher has some exercises for the students, and therefore he/she need to

group the students.
Basic flow • The system shows the menu bar

• The user choose “GetToKnow” function
• The user push the button pair teams
• The user can see all the pairs created
• The user edit some of the pairs
• The user can see the pairs created after modifying them

Alternative
Post conditions The user has created and modified teams

Table 5.4.: Use case 6

48

Figure 5.4.: Use Case Diagram 6: View the GetToKnow pairs

Use Case # 8

Application PeopleUKnow App
Name Student View the Chosen Exercises
Requirements F9
Description The user wants to see what exercises have been chosen by the teacher.
Primary Actors Students
Preconditions • The user is logged in.

• The teacher has chosen exercises.
Trigger
Basic flow • The user choose “Exercise” button from the menu bar

• The user views the exercises
Alternative
Post conditions The user views the exercises

Table 5.5.: Use case 8

49

Figure 5.5.: Use Case Diagram 8: Student View the Chosen Exercises

5.4. Non-functional Requirements

This section describes the non-functional requirements, which is how the system should
implement the functional requirements [38].

5.4.1. Quality Attribute Requirements

For the application to be successful, it needs several quality attributes. In Table 5.4.1 we
have listed the requirements we feel are most important for this application. They are
grouped related to their quality attributes:

• U = Usability

• M = Modifiability

• S = Security

• P = Portability

50

ID Description Rationale Priority

U1 The user must be able to learn how
to use a new feature, e.g. Exercises,
within 5 minutes of learning.

The app must be intuitive and easy
to use. If the users find the app
cumbersome to use and difficult to
understand they will use it less, or
not at all

Essential

U2 The user should not need to remem-
ber previous actions or information
in the app to use functionality.

If the users needs to remember a
lot of details from previous screens
they can get fatigued by using the
app, and may fail to use some of
functionality properly

High

U3 All buttons should perform an action
or give feedback to the user

Feedback is essential for user experi-
ence. Users tend to be confused by
buttons without feedback. They can
be unsure if they actually pressed it,
or it can be hard to understand what
it does.

High

U4 All features should be designed to be
intuitive enough to use without in-
structions, if this cannot be achieved,
functionality that teaches the user
how to use it should be provided.

How to use certain features may be
hard to understand when they use
the application for the first time. In-
stead of just trying everything until
they understand it, some sort of in-
structions should be provided.

Medium

M1 It should be possible to implement
new features without changing the
existing features.

Since PeopleUknow wants to con-
tinue building on the app, the ability
to easily create more functionality is
very important

High

M2 The login feature should be replace-
able with Feide-login without major
refactoring

The app is intended to be used in
school, and PeopleUknow want the
possibility for the app to be con-
nected with Feide in the future

Medium

P1 The application must work with An-
droid phones and iOS phones that
are younger than 5 years.

If students in a class are supposed
to use the app, it needs to work on
most phones, since teachers cannot
expect students to buy new phones
to get the app.

High

Table 5.6.: Non-functional requirements

5.4.2. Quality Attribute Scenarios

In the following tables we describe the non-functional requirements in context of Quality
Attribute Scenarios. These can be used later by PeopleUknow to evaluate whether the

51

system meets the non functional requirements.

Scenario - U1

Source of stimulus User.
Stimulus Learn to use a feature in the application.
Artifact Application.
Environment Application at runtime.
Response User uses the feature.
Response measure Is able to find and use the functionality within 5

minutes of learning.

Table 5.7.: Scenario - U1: User learning

Scenario - U2

Source of stimulus User.
Stimulus Uses functionality and navigates in the app.
Artifact Application.
Environment Application at runtime.
Response User is able to navigate to different features and

use the desired functionality in the app.
Response measure Is able to find and use the functionality without

asking for help, or going back to check previous
stages.

Table 5.8.: Scenario - U2: Intuitive usage.

Scenario - U3

Source of stimulus User.
Stimulus Uses functionality and navigates in the app.
Artifact Application.
Environment Application at runtime.
Response User is able to navigate to different features and

use the desired functionality in the app.
Response measure Is able to find and use the functionality without

asking for help, or going back to check previous
stages.

Table 5.9.: Scenario - U3: Feedback from interface.

52

Scenario - U4

Source of stimulus User.
Stimulus Uses tries new functionality.
Artifact Application.
Environment Application at runtime.
Response User is able to use the new functionality.
Response measure User is able to use the functionality on his/her

own, or by using help-button or something simi-
lar to understand it, within 5 minutes of learning.

Table 5.10.: Scenario - U4: Help when needed.

Scenario - M1

Source of stimulus Developer.
Stimulus Tries to create a new component.
Artifact Application.
Environment Application at design-time.
Response Developer adds new functionality.
Response measure New component can be added without creating

problems for the existing components.

Table 5.11.: Scenario - M1: modifiability of code.

Scenario - M2

Source of stimulus Developer.
Stimulus Tries to change the login-functionality to imple-

ment Feide.
Artifact Application.
Environment Application at design-time.
Response Login feature is replaced.
Response measure The login with email is replaced by Feide-login,

without affecting other features.

Table 5.12.: Scenario - M2: Possibility for integration with Feide.

53

Scenario - S1

Source of stimulus User, student.
Stimulus Tries to change the parings in the GetToKnow

feature.
Artifact Application.
Environment Application at runtime.
Response Access is denied.
Response measure User is unable to access the functionality.

Table 5.13.: Scenario - S1: Verification of data.

Scenario - S2

Source of stimulus User, student.
Stimulus Tries to see images from the scrapbook of another

class.
Artifact Application.
Environment Application at runtime.
Response Access is denied.
Response measure User only able to see posts from their own class.

Table 5.14.: Scenario - S2: Access control.

Scenario - P1

Source of stimulus User.
Stimulus Tries to install and use the application.
Artifact Application.
Environment Application at build-time, runtime.
Response Installing and launching is successful.
Response measure Less than 10% of users are unable to install or

use the application due to Operating System
specifications.

Table 5.15.: Scenario - P1: Compatibility with devices.

54

5.5. Estimation of Realization Effort for Use-Case model

In order to estimate the effort of developing the user stories, we played planning poker[48]
which can be seen in Figure 5.6. Each team member got a set of cards with numbers. Then
instead of saying the estimation value out loud, each player played with the numbered
cards face-down to the table. By using cards it avoid the cognitive bias, since the first
number that is spoken will set a precedent for the estimation of the user story. The
values should be approximately equal. In the case where the numbers of the cards are
very different, the group should discuss it further. When the values are approximately
equal, the estimation is an average of the card values.

Figure 5.6.: The Team Playing Planning Poker.

The estimation can be seen in Table 5.1,where the estimations are the story points.
Story points are arbitrary measure, this tells the team how hard each story is.

55

6. Quality Assurance

In this chapter we describe the programming environment, coding standard and code
review procedure.

6.1. Programming Language

As previously mentioned, the project uses the React Native framework. This is a
JavaScript framework. There is no programming required to use the backend side of
Firebase. Further details and rational behind the decisions are described in Section 7.4.

6.2. Programming Environment

While there does exist IDEs for React Native, the members of team were free to choose
the programming environment they were most comfortable with. Popular among the
group was Atom [3] and Sublime [43] with some addons. Facebook uses an extension of
Atom which is called Nuclide [9]. It is designed for React Native development and has
useful features.

6.3. Coding standard

Since the customer was probably going to improve upon our code after our project was
finished, it was important that the coding style we chose was consistent with customers
expectation and our individual expectations inside the team. In order to facilitate good
coding practices we decided early on common set of rules that all developers would follow
to ensure consistent style throughout the project.

Indentation All developers had to indent using only spaces. Each level of indentation
increase with two spaces.

Comments Code blocks with high complexity should be commented with an explanation
of the actions taken in that block.

ESDoc tags All classes and methods made by developers had to be tagged with the
appropriate ESDoc tags: Methods had to have the @param and @returns tags when
appropriate. Classes should have a high-level description of its purpose. Overridden
methods from the React Native framework were except from this rule and required no
ESDoc tags.

56

Variable and class naming convention All variable and class names should be written
in camel case. Variable and class names should describe their purpose.

6.4. Code review

In order to make sure the coding standard described in Section 6.3 was used, all changes
to the main branch on the Github repository had to go through code review. Code review
consisted of one developer who was not involved in the changes looking through the code
to make sure it met the coding standards.

The code also had to be tested to make sure it worked. Testing was done by compiling
the app and manually trying out the features changed or introduced. All changes that
made use of features specific to iOS or Android had to be tested on both an Android
and iOS device.

57

7. Technologies

In this chapter, we have described the different technologies and tools that we used for
the development of the project.

7.1. Version Control

We used the Github[16] service as version control system for our code
and documentation. Github allows users to create private repositories
that make use of the well-known version-control system Git to create
a full history of every change that has happened to the code over
time. We chose Github mostly because the customer was already
using the service to host what code they had before we started working on the project.
However we would have probably used Github if the choice was left to us; Github is very
easy to use and most of our team was already familiar with the service beforehand.

The version control procedure was handled with pull-requests. A pull-request allows a
developer to tell others about changes pushed to the repository. We organized features
in branches and when the feature was finished, we created a pull request. This allowed
us to review each others code and manage changes before they were accepted into the
application.

7.2. Management and Communication Tools

To manage the project and the communication in the group we used different tools such
as Google Drive, Trello, Facebook, and Slack. All of these tools will be described in this
section.

7.2.1. Google Drive

Google Drive[18] was used in order to manage and store our
materials such as figures, documents, and other files. The
file management system provides 15 GB cloud storage for
each user. Google Drive allows sharing of files and it could
be shared with other users such as our customer. It is also
widely used, and everyone in the development group had
used it so it came naturally to use Google Drive.

58

7.2.2. Trello

Trello[44] was used to manage our Kanban board. Trello
is an online project management tool that offers a simple
way to share and organize projects into Kanban-style boards.
People can register when they have started on a task, supply
comments and an event history is shared to the group. Using
Trello makes it easy for the development team to have an
overview of the development-process.

7.2.3. Facebook

Facebook[12] was used for communication between members of the
group and between our customer. We had 2 private groups on Face-
book. The first group was for our group where we were communicated
internally in the team. While the second group was for communicat-
ing with the customer. Facebook was used to keep track of events
with the customer, and for asking any quick, informal questions.

7.2.4. Slack

Slack[39] was also used for communication. This tool made
it possible for the project team to create channels to organize
the conversations within the group. Members were also able
to send direct messages to each other, which was private and
secure. Slack makes it possible for the users to see the important messages or information
such that they are not drowned by unimportant messages like on Facebook.

7.3. Documentation Tools

7.3.1. ShareLatex

In order to write the report, Sharelatex[37] was used. Sharelatex is an online LateX
editor. It allows the group to collaborate in real-time and it requires no installation. All
we needed was an account.

7.3.2. Google Docs

Google Docs[18] is web-based word processor. It allows for sharing of documents and
simultaneous editing. Internal documents such as summaries of meeting, planning,
sketches and various intermediate documents can easily be shared with the rest of the
group. It will allow for easily sharing documents with the customer.

59

7.3.3. ESDoc

The code was documented using ESDoc[8]. ESDoc is a tool for automatic generation
of documentation from documentation-tags for classes and methods in the code. The
documentation-tags can be read as-is in the code or the ESDoc tool can generate a series
of HTML documents that allow for easy viewing and navigation of documentation for
classes and methods.

7.4. Frameworks and Development Tools

7.4.1. Firebase

Firebase is a mobile platform containing a suite of tools
useful when building a mobile app[17]. Specifically Firebase
allows developers to set up a backend for their apps without
the hassle of writing a lot of code manually. Most features
provided by Firebase are ready to use out of the box and
can be configured for individual app needs.

Authentication Firebase supports user authentication
from a wide variaty of sources; Developers can allow users
to sign in to their apps using accounts from Google, Facebook, Twitter and others. The
developers can also configure anonymous sign-in, where users create accounts specific to
the Firebase project using email and password.

Real-time database The real-time database included in Firebase allows developers
to create a cloud-hosted NoSQL database that is suitable for apps without advanced
backend requirements. The database has no pre-defined structure and it is therefore easy
to add new data to it. When using the database with the official API it is possible for
apps to listen for database updates, this allows developers to create a highly interactive
app that automatically updates itself on database events.

The database can be configured with rules that allow developers to restrict the type
of data uploaded by the user. It is also possible to configure security rules that restrict
who can read and write certain parts of the database. These rules integrate with the
authentication feature allowing developers to restrict database access to certain users or
user-groups.

Storage Firebase includes built-in support for Google Cloud storage. This allows
developers to easily support download and upload of pictures, videos and documents
in their apps. It also integrates with security rules in the real-time database, meaning
developers can restrict access to certain files or directories on the cloud storage based on
authentication and/or database values.

60

7.4.2. React Native

React Native is a framework developed by Facebook[11]. It
facilitates cross-platform mobile app development by allow-
ing cross-platform JavaScript code to communicate with
native code for iOS and Android. This allows developers to
easily access platform specific features such as the camera
or the file system.

React components are written in an XML-like JavaScript extension called JSX. JSX
allows developers to use markup-like syntax for defining tree structures with attributes
and is supposed to help with readability and work efficiency. Since React transforms the
JSX code into JavaScript, developers may also write the components in plain JavaScript.

React Native does not require the user to recompile the app to see changes. During
development, the app is run on a Node.js server on the development machine and changes
can be updated in real-time in the app. The programming framework also requires less
code than an app written in Java and/or Swift. The disadvantage of using React Native
is that the project is relatively new. The first public release of React Native was early
2016 and at the start of development version 0.28 of React Native was used. Thus it is a
high chance that there are bugs in the framework itself. Furthermore, since it is a new
framework, there is a smaller community of app-developers using React Native compared
to regular Android/iOS development.

7.4.3. Drawio

Draw.io provides free tools for online diagram software for
making flowcharts, process diagrams, org charts, UML, ER
and network diagrams[7]. We used this tool to create most
of our diagrams such as our use case diagrams, process
diagrams etc.

61

8. System Architecture

In this chapter we describe the design of the system, and the architecture we implemented.
We have listed the most important Architectural drivers and patterns, as well as

architectural views. The views are based on the 4+1 view model, by Philippe Kruchten[23].
The views represent the same system, but from different view points to give a thorough
overview of the system.

8.1. Architectural Drivers

The larger software development projects are, the more the final result will be affected
by the system architecture. To make sure we chose the most appropriate architecture for
our system, we started by identifying the the elements that had greatest impact on the
architectural choices we made: the architectural drivers.

8.1.1. Quality Requirements

Maintainability and modifiability

Maintainability and modifiability was very important to the customer since they planned
to use the prototype we built as the base for a larger system. Since they would then need
to modify or add features it was important that the code we produced was organized so
that other developers easily could modify or add to our work.

When deciding on the architecture we also had to consider customer preferences: The
customer told us early that they had experience with React Native and Firebase, and
would prefer if we used these frameworks in our prototype.

Scalability

Even though the prototype we produced did not need to scale, the architecture we chose
had to have the ability to scale in case the prototype we produced eventually became a
real product. If we did not focus on scalability the customer might have had to make
major changes to the architecture before releasing it to the world.

62

8.1.2. Functional Constraints

Privacy of users

It was important that any information users submitted to the system was kept confidential,
it was also important that users were prevented from accessing information they were
not supposed to access.

Multi-platform

The customer wanted the prototype to work on both iOS and Android phones. It was
therefore necessary that the architecture supported integration with both these platforms.

8.1.3. Business Constraints

Time to market

Due to the short time-frame for the system, avoiding a very complex architecture, and
choosing frameworks that were relatively simple to learn and use was ideal.

No budget

Since the project had no budget, it was necessary to avoid frameworks, tools or services
that cost money while the prototype was in development. No restrictions were made for
using frameworks, tools or services that were free to use in development, but cost money
once they are used in production.

8.2. Architectural tactics

To fulfill the requirements we had decided on, we used several architectural tactics. This
sections show the tactics we used, and they quality attributes they are related to.

8.2.1. Modifiability

High cohesion, loose coupling

To achieve modifiability, we tried to increase the cohesion in our code. By making sure
all related code is together, and grouping code that contribute to the same functionality
together. We also tried to reduce the coupling, by making modules and component
as independent as possible. The components we made would ideally function without
requiring any knowledge of other components in the application. This gives us the
possibility of easily replacing a component with a new one. As long as the service the
component delivers is the same, the way it is done is irrelevant for the rest of the system.

63

8.2.2. Usability

Consistency

To make it easier for the users we tried to be consistent on colours and shapes. This way
users can recognize elements and make interaction with the application more easily.

Follow standards and conventions

Designing our application with respect to standards and conventions the usability will
increase. For instance the use of a back button that the users can recognize from other
apps helps the user experience.

System feedback

Most actions performed by users should trigger some type of feedback for the users,
e.g. when a button is pressed, it should move a little, or momentarily change colour, to
indicate it was pressed.

8.3. Architectural Pattern

After evaluating the architectural drivers we decided to use the patterns described in
this section.

8.3.1. Model View Controller

Model view controller is a well documented an widely used system architecture. It
consists of three parts: a model, a view and a controller. The model contains the data,
which in our case would be all the information on the app transferred from the database.
The controller contains all the logic of the application and interacts with the model.
Finally the view is the visual component

This data, or parts of it, is show to the user in the view. The view contains what the
users can see on their device, and is a representation of what can be found in the model.
For our application this could be the scrapbook view, and the distribution of students in
the GetToKnow feature.

The user, uses the controller, which is code that can be executed, by using buttons
or other functionality on the app. An example would be when a students adds a new
post to the scrapbook, or when a teacher changes the pairings in the GetToKnow feature.
These updates are then sent back to the model, which updates the view to reflect the
changes made by the controller.

8.3.2. Client-server

Our application also implements Client-Server architecture.
The apps running on mobile devices are the clients and the server is Firebase. Firebase

has predefined protocols for accessing information. When a mobile device sends a

64

Figure 8.1.: Diagram explaining the MVC pattern [46]
.

request to Firebase, the server will check that it has the proper credentials to access that
information. If the mobile device has the proper credentials, the will give it the data over
a secure connection. Firebase requires that all communication

We decided that a combination of these architectures would be ideal for our application.
It was also advantageous that most group members were already familiar with both MVC
and client-server.

8.4. Architectural Views

To be able to view the system from different perspectives we created views based on the
4+1 view model [22] (see Figure 8.2).

8.4.1. Architectural drift and architectural erosion

When designing a system architecture, it is very common to have changes during the
project. Architectural drift occurs when there is changes in the planned architecture.
Due to unforeseen events it may be ideal to change the planned architecture to some
extent. The new planned architecture has drifted away from the original plan.

Architectural erosion occurs when the architecture that is implemented differs from
the architecture that was planned. The developers may need to use certain hacks, or
poorly implement the architecture, which causes the system architecture to be different
than the intended architecture.

Because of these factors we made our diagrams high level, and avoided unnecessary

65

Figure 8.2.: Diagram of the 4+1 view model [22]

details as changes might have happened during the implementation phases of the project.
The diagrams we have made were create at a level of abstraction where we expect no
architectural drift to take place.

8.4.2. Logical View

The purpose of the logical view is to display the functionality the system provides to
the users, as well as help the developers implement the system. We chose to create a
class diagram, that shows the structure of the system, and relations between components.
We focused on including the most important important classes and methods, as this
diagram was supposed to show which classes are related and what the classes do. Details
and certain methods or fields may be changed during the project. Additional helper
classes might also be added, but the class diagram (Figure 8.3) should give an general
overview of the system, in addition to function as a blueprint for what the developers
will implement.

66

Figure 8.3.: Diagram showing the most important classes, fields and methods

67

8.4.3. Development View

The development view illustrates the system from the developers viewpoint. Our develop-
ment view includes a diagram displaying our main components, and a diagram explaining
the role of react native.

As mentioned earlier, we chose to use the react native framework. This allowed us to
write code for one application in JavaScript, instead of using swift/objective-c for iOS, and
java for Android. Below we have included a figure published by SmashingMagazine.com
explains the functionality of react native[40].

Figure 8.4.: Diagram explaining React Native functionality

The next diagram shows the main components of the system, and the structure of the
system concerning use of React native and Firebase.

68

Figure 8.5.: Diagram showing the main components of the system

8.4.4. Process View

The purpose of the process view is to show the dynamic aspects of the application, and
illustrate how the system works at runtime. This is done by illustrating user processes,
presented as activity diagrams.
Overview
To give an overview of the system we chose to include a diagram that shows naviga-
tion through the application, and the diagrams for the most essential activities in the
application.

69

Figure 8.6.: Diagram showing the navigation of the application

Notation and modeling
For the specific activities the notation we used was UML. In the activity diagrams black
circle represent the initial state, rounded rectangles represent actions, and diamonds
represent decisions, and encircled black circle represents the final state. The decisions
are purely yes/no, which means that only two results are possible. The red bars indicate
a fork/join. This implies that activities are optional. They can be done in parallel which
means the order they are completed in is irrelevant.

The activities we chose to model, were selected because they represent how the most
important functionality of the application is used. The activities we chose to model were:

• A teacher creating GetToKnow-pairs and selecting an exericse.

• A student viewing the current GetToKnow-pairs.

• A student posting on the scrapbook.

The first diagrams shows how users interact with the system regarding the GetToKnow
functionality, where the teacher creates new pairs that are displayed to the students. The
teacher can also select exercises that the students will do.

70

Figure 8.7.: The diagram shows the process of creating new week buddies and selecting
exercises

The next diagram shows the activity of a student viewing their new week buddy they

71

have been assigned to by the teacher.

Figure 8.8.: Diagram of viewing your week buddy

The final activity diagram shows the workflow of a student creating a post, and posting
on the scrapbook.

72

Figure 8.9.: Diagram of posting on scrapbook

8.4.5. Physical View

The physical view shows the physical deployment of servers, services, devices and inter-
actions between these in the system. For our system the most important part of the
physical view is the one related to Firebase. Since Firebase is a Google service we have
little knowledge of the physical architecture except for the fact that it runs on Google
servers, and that it makes use of Google cloud storage for storing media. [14] Since the
customer planned to make use of Feide and a web-applicaton at a later date we also
included that in our physical view.

73

Figure 8.10.: High-level physical architecture of our system. Parts of the physical archi-
tecture outside the scope of our prototype is marked in red.

8.5. Database structure

As described in Section 7.4.1 Firebase makes use of a NoSQL database. Unlike a normal
relational database which can be modeled as a graph, the NoSQL database of Firebase
must be modelled like a hierarchy. We organized our data in such a way that all class
related data was grouped first by type at the highest level of the hierarchy, and then by
either class or user depending on the type of data. Figure 8.11 shows the hierarchy we
used for our prototype. Accessing data in the database is then done in the same way as
objects are accessed in a file-system; Each level in the hierarchy is separated by a forward
dash. Accessing user-data in our database was then a case of accessing the object at
path /User/<user id>.

74

Figure 8.11.: Modelling of our database structure as a hierarchy: Names wrapped in
brackets represent variables in the hierarchy.

75

9. Software Security

In this chapter we describe the security aspects of the system.
Security was a big concern during the project as the users of the app could include

children. The app would also store sensitive information about users such as pictures,
names and activity data from app usage. To ensure that our app was built with proper
security it was important that we considered all known attack vectors, threat agents and
abuse cases that are relevant to the app and its back-end.

For analyzing the security requirements we used “7 Touchpoints of Secure Software“
by Gary McGraw [27]; specifically we did the touchpoints: Doing risk analysis at the
design and architecture level, creating abuse cases, and creating security requirements.
We also played Protection Poker [45] in order to prioritize which functional requirements
were most important in regards to security.

9.1. Threat Modelling

Threat Modelling is important to understand what are the assets we are protection, who
are the people we are and how to protect us against the attacker.

9.1.1. Threat Agents

First we tried to identify the different agents that wanted to attack our system. Those
agents could have different experience, motivation, and maybe no intention. The threat
agents are described in Table 9.1.

Attackers Description

Accidental Discovery Regular users accidentally discovers a security
flaw. It is not their intention to harm the system.

Automated malware Automated system that is designed to gather
sensitive information or exploit the system.

Motivated attacker:
Employees, competi-
tors, enemies, mali-
cious users

These attackers are motivated by an ulterior
motive that leads them to put in large amounts
of effort in order to exploit the system. These
threat agents are often experienced and know of
common ways to exploit a software system

Table 9.1.: Threat Agents

76

9.1.2. Architectural Risk Analysis

For the architectural risk analysis we mostly focused on the architectural choices made
in Chapter 8. Most of our concerns were on how Firebase secures the data it stores, this
is because the application itself does not provide any real security, and it is possible for
attackers to modify it to bypass any security measures. In order to analyse the security
in Firebase we used the categories identified in the STRIDE threat model [28] and tried
to identify what threats were relevant for each category. Table 9.2 shown the risks we
identified associated with the architecture

Risk Category

An attacker extracts data directly from Firebase Information disclosure

An attacker extracts stored media directly from
Firebase

Information disclosure

An attacker performs a brute-force attack di-
rectly on Firebase Authentication API

Spoofing identity

An attacker gains access to the administrator
panel on Firebase and modifies data

Tampering with data

An attacker performs unintended database re-
quests to modify data

Tampering with data

An attacker performs a denial-of-service attack
on Firebase

Denial of service

An attacker performs large amount of media
requests to increase bandwidth cost for customer

Denial of service

An attacker intercepts traffic between the appli-
cation and server to extract sensitive data

Information disclosure

Table 9.2.: Architecture security risks: Each risk is associated with the relevant category
in STRIDE

9.1.3. Abuse Cases

To see what an attacker can do to our system, we created an abuse case diagram, which
is shown in Figure 9.1. The diagram shows the application, student, teacher and attacker.
The attacker can be some of the threat agents from Table 9.1. The student and the
teacher are using the application, while the attacker are threaten the system by exploiting
the vulnerabilities of the system. The application can also be a threat for the user, since
it can store data insecurely and have insecure authorization such that the attacker might
steal login credentials [32].

Because of limited of spaces we could not include everything in the abuse case. For
instance we are aware of that users can also be a threat for the system.

77

Figure 9.1.: Abuse Case

9.2. Protection Poker

Protection Poker is a gamified method to perform security assessments on software
systems [45]. This game is almost as the same as planning poker. The main difference is
that planning poker is used for time estimation, while protection poker is used for the
assessment on the software.

When we were about to start this game, we got help from two security experts from
SiNTEF, Anne Tøndal and Martin Gilje. They were helping and facilitating us to
understand how to use this in our project development.

9.2.1. Assess Security Risk

Business Assets

The first thing we needed to do was to identify the important assets for this project. This
helped us to understand what a hacker might want to steal. We had a group discussion
on what was the important assets by going through all the information assets, software
assets, physical assets and services the system had. The result from this are listed under:

• User information (username, hashed passwords, metadata)

78

• User-uploaded media (pictures, video, texts)

• Sourcecode

• Database

• User credentials

• Firebase

• Youtube

• Exercises

• Class data

Value

It is not only enough to identify the business assets, but we also needed to give them a
value. It was important to know which one of them we should be prioritizing since we
did not have infinity amount of time and resources. The first thing we needed to do then
was to identify which assets was the most important and the least important so we could
compare them with other assets.

From the discussion in the group about which one of the assets were most important,
we manage to identified that Firebase was the most important assets(Table 9.3) and
Exercises was the least important asset. Firebase got the value of 100, which is the
highest value. Exercises got the value of 10, which is the lowest but it is still important
asset, but lesser important when comparing to the other assets(more are described under).

It was now time to give value to the other assets too. This were performed by using
the protection poker cards we got from SiNTEF. The cards had values: <10, 20, 30,
40, 50, 60, 70, 80 and 100. All in the group needed first to choose one of the cards,
then everyone needed to show the cards at the same time. If the cards showed different
numbers, then the group had to discuss why they chose that value. It continues until the
group had gotten a common assessment of the asset.

79

Asset Value

Firebase 100
User-uploaded media 80

Database 80
User credentials 70
User information 60

Sourcecode 30
Youtube 30
Exercises <10

Table 9.3.: Protection Poker Score Sheet- Assets

• Firebase: consists of the authentication, pictures, users, and database. This is the
important and critical assets. If an attacker can get access to Firebase, she/he can
basically delete everything or just steal, and modify the application.

• User-uploaded media: is all about what the users are uploading which are posts,
pictures, movie etc. This is data, have also high value since it involves pictures and
video which can be used for identifying users. But this has not higher value than
Firebase because it is a subset of Firebase. If the attacker manages to get access to
Firebase, the hacker has then taken over the user-upload media too.

• Database: contains data relating to the users, and the class structure. If an
attacker takes over the database he/she can delete every user, retrieve all the
information in the database, or insert something malicious etc. This is also a subset
of Firebase. When an attacker gets access to the database, the attacker has not
got everything in Firebase, only the data in the database.

• User Credentials: are emails and password, which gives access to users. It is
important to ensure that hackers do not get access to users’ credentials. When
we compare user credentials with Firebase, Firebase is more critical to protect
than user credentials. Imagine an attacker gets user credentials. The only thing
the user can do is all the regularly user can do (such as student privilege and
teacher privilege). But if the hacker gets into Firebase, the hacker gets all the user
credentials, which can do bigger harms.

• User Information: is user’s name, statistic over the activities, week-buddy etc.
but we had decided to not include information on birthday because this has no
function for users in this application. We discuss also that user information will
not disclosure anything that can be helpful for the attacker to use in order to figure
out password etc. If an attacker really wants a user’s information, the hacker could
just stalk the victim on Facebook or at school to get more. But still, we need to
protect the user information because of the law in Norway, ”Lov om Behandling av
Personopplysninger” from §13. Information Security [25].

80

• Sourcecode: is the fundamental component of the program. Leaking the source
code is not a problem since it can be easily found. One thing the attacker can do
is to use this code to impersonate the application, therefore it is still an asset we
need to consider.

• Youtube: asset is the PeopleUknow’s account on Youtube. All their exercises will
be posted from that account and we need therefore to consider this. It will be
difficult for an attacker to get this since we assume that the security of Youtube is
good. Youtube is used by billions of people [50], they should therefore be able to
protect their users by having a good security system.

• Exercise: is video exercises posted by PeoplUKnow Youtube account on Youtube.
We see this asset as not important since the assets are already out there on the
internet, and if someone wants those exercises it is really easy for them to find it
on Youtube.

Exposure Value

Exposure value describes in which degree the requirements that are going to be imple-
mented, will affect on how exposures these assets will be. We discussed in the group
how the requirements could influence the exposure. Also, we needed to take into account
what aspect of the system asset could be breached and if the attackers could get full
access, read only or it could affect the availability of the assets. To find the exposure
values we did the same as we did for the asset values; each chose a protection poker card,
the card got presented for the group, the value got discussed and re-voted if needed.

Figure 9.2 shows the calibration of asset and exposure. It was important to start with
highest and lowest, to be able to prioritise between different requirements and to be
able to spread the numbers assigned. 100 is given to the requirement that have highest
exposure for this project, and similarly <10 was given to the requirement that had low
exposure for this project. According to [45], this was to avoid to rate every requirement
as high risk, which would make it difficult to prioritize within the project.

Requirement F2, had the lowest exposure value and F1 got the highest exposure value.
More detailed on how we found the exposure value for each in Table 9.4 can be found in
the Appendix C.

81

Figure 9.2.: Calibration of Asset and Exposure

Calculate Risk

Risk is calculated by summing up the value of assets that could be exploited multiply
with exposure value.

Risk = (AssetV alue) ∗ (ExposureV alue) (9.1)

The Table 9.4 shows the risk which is the overall score1. exposure value is from
playing protection poker, asset value is summed up from all asset that are involved in
requirement(which can be found in the Appendix C and the overall score is the risk.

Table 9.4.: Protection Score Sheet

Requirement Exposure Value Asset Value Overall Score

F1 100 340 34000
F2 <10 280 2800
F3 50 360 18000
F4 60 190 1140
F5 80 290 23200
F6 30 350 10500
F7 60 350 21000
F8 50 250 12500
F9 30 250 7500
F10 30 350 10500
F11 50 350 17500
F12 40 350 14000
F13 <10 110 1100

1For more details see the table in the Appendix C

82

Compare Risk

From the Table 9.4 we could identify which requirements have higher priority in terms
of security than others. In order to better group the requirements based on risk, we
distributed the requirements evenly into three groups as shown in Table 9.5, extra care
should be taken when implementing the requirements with high or medium priority.

Priority Requirements

High F1, F5, F7, F3

Medium F11, F12, F8, F10

Low F6, F9, F2, F4, F13

Table 9.5.: Requirements grouped by security risk

9.2.2. Security requirements

Using the threats identified in Section 9.1 we created security requirements. The security
requirements we identified are listed in Table 9.6

S1 All data must be verified before being sent to the database, users should
only be allowed to view data they have been given access to.

S2 All images or documents stored by the prototype must only be accessible
to the appropriate persons

S3 User passwords should be hashed using up-to-date hashing algorithms
and not stored in raw format

S4 Communication between application and external services should be
encrypted

S5 It must not be possible to insert data into the application that disrupts
the experience for other users

Table 9.6.: Security requirements

Steps taken to mitigate security risk

Since we use Firebase for database, storage and authentication we could rely on their
platform for mitigating many of the security risks. According to Firebase they use
best-practices for authentication tokens, [15] when we also consider that Firebase is a
Google product we assume that the authentication on Firebase is secure.

For encryption between application and Firebase we assume that the connection is
secure: Firebase uses Secure Socket Layer with strong keys which make it unfeasible for
attackers to eavesdrop on connections. [15]

The only remaining security risk we felt was important to mitigate was preventing
users from reading or writing database objects they do not have access to. In order to

83

ensure correct access rights in the database, we used Firebase’s powerful security rules
feature: Each level of hierarchy in the database have rules that define which users are
allowed read or write to them. [15] Our implementation of these rules are documented in
Section 14.4.1.

84

10. Testing

In this chapter we describe the various testing methodologies used and considered in the
development of the application.

10.1. Overview of Testing

We made a plan to cover most aspects of the development process. Our focus was on
verifying that we made the right product, i.e. the product that the customer wanted.
This was because the prototype we were to deliver was not meant for selling directly
to customers, but used for demonstration and refining the design of a later solution.
We therefore put more effort into acceptance and user testing than unit testing and
performance testing. Table 10.1 describes the main aspects of our test plan.

Test Stakeholders Time of Description
Carried
Out

involved testing

Functional
testing

Developers Every
sprint

Test the functionality of each new component.
Tests should be conducted as soon as possible,
be testing how the component works in the sim-
ulator, preferably during the same sprint the
components were developed.

Code review Developers Every
sprint

Evaluate the code we have just implemented, and
look for errors or problems.

Usability
Testing

Developers and
end users

Week 39
and 42

First test will be conducted using paper proto-
types and other simple user tests, to test nav-
igation between the features of the app. Test
should be conducted as early as possible to help
create a design with high usability. Second test
will be conducted on a group of students, and
will be conducted later, to get input on a more
complete version of the app.

Acceptance
Testing

Developers and
product owner

At the
end of
every
sprint

The acceptance test is conducted with the prod-
uct owner present, to evaluate the final applica-
tion.

Table 10.1.: Overall Test Plan

85

10.2. Unit Testing

Unit testing is method of testing where small parts of the code are tested to evaluate if
they work they way they should and are fit for use.

Use of unit testing in our project

Many software projects use automated unit tests to test small parts of the system, and
evaluate the coherence between input and output. We decided against unit tests for our
project for a number of reasons. First, none of our group members had experience with
unit testing using Javascript and React. Second, unit testing becomes impractical due to
the unique way our project is structured: Since we use Firebase as a backend, we would
have to write all of our unit-tests on frontend code. Almost all of our functions on the
frontend run asynchronously, both for network calls and setting the internal state of the
app.

We therefore reasoned that unit testing would be extremely time-consuming and
therefore not worthwhile. Instead we opted for running functional testing to make sure
our solution worked on most use-cases.

10.3. Functional Testing

Functional testing is a process of testing the functionality of the different system compo-
nents. These tests ensures that the features works as intended from the user’s perspective
and satisfy the functional requirements.

The functional testing in our project was done by performing manual tests of every
functionality of the application in a simulator. These tests made it possible to identify
errors and faults in the code by comparing expected test results with actual test results.

86

Functional Test 1

ID FT1
Description Tries to log in
Date 27.09.16.
Tester Ivar
Preconditions App must be running, password and email

correspond, and exist in the database
Tasks 1. Type in email

2. Type in password
3. Press the log in button
4. Confirm that you are redirected to home-
screen

Result When the log in button is pressed the user is
redirected to the home screen.

Table 10.2.: A functional test from sprint 1. The tests are listed in Appendix D.1

10.4. Code Review

Code review is the process of detecting mistakes through systematic examination of the
code with a fellow programmer.

We conducted our code reviews mostly by reviewing pull requests. In our version
control system, GitHub, we created a branch for each functional requirement. When
a function is finished and ready to be merged into the main branch, a pull request is
created. A fellow programmer in the group is then given the job to review and approve
the new code before being merged.

10.5. Usability Testing

Usability testing is a technique where you test your product on end users to evaluate
the usability of your product. This is a valuable technique because it gives you direct
feedback from the intended end users that can be used to evaluate and improve the
product.

In our project we focused on formative, and summative usability testing.

10.5.1. Prototyping

The quote ”just enough prototyping”, by Gillian Crampton Smith, was kept in mind
while we made our prototypes. We made most our prototypes on paper, by drawing our
intended layout on a print of an Iphone 5 sketch. In addition we used an online tool
called Marvel [26]. This is a web application that allows for rapid prototyping of user
interfaces on mobile devices. The different screens are designed using images and pressing
on different parts of the screen can be configured to navigate between images. This

87

makes it possible to take advantage of implicit knowledge in the users, and recognition
from previous experiences with mobile application, since buttons and colours can be
more realistic and similar to other apps, compared to hand drawn images. However,
prototyping with Marvel, was more time-consuming, and for most tasks paper-prototypes
was sufficient.

10.5.2. Formative

Formative usability testing should be done in the early design face. It is sufficient to use
paper prototypes, or something similar. This is done to get insight from end users, which
can be used when improving the design.

Horizontal Prototype

The goal of the first test was to evaluate the navigation and layout of the different features
in the application. Since the goal was not to test in depth functionality of one feature, it
was sufficient and time-effective to use paper prototype. The Figure 10.5.2 shows one of
the prototype we used for testing (more can be found in Appendix D.2).

Figure 10.1.: Paper Prototype: Application

88

Vertical Prototype

As we began implementing the different functionalities, e.g. GetToKnow we created
more detailed tests. The goal of these tests was to evaluate the usability of the different
functionality, and determine if users would struggle to use the application the way it
was intended. For these tests the test subjects were only given access to some of the
functionality in the app, but a prototype with more details and in depth functionality.

Participants

For formative testing we recruited three students from secondary upper high school in
order to test the system. They are the end users of the system PeopleUknow want us to
develop. Their age are between 16-19 years old.

We also manage to recruit 3 adults and 6 students to test the system.

Method of Formative Testing

In the first weeks we did formative testing. The goal of the test was to get feedback that
could help us decide how to improve the design and increase the usability. For this testing
we tested two groups of participants. Since it is the students and teachers that are the
important one for the system, it was created two usability tests. Before the testing, it
was important to create test plans so we focused on the important things of the system
and that we could get as much feedback from the participants. The test plans that were
created can be found in the Appendix D.3. The test plans are based on our user stories.

When all test plans were in place, it was time to recruit participants. It was also
important to inform the participants about the purpose of the test, to make sure they
understand that we’re testing the system and not the users. The participants got also
explained what the system was and he/she should not be worried about doing anything
wrong. The participants were ask perform some tasks and explain why they were choosing
to do things in that way. A test manager was observing the participants and took notes.

When the interaction was complete, the participants was ask to evaluate the system.
This was performed by asking the participants about their impressions of the system,
what was difficult and what could been improved.

Scenarios

The participants were asked to do some tasks. These tasks were simple and based on our
user stories. The tasks we asked them to do is listed below:

• Log in with email and password

• View the exercise

• Overview of the application

• View the partner

89

• View the scrapbook

• Comment on the posts

• Sharing on the scrapbook

• Search on specific theme

Figure 10.2.: User Testing

90

Feedback from Students

The list below shows the feedback from the students. More detailed feedback can be
found in the Appendix D.3.3.

• The login page was easy to understand. It looked like a regular login page.

• Could maybe include a progress-bar or something in the exercise view?

• Scrapbook Icon looks like a chat box. This looks like where you can chat.

• Make the comment box more clear.

• The menu bar which is right up in the corner seems like a place where the search
function is.

10.5.3. Summative

Summative usability testing is done in the later stages of the development phase, using
a more complete version of the product. The results from this test can be percentage
of tasks that were completed, and time per task. If the design is changed to improve
the usability, a new test can be conducted, and the new results can be compared to the
results from summative usability test.

System Usability Scale

In order to measure the usability of a system, System Usability Scale (SUS) can be used.
SUS measure how well a system works and how good it is received by the users. It
consists of ten-item scale which gives a global view of subjective assessments of usability
and the users have five option to answer. After a user have tested a system, the user will
get the SUS schema to evaluate the system. In Appendix D.5 shows the SUS schema
that was used for this project.

Participants

In summative testing we managed to recruit 6 students and 3 adults by help from
PeopleUknow. The age of the students was in between 15-16. We used the adults as
teachers for the testing.

Method of Summative Testing

For this test we tested on a group of students. This was to evaluate the near-complete
design under realistic condition. The test was performed by first informing everyone that
we were testing the system and not them. After that we had a person that observed the
participants (as in the formative testing).

91

In order to see if we met the requirement of what the system are supposed to do, we
tested the system on a group of student. After testing we needed to collect information
from the students, which we did with the System Usability Scale (SUS).

Scenarios

As same for summative, the participants were asked to do some tasks we had prepared
for them. Below is a description of the different tasks they were to complete:

• Login with email and (wrong and correct) password

• View the post

• Comment on a post

• Create a new post with styling

• Find your week buddy

• View your exercises with your week buddy

• Take a new profile picture

• Log out

Feedback

From this test we got a lot of positive feedback. Most of them said it was a good
application, and some of them said they would have used it. Feedback on what we could
improve with the application is summarize under1.

• Do something with they keyboard, since the keyboard hide the password field it
was difficult to type in password.

• Give the menu button a name or description.

• Wants something to happen when clicking the pictures.

• Should be possible to see chosen tags for the post.

• Language conflict between English and Norwegian.

• Menu button should be place where it seems natural becuase it hided the status
bar for Iphone.

1More feedback can be found in Appendix D

92

After the users tested the system we gave them a SUS scheme so they could evaluate
the system.

Figure 10.3.: I think that I would like to use this system frequently

Figure 10.4.: I found the system unnecessarily complex

Figure 10.5.: I would imagine that most people would learn to use this system very
quickly

More figures can be found in the Appendix D.3.4.

SUS score

The SUS schema can be used to generate a simple numeric score between 0-100. Although
this result is simple and one dimensional, it is useful because it is easy to compare to

93

other systems, or different versions of the same system.
Calculating the score

After the test participants have answered the ten questions, the sum of the answers is
combined and divided by number of participants, to get the average answer for each
question. For odd number questions, the score is average value minus one. For even
numbered questions the score is five minus the average score. The final scores for each
question are then summed, and multiplied by 2.5.

Our score
According to research on evaluating sus scores, [36] [4], the average sus score is about 68.
Our sus score was 79.15 which according to the research correlates to the adjectives good
and excellent.

10.6. Acceptance Testing

Acceptance testing was done with the customer at the end of each sprint. The acceptance
test was done as a part of the sprint review. We reviewed the the features that was
implemented and got feedback from the customer. We got useful feedback in terms of
design and some things that could be done differently to make it more intuitive.

94

11. First Scrum-sprint

11.1. Sprint planning

At the start of the sprint we met with the customer to agree on what would be done during
the sprint. We first presented the functional requirements we had identified and agreed
on what we would try to accomplish during the whole project, after some discussion
we agreed to focus on some core features of the app, specifically the student pairing,
scrapbook and exercise features. Since it was so early in the project we wanted to focus
on learning the development tools and getting the fundamental features implemented
correctly. As such we agreed to spend most of our development efforts on setting up the
login.

During this sprint we would also prepare a paper-prototype for use as part of the
formative user-testing, the details of this are described in Chapter 10

11.2. Sprint goals

Based on the sprint planning described in Section 11.1 we decided on the following goals:

• Setting up the report structure

• Get a working understanding of React Native

• Create prototypes for user-testing

• Get a working understanding of Firebase

• Add the ability to log into the app

• Properly configure the backend connection on the app

• Implement a home screen

11.3. Sprint Backlog

We decided to limit ourselves to a relative small number of requirements because we were
very inexperienced with the framework and tools at that time.

We also expected to perform user testing in the next sprint. Therefore, we also gave
ourselves time to properly plan this during this sprint. For our backlog on Trello, it
looked something like Table 11.1.

95

Name Estimated Actual

Create login page 20 18

Integrate login with Firebase backend 50 40

Create prototypes for user-testing 20 30

Create home screen 40 31

Configure backend connection 20 32

Table 11.1.: Sprint 1 backlog: Estimation and actual effort are in hours.

11.4. Result from the Sprint

11.4.1. Login functionality

The backend implementation with Firebase was done by implementing the official Firebase
API provided by the developers. Configuring the backend communication was then done
by initializing the Firebase API with the id of our Firebase project. We configured default
users in Firebase which we used for testing during development. We used design sketches
from the customer to implement the view for the login screen. We also made sure to
add error messages when the login failed, this was done by integrating a notification
framework into our app.

Figure 11.1.: Resulting login screen from sprint 1

96

11.4.2. Home screen

Once the login functionality was in place, we implemented a basic home screen that
would serve as a base for navigating. The home screen includes a profile picture and the
username, however since we did not have the ability to upload images to the database,
the profile picture on this screen is a placeholder. The screen also includes placeholder
tabs for showing how many posts that have been shared on the scrapbook, but since the
scrapbook hasn’t been made yet they are also placeholders.

We also added a non functional navigation bar to the top of the home screen, according
to the design sketches.

Figure 11.2.: Resulting home screen from sprint 1

11.5. Customer Feedback

At the end of sprint 1, the customer got to see what had been done so far. The customer
was happy with the result from this phase. We got feedback from the customer on
some styling choices made on the home screen: They wanted more spacing between the
top of the home screen and the top of the app, more space between options on some
aspect-ratios and that the font-size could be smaller.

Sidebar menu The customer also wanted us to swap the position of the icon and the
text in the navigation bar. Pressing the icon would then lead to a sidebar with additional
options being displayed. We agreed to implement this during a later phase.

97

11.6. Sprint Retrospective

What went well?

• We were able to complete all tasks we planned to do. Tasks were completed
unexpectedly quick. Firebase was easy to work with, and most coding was done
relatively quickly.

• Distribution of workload was good, and everyone in the group was able to contribute.

• Good standard for working in parallel, new branches etc.

• No big merge conflict issues.

What went wrong?

• We should have kept everyone better updated on what each person was doing.

• Some of us had problems with setting up the development environment for Android
and React Native.

• Using Facebook to organize the project group was too chaotic.

• We had to reschedule meetings with PeopleUknow and Webstep due to misunder-
standings about meeting times.

What can be done to improve?

• Start using Slack. Take all serious discussions there. Keep Facebook for quick
questions and notifications.

• Be clear about when and where meetings will take place when talking to the
customer.

• Do digital standups each day on Slack: Each person makes a post each morning
about what they have done and will do today.

11.7. Sprint Burndown Chart

Figure 11.3 shown the burndown chart for this sprint. Effort remaining each day was
calculated by estimating how much work was left on each task and summing the values.

98

Figure 11.3.: Burndown chart for sprint 1

99

12. Second Scrum-sprint

12.1. Sprint planning

We met with the customer to decide what we should focus on during the second sprint:
Since we got most of the fundamental work done during the first sprint, we decided to
focus on getting more actual usable functionality into our prototype; We agreed that we
should firstly focus on the scrapbook, since this is one of the tasks the customer was
most excited about us implementing. When talking about the scrapbook feature we were
informed by the customer that they wanted the ability to upload video to the scrapbook.
We were sceptical about our ability to add working video upload to the prototype, so we
agreed that we would only make it possible to upload still images to the scrapbook.

We also agreed that we would implement the list of exercises that would be viewable
by the teachers, this was because we did not think we had time to implement the student
pairing feature this sprint, but would have time to implement a smaller part of it which
was the exercise view. We would then integrate the exercise view with the pairing feature
in the next sprint.

We were also contacted by people from SINTEF about using protection poker as part
of the security investigation of our project. We agreed to perform this task as well during
this sprint.

12.2. Sprint goals

Based on the sprint planning described in Section 12.1 we decided on the following goals:

• Play protection poker

• Perform user-testing

• Make a list of exercises that is searchable

• Make a functional class scrapbook

• Have the ability to add images to scrapbook posts

12.3. Sprint Backlog

Our backlog became such as the Table 12.1.

100

Name Estimated Actual

Create component for viewing scrapbook 30 35

Create component for posting on scrapbook 40 54

Learn Firebase access control rules 10 9

Perform user testing 10 14

Create exercise view 30 30

Make exercises searchable 20 45

Create database structure for scrapbook and exercises 15 20

Create component for single scrapbook post 20 27

Table 12.1.: Sprint 2 backlog: Estimation and actual effort are in hours.

12.4. Result form the Sprint

12.4.1. Scrapbook

The scrapbook component was implemented successfully after some initial problems with
getting uploading to work with the Firebase API; We spent a lot of our development
time trying to fix this issue, and eventually had to contact Firebase directly and report
our issue. It turns out that we had encountered an unknown bug in the Firebase API,
and were able to create a workaround until the Firebase team could release a patch.
The ”show comments” button is a placeholder that would be implemented in the next
sprint.

101

Figure 12.1.: The class scrapbook view that we implemented, showing off pictures, text
and custom styling of posts

Figure 12.2.: Component for posting on the class scrapbook

102

12.4.2. Exercises

Exercise list The list of exercises was implemented with a search functionality that
updated the list for each letter written/erased, searching both titles and tags associated
with each exercise.

Figure 12.3.: Component for listing of exercises, titles and tags are missing from the view
because we changed the database at the time of taking this picture. The
pictures are placeholders.

Exercise view The exercise view turned out as planned with working search, video
support, and tagging of exercises. We had some issues with getting videos to properly
work on Android but other than that the implementation of this feature went smoothly.
The product owner had expressed that she had plans for how the view were supposed
to look, but the sketches were not yet done, so there was little focus on the design this
sprint.

103

Figure 12.4.: Component for showing exercise description. The video is currently a
placeholder, but can be replaced by a youtube video.

12.5. Customer Feedback

During the sprint review we presented what we had worked on so far to the customer.
They were happy with the progress so far, but had some additional feedback to some of
the features we had implemented:

Exercise filtering
The customer also wanted searching on exercise category and not only with a searchbar,
the teacher should be able to filter on topic, exercise length and group size. We agreed
that we could modify the exercise to accommodate this in the next sprint.

Scrapbook
Scrapbook looked good according the customer. They also asked us if it would be possible
for students to upload videos. We told them that making working video upload and
viewing is a very hard task and while possible, would still be too much work to perform
during this project.

Exercise view
The customer suggested that the exercises could be group by type so the list could be
better structured, this would also allow for minimizing groups so that the list could
become shorter. Since this was not a core feature we did not make any promise of

104

implementing this change, but would look at it if we had extra time.

12.6. Sprint Retrospective

What went well?

• Using slack was a good idea. It was easier to communicate and we got more
structure on the communication.

• Merging the different branches

• Meeting with Webstep went well. They gave us 4 hours of their time in each week
to help us with things if we needed.They wanted to help and guide us through the
development phase.

• Development went generally smoothly, we were good at helping each other out on
difficult problems.

• Manage to start on the security aspect by playing protection planning.

What went wrong?

• Used too much time on upload and download of pictures. The reason was that there
was a bug in the Firebase API. We tried a lot of things we should have skipped.

• We had some overlap in some task, which we use a lot of time on. Mostly relating
to the Firebase API bug.

• There was some sickness in the group, this impacted the development during this
phase.

What can be done to improve?

• Can’t do anything about people getting sick, we have to respond better to unex-
pected events such as this.

• To avoid overlap we can create a technical channel on slack, where we discuss
technical issues and things, so that we do not do overlapping work.

• Next time we should have the demo ready the day before we meet the customer.

12.7. Sprint Burndown Chart

Figure 12.5 shown the burndown chart for this sprint. Effort remaining each day was
calculated by estimating how much work was left on each task and summing the values.

105

Figure 12.5.: Burndown chart for sprint 2

106

13. Third Scrum-sprint

13.1. Sprint Planning

During our sprint review with the customer we agreed to improve the filtering of the
exercise list. We also agreed to start working on the student pairing which includes
viewing and creating such pairs that were part of the GetToKnow feature. We were not
sure if we had time to implement the GetToKnow feature fully so we agreed to focus
on the the user experience first, and improve the backend in the next sprint if we didn’t
have time to finish it.

In the previous iteration of the app the profile picture on the home screen was a static
placeholder. The customer decided that they wanted the ability to change this picture
from inside the app in our prototype, which we agreed that we could implement this
during the sprint. The customer wanted the ability to crop the profile images before
uploading to the database, we were unsure if we could do that, so we promised to look
into it and implement if it didn’t take too long.

Finally the customer wanted a side menu that included notification and additional
options. We concluded that this was a good place to put the change profile picture option,
so we included this feature in our sprint backlog as well.

13.2. Sprint Goals

Based on the sprint planning described in Section 13.1 we decided on the following goals:

• Fill in the exercise function from document from the customer

• Implement the ability to view and create student pairs

• Add more filtering options to the exercise view

• Implement the ability to change profile picture in the app

• Implement a functional side menu which appears when tapping the icon on the
navigation bar

This was almost our last sprint, so the focus here was to complete as much as we could.
The report was always our main priority since it was important to document underway,
through our development phase. We needed also to implement the other main feature for
the application.

107

13.3. Sprint Backlog

The backlog for sprint 3 became like the Table 13.1.

Name Estimated Actual

View profile image and user name on home screen 4 5

Comment on scrapbook posts 8 16

Home screen tag statistics 5 7

Teacher pairs setup 50 30

Student pair viewing 20 11

Implement changing profile picture 30 37

Implement expandable side menu 10 13

Table 13.1.: Sprint 3’s backlog: Estimation and actual effort are in hours.

13.4. Result from the Sprint

During this sprint we worked primarily on the features which allow the teacher to create
pairs of students, assigning them to exercises and showing the pairs to students. We also
updated previous components at the request of the customer. The statistics on the home
screen had previously been placeholders.

13.4.1. GetToKnow

Viewing of pairs The implementation of the GetToKnow feature was divided into two
parts: the student view and the teacher view. The student view can be seen in Figure
13.4.1. The teacher view was implemented as planned and assigns the students at the
request of the teacher. The teacher view can be seen in Figure 13.4.1.

108

Figure 13.1.: Component for showing which pair the student is assigned to.

Figure 13.2.: Component for showing the current set of pairs and the ability to generate
new pairs. This view is only accessible for the teacher.

109

Teacher Creation of Pairs The teacher can pair students into groups of two or three
if there are an odd number of students. The teacher is given a preview of the pairs before
approving the changes and after approving the pair layout they are required to select the
exercises to choose from. The teacher can make use of the search-feature implemented
in the last sprint to find fitting exercises for the relevant class. Currently the pairs are
always the same, since we did not have time to implement an algorithm for deciding the
best pair for each student.

13.4.2. Side Menu and Changing Profile Picture

The sidebar menu was implemented as a collapsable element that was shown when the
user pressed the icon in the top-right corner of the navigation bar located at the top of
the screen. The side menu includes the user’s profile picture and name, some dummy
tabs for notifications, and buttons for logout and changing profile picture. When the
button for changing profile picture is pressed, the user is taken to a view that allows
them to take a picture using their camera or choosing one from the library. The user is
also given the option to crop their picture before uploading it to the database.

Figure 13.3.: Sidebar menu that is displayed when user presses the icon in the upper-right
corner

110

Figure 13.4.: Component showing the user a preview of their new profile picture, including
button for selecting a new one and saving.

13.4.3. Scrapbook Comments

We managed to implement commenting on posts. Users can now write comments on
posts that are instantly viewable by other users due to making use of the real-time
database features of Firebase. Post comments are at first hidden to preserve space,
however a button on each post allows users to show/hide the comment section on each
post individually. The scrapbook with comments can be seen in Figure 13.4.3.

111

Figure 13.5.: An example post with the comment section visible

13.4.4. Home Screen

Home screen does now display a stats list that shows the basic tag statistics. The numbers
next to the tags in the stats list shows the number of posts the tag is associated with.
The statistics gets updated in real-time when a new post is uploaded.

We also managed to get rid of the static placeholder for the profile picture and user
name. The image data and user information for the profile picture and user name is now
fetched from Firebase.

112

Figure 13.6.: Home screen showing scrapbook statistics and user information

13.4.5. Exercise List

After feedback on the list of exercises from last sprint we started working on a filtering
system for the exercises. Together with the customer we decided that subject, themes,
group sizing and estimated exercise time was good filters. We removed the tags previously
added, and substituted them with, subjects, themes, grouping and time. A filtering
system was then implemented to work alongside the search functionality implemented in
the last sprint. It was created so that you can choose several filters from each category
and exercises that matches all filters are shown in the list, while all along being searchable.

13.5. Customer Feedback

During the sprint review we got feedback from the customer relating the what was
implemented during this phase. We agreed to discuss implementing some of the feedback
in the next phase.

Exercise

The customer wanted that the student to get notifications when a teacher has added an
exercise. But the questions such as when does this notification disappears was brought
also up. They wanted also to make the view for both students and teachers different.
The teachers should be able to plan and schedule exercises and make favorite buttons for

113

the exercises. The customer said that we should look at the planning image they posted
on Facebook.

Scrapbook

The customer wanted the partner of the user to approve a post before the user posts
the post. It should be possible to choose a category for the posts, which is already
implemented but the customer wanted a set of standard tags. From this set of standard
tags, the user can only choose those tags. One important thing that should be possible
is to have a report button. When someone posts something inappropriate, other users
should be able to report this with a report button. Or else, the most of the features in
the scrapbook the customer liked.

13.6. Sprint Retrospective

At the end of the sprint we met internally in our group to summarize our progress during
this phase. The meeting was shorter than our previous retrospect meetings, and there
were less points raised than previously. We see this as an indication that we were getting
into a good flow, and there was therefore less friction internally in the team.

What went well?

• We have gained enough knowledge about the development tools and frameworks to
spend less time with unexpected issues than earlier sprints

• Had no issues communicating with customer like earlier.

• Using existing packages in our code where possible was a good idea.

What went wrong?

• Some merges were done without testing iOS support first, creating platform-specific
bugs

• Some spelling mistakes and unorthodox coding styles were included in pull-requests

What can be done to improve?

• Make sure an iOS developer has reviewed the pull request before merging

• Developers should take a closer look at their code before submitting for pull request,
making it easier to do code reviews before merging.

114

13.6.1. Sprint Burndown Chart

Figure 13.7 shown the burndown chart for this sprint. Effort remaining each day was
calculated by estimating how much work was left on each task and summing the values.

Figure 13.7.: Burndown chart for sprint 3

115

14. Fourth Scrum-sprint

14.1. Sprint Planning

We met with the customer to discuss what to work on during the final sprint. We had
now finished most of the functionality we planned to implement, so it was important
that we agreed on the final tasks that we would complete before ending development.
We agreed that we would prioritize writing the documentation and looking over the code
we had written earlier to make sure there were no remaining bugs or badly written code.
There were also a few miscellaneous features still left to implement that we agreed with
the customer that we would try to work on; The most important of these were support
for multiple classes, algorithm for creating student pairs and handling of inappropriate
scrapbook posts. We also had to perform usability testing with the prototype, and finalize
the security of the application.

14.2. Sprint Goals

Based on the sprint planning described in Section 14.1 we decided on the following goals:

• Write documentation

• Refactor code where needed

• Fix any remaining bugs

• Add support for user to have multiple classes

• Prevent access to all exercises for students

• Add report button

• Add hiding of scrapbook posts

• Finalize report as much as possible

• Usability testing

• Finalize app security

• Create algorithm for optimizing pair creation

116

14.3. Sprint Backlog

We made the sprint backlog together with the customer at the sprint meeting, since this
was the last sprint, it was very important to us and the customer that we agreed on what
tasks we needed to finish before delivering the product to them. The tasks that were
chosen are closely related to the sprint goals since the tasks are relatively small.

We also chose to spend time finalizing the security of the app, making sure that the
security requirements specified in Section 9 are implemented to a satisfactory degree.The
backlog for sprint 4 is shown in Figure 14.1.

Name Estimated Actual

Write customer documentation 10 7

Write ESdoc tags for all methods and classes 10 14

Add support for multiple classes per user 40 47

Add report button 2 2

Add hide post functionality 20 11

Write Firebase security rules 15 14

Prevent exercise list access for students 5 6

Design algorithm for optimizing pair creation 20 16

Implement algorithm for optimizing pair creation 40 46

Table 14.1.: Sprint 4’s backlog: Estimation and actual effort are in hours.

14.4. Result from the Sprint

14.4.1. Implementing security rules

We finished implementing security rules for our Firebase backend during this sprint. Our
access rules were based around class membership: Read access was restricted to students
and teachers that had been given explicit access to that class.

Write rules depended on the type of object that were to be written; Exercises had
no read access since they should only be changeable by an administrator. Scrapbook
post write access however was granted to all students and teachers of that class, however
they were designed to not allow users to overwrite posts they did not themselves create.
Listing 14.1 shows an example of the implementation of Firebase security rules, which
limits the access to Scrapbook posts.

Listing 14.1: Example Firebase security rules

” Scrapbooks ” : {
” $ c l a s s ” : {

” pos t s ” : {
” $post ” : {

” . wr i t e ” : ” (! data . e x i s t s () &&
(root . c h i l d (’ c l a s s ’) . c h i l d ($ c l a s s)

117

. c h i l d (’ teacher ’) . c h i l d (auth . uid) . e x i s t s ()
| | root . c h i l d (’ c l a s s ’) . c h i l d ($ c l a s s)

. c h i l d (’ student ’) . c h i l d (auth . uid) . e x i s t s ()))
| | auth . uid === data . c h i l d (’ owner ’) . va l ()”

}
} ,
” . read ” : ” root . c h i l d (’ c l a s s ’) . c h i l d ($ c l a s s)

. c h i l d (’ teacher ’) . c h i l d (auth . uid) . e x i s t s ()
| | root . c h i l d (’ c l a s s ’) . c h i l d ($ c l a s s)

. c h i l d (’ student ’) . c h i l d (auth . uid) . e x i s t s ()”}

14.4.2. Exercises

We made improvements to the exercise screen according to customer feedback. The
new exercise list has a wider range of details to each exercise, each exercise now include
keywords in the form of hashtags that give a quick summary of the exercise.

The Exercise View has been completely reworked with a new design as the product
owner had provided sketches. A dummy rating system were also implemented as the
customer wanted it for demonstration purposes. Figure 14.1 shows the new filter added
in sprint 4 are visible, currently filtering exercises suitable for Norwegian class.

118

Figure 14.1.: New filters

14.4.3. GetToKnow Algorithm

In the previous sprint we did not implement any smart algorithm for distributing students
into pairs. During this sprint we created an algorithm that tries to create pairs that
have occurred few times earlier: The database keeps a record of previous groups, and the
algorithm uses this to find the best pairs for each student. The algorithm is relatively
simple and works by taking students without a pairs one by one from a list, then finding
the student in the class that the first student has been on groups with the least; It repeats
this until every student has a partner. If there is an odd number of students it will simply
put that student on the group that was generated last.

119

14.4.4. Report and Hide Button

We implemented a simple report and hide button in the scrapbook. The report button is
visible to only students while the hide button is visible to only teachers.

Report button (figure 14.2) allows students to report inappropriate behaviour to the
teacher. Reported posts will be highlighted red in the teacher view.

Figure 14.2.: Report button added in sprint 4 is visible on the Scrapbook.

Hide Button from figure 14.3 allows teachers to hide inappropriate posts. A post
marked hidden is highlighted in blue and is invisible to students. Teachers can also
unmark a post as reported by double tapping the hide button.

120

Figure 14.3.: Hide post button added in sprint 4 is visible on the Scrapbook.

14.4.5. Support for Multiple Classes

In earlier iterations of the prototype, there was only possible to log in to a single static
class, even though the database supports multiple classes. We added multiple classes to
the prototype by giving the user a choice of class after logging in based on what classes
they are permitted to access in the database. If a user only has access to a single class,
the option to choose is removed and they are sent directly to the home screen. This can
be seen in figure 14.4.

121

Figure 14.4.: User is prompted to pick the class they want to log in to.

14.5. Customer Feedback

We met with the customer after the sprint four ended to report back what we had worked
on: we managed to finish everything we had agreed to do except for the functionality
that allows teachers to remove absent students and change the who is paired together.
While the customer had hoped that we would finish all goals specified during the sprint,
they were overall happy with the changes we had made during the sprint. During the
meeting, we got some feedback on the whole application. Because of this was the last
sprint, we did not have time to add and modify the application from the feedback we got
from the customer.

It was also understandable that our customer had more feedback since they are a
startup, startup tends to have a lot of ideas and they are in a phase where they come up

122

with more ideas and input. All of the feedback we got from them was written down for
the future, such that they can continue to improve the application. Some of the feedback
is listed under:

Preventing Access to Exercise View for Students

We solved the problem with students having access to the full exercise list by removing
the exercise button for students from the home screen. However the customer thought it
would be better if the button was still there, but only showed the exercises assigned to
the student by the teacher.

Reporting Posts

The report button we implemented allowed the students to report an inappropriate post,
and the teacher could then hide the post from students. The post will then show up in
the teacher’s post and mark as hidden. But our customer wanted instead of this solutions,
be able to collect all the reported post in one own view. This was because to have an
overview so the teacher was aware that in this view contains only the reported posts.

Other Things

Other things we got feedback on was the algorithms that generate a group of three if the
class contains an odd number of students. The customer wanted to make sure that a
person that have been in a group of three should be next time in a group of two.They
wanted also that the connection between pairs should be visible when one of them posted
something on the scrapbook.

The student should also send an approval request to the partner when posting something
such as exercises done together before posting on Scrapbook. The teacher should be
able to modify pairs, students should be able to report to the teacher that they have
completed the exercises, and teacher should be able to planning feature.

14.6. Sprint Retrospective

What went well?

• We managed to get more users for testing than expected

• Got started on development work early

• Did not introduce any bugs in the new features (That we know of)

• Manage to finish most of the requirements

• Got good feedback from the customer, and they were happy

123

What went Wrong?

• Didn’t have time to finish one of the tasks in the backlog

• We had a bug in the application while doing usability testing, which broke the
upload of pictures.

• Should be working more on the documentation since there still a lot to do.

What can be done to Improve?

• Have a backup plan under the usability testing

• Try to estimate tasks better to avoid dropped tasks

• Assign each member on focusing on the different tasks which are left

• Complete writing the documentation/ report

14.6.1. Sprint Burndown Chart

Figure 14.5 shown the burndown chart for this sprint. Effort remaining each day was
calculated by estimating how much work was left on each task and summing the values.

Figure 14.5.: Burndown chart for sprint 4

124

15. The Final Product

This chapter presents the finished product after all sprints we have been through. The
chapter is organized in a way such that it presents each main feature, including pictures
and the requirements. The requirements are from the table 5.1 in the chapter requirement
analysis, and they have been shortened in order to make it readable.

15.1. Login

The Login view from Figure 15.1 is the first view in the application that appears first,
when open PeopleUKnow application. The view consist of the logo of PeopleUKnow,
email field, password field, and a log in button. When the user enters the password or
the email wrong, a notification will pop up such as in Figure 15.2.

Figure 15.1.: Final Login View

125

Figure 15.2.: Final Login View with ”Sign-in failed” error

Completed Requirements

• F1 - Log in with email and password

• F2 - Notification when not successfully logged in

15.2. Home

The user will be presented with the home screen after the login view. From Figure 15.3,
the user can see the profile picture and the name, and the user gets also an overview
over the application; GetToKnow, Exercise, and Scrapbook. The user can also see class
activities/ points on how many exercise the class has manage to complete together.

126

Figure 15.3.: Final Home View

The sidebar from Figure 15.4, gives also the user an overview of the application. It
contains: the profile picture, week buddy, exercise, scrapbook, logout and change profile
picture button.

127

Figure 15.4.: Final Side Menu View

Completed Requirements

• F13 - Easy overview of the app features

15.3. GetToKnow

When the user press on the GetToKnow button from the Home view the user gets the
view GetToKnow. This view shows the users partner (in the student view, Figure 15.5).
The view display also the exercise button so the user can see the exercise the teacher has
assigned to the group. For the teachers view (Figure 15.6), they can see the whole class
and they can generate a new class with the generate class button.

128

Figure 15.5.: Final GetToKnow Student View

Figure 15.6.: Final GetToKnow Teacher View

Completed Requirements

• F6 - View weekbuddy

We manage to partly finish the requirement F7, which was to ”Group students into

129

pair and able to select who is attending and modify the pairs before my students can see
the pairings”. Some of the requirement F7 was not completed such as the teacher should
be able to select who is attending and modifying of pairs.

15.4. Exercise

A user can choose Exercise feature from the Home view by selecting this button. Then
depends on if the user is a student or a teacher the user will get different view. With the
teacher’s view, he/she can search on different exercise, and they will then get listed. When
a user clicking on the picture, the user gets presented with a different view; description
of the exercise.

Figure 15.7.: Exercise View for Students

130

Figure 15.8.: Exercise View for Teachers

131

Figure 15.9.: Exercise View description

Completed Requirements

• F8 - View all the exercises which can be selected

• F9 - View Exercises assigned by the teacher

15.5. Scrapbook

The last feature provide the users with a Scrapbook. This is the class scrapbook which
contains pictures and text posted by classmates from that specific class. A user can
comment on the post by writing in the comment box. The user can also create a new
post by pressing the ”nytt innlegg” button. Then the user will get a new view, where he/
she can write something, then choose styling, add tags and a picture, and then post.

132

Figure 15.10.: Final Scrapbook

Figure 15.11.: Create Post in Scrapbook

If a post is inappropriate, a student can report the picture by pushing the report
button in the scrapbook view shown in the Figure 15.10. Then a teacher can hide the
post, with the hide function.

133

Completed Requirements

• F3 - View picture and text on the class scrapbook

• F4 - Comment on post on the Scrapbook

• F5 - Post pictures and text, and choose styling

• F10 - Search on the scrapbook on text and post-related data

134

16. Evaluation

In this chapter we describe our reflection on this project development. We will discuss
group dynamics, what went well, what could be improved and further work.

16.1. Group Dynamics

This section describes our group dynamics such as what went well and what could have
been done differently. The Figure 16.1 shows the group and our customers.

Figure 16.1.: The Customer and the Project Group

135

16.1.1. What Went Well

• Before we started the planning phase, we discussed what roles we should have and
how many was necessary. Everyone was able to choose roles they were interested
in, and each team member was able to work on something they wanted to. The
only role we had no choice in was team leader, which was predetermined. Even
though we had specific roles, we delegated responsibility on tasks that were too
large to handle alone, this meant that everyone got to try out roles they were not
directly responsible for.

• The group was good at helping each other and if there were problems we felt it was
easy to ask each other for help. Since everyone had different levels of experience
with coding it was important that everyone felt comfortable asking others for help.
We felt we saved a lot of time by not hesitating to help each other out.

• Our meetings with the customer and within the group were effective. Maybe the
first time it took a lot of time, but this was the first time we all met and a lot of
things needed to be clear and therefore it took much time. But we learned from
this and made templates for meeting and planned for each meeting on what to
discuss and what to talk about on the meeting.

• The choice of agile development proved to be a good choice; Since we worked
closely with a customer on changing requirements it was very important that we
communicated regularly and efficiently during all phases of the project. If we had
chosen a method like waterfall where everything is done in rigid phases, we would
not have been able to work as closely with the customer throughout the project.

16.1.2. What Could be Improved

A group project is never completely perfect. It can always be improved. In our group
there were things that could have been done differently:

• Communication tools; we should have used slack in the beginning because we
started out to use Facebook. This made us used to used it to communicate with
each other, while slack was introduced later. Slack was a great tool that we could
have been using more because it was easy to go back and find the information
which was said.

• The group uses a lot of time on meetings, maybe we should send one person from
the group instead of the whole group. Instead of being in the meeting, they could
have continue working on the project, and maybe have a meeting within the group
where the group leader or scrum master updated the rest of the group.

• Booking of rooms should have been done earlier. We manage to book rooms for
eight weeks, but some of the room we got were not the bests ones. Since some of
them had few electrical socket, which was a problem when we all needed electricity
to our computers.

136

16.2. What We have Learned

From this project, we got to learn a lot of different things not only about technologies
but different methods and working with groups. We also learned from each other. Even
though we all study computer science, we all have difference experience and different
backgrounds and different qualities.

Cross-platform app development

None of us had any real experience with cross-platform app development at the start of
the project, and got a lot of real experience with this by using React Native. If we had
opted for developing the app natively on iOS and Android we would effectively have had
to do over twice the amount of work for the same result. We also believe the customer
will greatly benefit from this choice in the future; If they want to improve on our product
and bring it to market quickly they will benefit from the decreased amount of work
cross-platform app development brings.

Working with a Real Customer

While we have taken courses earlier that simulated working with a customer; We had
never worked with a real one before. We quickly learned that working with a real
customer with a different professional background had its challenges but also brought a
lot of benefits. We learned that making use of the customer’s expertise can be greatly
beneficial to the outcome of the project, as they might have knowledge relevant to the
project we do not.

When working with a real customer we also learned that it is vital that both the team
and the customer have the same expectations of what is produced. We learned that
differences in technical experience can make expectations differ between parties involved
in the project, and it is therefore vital that these differences are removed before any real
work can be started.

The importance of planning and coordination of work

Working in a team of six people we quickly learned it was important to plan ahead and
make sure everyone knew what they were supposed to do. We experienced that when we
didn’t plan work to a sufficient degree we had more disagreements and problems than
when we were careful with planning. We also learned that when work actually began
it was important to keep each other up to date on what was worked on, even when not
working on the same thing; This is because it is often possible to reuse work done on one
feature in others. When we didn’t coordinate properly during work we often ended up
doing twice the amount of work and having to scrap some of it.

137

16.3. What the Future Customer-Driven course Student
should know about the course

Get to know your team-members immediately We waited until after the first customer
meeting before we had an internal meeting with only the team members. If we were to
do this again we would have met internally before the first customer meeting so that we
all agreed on what we wanted to get out of this course, and thus be better prepared to
discuss our project goals during the customer meeting.

Transfer experience between team members early Each team member had different
levels of experience with software development and all had qualification the others did
not. Instead of transferring skills when needed in an unorganized fashion, we should have
identified who had important experience, and had them transfer this experience to the
other team members early in the project. This could lead to less friction later in the
project due to different skill-levels, and overall increase the effectiveness of the team.

16.4. Feedback on the Customer Driven course TDT4290

• The course was very interesting because it gave us experience with working with a
real customer.

• Our supervisor was really helpful and gave us good feedback on our report and
made sure that we were on the right track.

• Many of the mandatory presentations were interesting and relevant to the course.

• The course could have done a better job on keeping groups up to date with the
latest changes or notifications. The website that was used was not an efficient way
of distributing updates. We were often not notified of changes to the course until
after the weekly supervisor meeting.

• There could have been more information about the course given out when it started:
We thought that we would be given a better introduction to the course on the first
day, the first customer meeting came on too suddenly since we had barely had time
to meet those we would be working with.

• There was a lot of confusion at the start of the project since the compendium was not
updated until a few weeks after the course had started. Since the old compendium
contained conflicting information with the new one, it caused some confusion
internally that impacted project negatively. In the future the new compendium
should be available when the course starts.

138

16.5. Further Work

During our project we chose to focus on the core-functionality of the app. Since the
customer is still in the early phases of development, they still have many ideas that they
want to add to the prototype we made. In this section we have detailed some of the
features that we either didn’t have time to do, or were brought up but never made it to
the product backlog.

Feide integration Since the customer wants to eventually sell their product to schools,
integration with the Feide database was a feature that the customer felt was very
important. Feide integration could simplify registration of students by retrieving student
lists directly from Feide and allowing students and teachers to log in to the app using
their Feide account. It could also be possible to retrieve useful data from Feide or other
data-stored associated with Feide, for instance automatic detection of absent students in
the class.

More teacher control over pairing process Due to conflicts between members of a class
it could be undesirable to pair certain students. It could also be good for specific students
to be paired together if the teacher thinks they could benefit from doing exercises together.
The prototype we made only pairs students based on how often they have been in pairs
earlier, and the teacher cannot override the choice made by the app. Implementing
functionality that allows the teacher to override the pair choices and to create better
pairings for that specific class could make the app more useful.

Handling of absent students In the prototype we made there is no handling of students
that are absent from the class. When a student is absent it can mean that one student
is left without someone to work with on exercises. Instead of having teachers manually
resolve this problem it could be possible for the app to register which students are absent,
and take the appropriate measures to make sure no student is left without a partner.

Creating long-term exercise plans In the prototype we made, each class can only have
a single set of exercises active at any time; This could be problematic for teachers as
they cannot plan new exercises without overwriting the old ones. In the future it could
be possible for teachers to assign certain exercises to specific time-slots during the week,
allowing teachers to plan ahead to much higher degree.

Pair-related scrapbook post The scrapbook is a place where students are supposed
to share experiences together. Currently each scrapbook post is only bound to a single
student, however it would be convenient for students to tag their posts with who else in
the class took part in the making of the post. This would also require a system where
students approve being tagged in a post, so that a student cannot be tagged in a post
without consent.

139

Searching on the scrapbook The scrapbook currently works in much the same way
as a normal feed: Posts are listed in chronological order and finding an old post can
therefore be difficult. It could be convenient for users to have the ability to search for
specific text or metadata to find old posts more easily.

Lunch date The ability for students to sign up for a lunch date with other students
was discussed early in the project but was never added to any sprint. This feature would
allow students to be assigned someone to spend their lunch break with automatically.

16.6. Conclusion

Working on a real software development project with PeopleUknow has been a learning
experience. On one side, it was exciting and interesting, but on the other, it was also
stressfull and timeconsuming. None of the members on our team had worked on a project
as big as this before, but we enjoyed it and felt that developing a software system is
far more motivating when a real customer is involved. The goal was to create a mobile
application prototype that could function as, or be extended to work as an MVP for
PeopleUknow. After our final acceptance test we agreed that even though there is always
room for improvement, the project was a success.

140

141

A. Appendices

A.1. Pre-Study

Figure A.1.: Evaluation Criteria

142

A.2. Risk Tables

Risk id 1

Activity All
Risk factor Members of the group may get sick, or are not showing up
Impact M: This can reduce the quality of the product
Probability M: It is easy to get sick when other is sick
Strategy and action Avoid: Each member has to take good care of themselves.

Be clear about how important that everyone is showing up.
Everyone need to inform/alert group member why they didn’t
show up

Responsibility Project Manager

Table A.1.: Risk 1

Risk id 2

Activity All
Risk Factor Things/materials get stolen
Impact M: Impact on the group member’s productivity
Probability L: This can happen but we all know how to watch our stuff
Strategy and Action Avoid: Don’t put your things everywhere, take good care of

them, remember to take backup
Responsibility Each group member

Table A.2.: Risk 2

Risk id 3

Activity All
Risk Factor Conflicts in the group
Impact M: Can reduce the efficiency of the group
Probability H: Since we have different experience, knowledge and some can

have strong opinions
Strategy and Action Avoid: Be open, discuss the problem, see the problem from dif-

ferent perspective, set a deadline for when to end the discussion,
and if it is necessary get some assistance from supervisor

Responsibility Project manager

Table A.3.: Risk 3

143

Risk id 4

Activity Report and planning
Risk Factor Loss of data on Google Drive or Sharelatex
Impact H: Have to rewrite report, permanent loss of documents
Probability L: since Google drive and sharelatex are used by many people,

they have to manage to deliver their services
Strategy and Action Avoid: Backup data locally
Responsibility Report manager

Table A.4.: Risk 4

Risk id 5

Activity Planning and development
Risk Factor Unable to find work place
Impact L: Need to work from home. Reduces the communication in

the group.
Probability M: Many students are early with booking rooms
Strategy and Action Avoid: Book rooms in advance
Responsibility Project manager

Table A.5.: Risk 5

Risk id 6

Activity Product development
Risk Factor Underestimated the time to complete tasks
Impact H: Some features have to be dropped and/or team have to work

overtime
Probability M
Strategy and Action Avoid: Add slack to tasks in planning phase so we have a buffer

in case of underestimation
Responsibility Project manager

Table A.6.: Risk 6

144

Risk id 7

Activity Development of the product
Risk Factor Unforeseen technical issues
Impact H: Code has to be rewritten
Probability M: Since we are working with many different technologies
Strategy and Action Reduce: Make sure developers have a good understanding of

the technology in relation to the use-cases
Responsibility System architecture

Table A.7.: Risk 7

Risk id 8

Activity All
Risk Factor Communication problems
Impact M: Impact on the productivity to the group and the quality of

the product
Probability M: We communicate with each other every time we meet, so

it’s possible that this can happen
Strategy and Action Avoid: Be clear when communicating, ask questions if you don’t

understand, go through the task together to ensure everyone
understand

Responsibility Project manager

Table A.8.: Risk 8

Risk id 9

Activity Developement and report
Risk Factor Tool risk: When using a new too
Impact M: Can take a big amount of time because we need to under-

stand how the tool is working
Probability M: We use many tools for this project, but some of them we

are familiar with
Strategy and Action Avoid: Try to use the tools that we understand. If it is necessary

to use other tools, try to ask someone or google it
Responsibility Project manager

Table A.9.: Risk 9

145

Risk id 10

Activity All
Risk Factor Lack of knowledge
Impact H: Impact on the performance and the quality of the product
Probability M: We have enough knowledge to take this course, but we may

need knowledge about the customers product and technologies
they are using.

Strategy and Action Avoid: Learn more on that specific subject Reduce: Work on
the topic the member have knowledge about.

Responsibility The person with the most knowledge in that area.

Table A.10.: Risk 10

Risk id 11

Activity All
Risk Factor Wrong choice(s) have/has been made in the middle of the

process
Impact M: Impact on the time
Probability M: We all have some experience with taking choice etc. but

sometimes we don’t have enough knowledge to do the right
decision

Strategy and Action Reduce: Go through all the choice the group have and assess
which one is better of Accept: yes, the group has made some
wrong choices, but then moves on and learn from it. If necessary
start from the beginning

Responsibility

Table A.11.: Risk 11

Risk id 12

Activity All
Risk Factor The customer unavailable
Impact H: Impact on the quality of the product.
Probability H: Our customer is busy with alot of stuff, and sometimes the

customer is gone for a business trip
Strategy and Action Avoid: schedule meeting with the customer.
Responsibility Customer Relationship Manager

Table A.12.: Risk 12

146

Risk id 13

Activity All
Risk Factor A project member drops the course.
Impact H: Loss of productivity
Probability L: This is a mandatory course for 4th years student
Strategy and Action Avoid:Make sure everyone is happy with project progress, con-

flicts are resolved quickly and notify early if a member wants
to drop the course.

Responsibility Project Manager

Table A.13.: Risk 13

Risk id 14

Activity All
Risk Factor Misunderstanding between the group and the customer
Impact H: Design/code something the customer did not want.
Probability H: Customer have a different background than us and maybe

wants other features
Strategy and Action Avoid: Set up regularly meetings with the customer and agree

on the desgin
Responsibility Customer relationship manager

captionRisk 14

Risk id 15

Activity All
Risk Factor Low motivation
Impact M: Impact on the quality of the product
Probability M: sometimes the low motivation can suddenly kicks in, we are

all human
Strategy and Action Avoid: Include everyone in the team weekly updates and meet-

ing, assign members with tasks. Members should be honest if
they are lacking of motivation.

Responsibility Project manager

Table A.14.: Risk 15

147

A.3. Use Case

Use Case # 2

Application PeopleUKnow App
Name View scrapbook
Requirements F3
Description The user wants to view post from other student in the class.
Primary Actors Students
Preconditions • The user is logged in

• The user has a class
Trigger The user wants to see what has happened in his/her class on the scrapbook.
Basic flow • The user is presented with a menu bar.

• The user navigates to the scrapbook.
• The user views the scrapbook
• The user swipe and scroll down/Up on the Scrapbook

Alternative
Post conditions The user has viewed the scrapbook.

Table A.15.: Use case 2

Figure A.2.: Use Case Diagram 2: View Scrapbook

148

Use Case # 3

Application PeopleUKnow App
Name Comment on Post
Requirements F4
Description The user wants to comment on post made by his/her classmate on Scrapbook
Primary Actors Students
Preconditions • The user is logged in

• The user has a class
• There exists some post in the scrapbook

Trigger The user has seen something interesting she/he wants to comment on.
Basic flow • The user see a post made by a classmate

• The user write in the comment box
• The user see his/her comment

Alternative
Post conditions The user has comment on the post.

Table A.16.: Use case 3

Figure A.3.: Use Case Diagram 3: Comment on Post

149

Use Case # 5

Application PeopleUKnow App
Name Viewing Pairs
Requirements F6
Description The student wants to view which pair he/she has been assigned by the teacher
Primary Actors Students
Preconditions • The user is logged in

• The user has a class
Trigger The user has been assigned a partner.
Basic flow • The user choose the “GetToKnow” function from the menu bar

• The user is presented with all the connection of pairs in class
• The user see her/his partner(s)

Alternative
Post conditions The user view his/her partner(s)

Table A.17.: Use case 5

Figure A.4.: Use Case Diagram 5: View the GetToKnow pairs

150

Use Case # 7

Application PeopleUKnow App
Name Teacher Views and Choose Exercises
Requirements F8
Description The user wants to view all the exercises that he/she is able to select for the

student pairs.
Primary Actors Teachers
Preconditions • The user is logged in

• The user has a class
Trigger
Basic flow • The user choose “exercise” in the menu bar

• The user is presented with different type of categories
• The user choose to view all
• The user scroll down to see all the exercise

Alternative
Post conditions The user can view all the exercises.

Table A.18.: Use case 7

Figure A.5.: Use Case Diagram 7: Teacher Views and Choose Exercises

151

Use Case # 9

Application PeopleUKnow App
Name Search on Post-related Data
Requirements F10
Description The user wants to find a post related to a category by searching on

post-related data.
Primary Actors Students, Teachers
Preconditions • The user is logged in

• There has been posted something on the scrapbook
Trigger The users wants to check a theme on the scrapbook
Basic flow • The user navigates to “Scrapbook” from the menu bar

• The user is presented with the post on the scrapbook
• The user choosing the search function
• The user enter word(s) in the search field
• The user is presented post related to that search

Alternative
Post conditions The user has manage to search on a category on the scrapbook

Table A.19.: Use case 9

Figure A.6.: Use Case Diagram 9: Search on Post-related Data

152

Use Case # 10

Application PeopleUKnow App
Name Sign Up for Lunch-date
Requirements F11
Description The user wants to sign up for a lunch-date with another

student.
Primary Actors Students
Preconditions • The user is logged in

• The user has a class
Trigger The user wants to eat with another classmate
Basic flow • The user choose “lunch-date” from the menu bar

• The user schedule when the user wants to eat
• The user is presented with the preferred time for the user

Alternative
Post conditions The user has successfully been signed up for a lunch-date

Table A.20.: Use case 10

Figure A.7.: Use Case Diagram 2: Sign Up for Lunch-date

153

Use Case # 11

Application PeopleUKnow App
Name Paired Up for Lunch-date
Requirements F12
Description The user gets an notification when the student gets a pair for lunch-date and

can view the lunch-partner.
Primary Actors Students
Preconditions • The user is logged in

• The user has signed up for lunch-date
• Another user has signed up for lunch-date

Trigger
Basic flow • The user gets a notification from the application

• The user opens up the notification
• The is presented with a lunch-partner

Alternative
Post conditions The user has been notified when the user got a lunch-date and the user can

see with who.

Table A.21.: Use case 11

Figure A.8.: Use Case Diagram 11: Paired for Lunch-date

154

Use Case # 12

Application PeopleUKnow App
Name Overview of Application Features
Requirements F13
Description The user wants to get an overview over all the features the application has and

be able to open the pages for the features.
Primary Actors Students, Teachers and Parents
Preconditions The user is logged in
Trigger The user wants to get to know the application.
Basic flow • The user is presented with the menu bar

• The user push each button on the bar
• The user gets to the next page for the feature/button

Alternative
Post conditions The user has got an overview over the whole application and got into each

features

Table A.22.: Use case 12

Figure A.9.: Use Case Diagram 12: Overview of the Application

155

B. Planning

B.1. Meeting templates

B.1.1. Meeting within the Development Team

1.Approval of agenda

2.Approval of minutes of meeting from last advisor meeting

3.Comments to the minutes from last customer meeting or other meetings

4.Approval of the status report, which may be structured as follows:

4.1 Summary

4.2 Work done in this period Status of the documents that are being created

Meetings Other activities

4.3 Problems { what is interfering with the progress or taking resources?

Problems are often risks that have taken effect.

4.4 Planning of work for the next period Meetings Activities

4.5 Other

5.Review/approval of attached phase documents

6.Other issues are listed here...

7.Other issues

B.1.2. Daily Stands-ups

Done last time:

...

Going to do today:

...

B.1.3. Customer Meeting

- Show what has been done

- Discuss goals

- Customer feedback

- Agree on features for next increment

- Plan next meeting

156

B.1.4. Supervisor Meeting

- Review report

- Questions

- (Demo of product)

B.1.5. Weekly Report

- Deliver report so far

- What had been done?

- What we should do?

- Questions about the report for supervisor for next meeting?

- Questions about the course for supervisor for next meeting?

157

C. Software Security

C.1. Protection Poker

158

Feature Exposure Value Assets Asset value Overall score
(AV + EV)

F1 100 User info
Credentials
Firebase
kildekode
database

340 34000

F2 <10 User credentials
Database
Firebase
Kildekode

280 2800

F3 50 Bilde/post
User info
Firebase
Kildekode
Database
Exercise

360 18000

F4 60 Bilde / Post
Db
kildekode

190 11400

F5 - 80 Bilder/ Post
Db
YOutube
User credentials
kildekode

290 23200

F6 30 Bruker info
Database
Firebase
Bilder
Kildekode

350 10500

F7 60 Bruker info
Database
Firebase
Bilde
Kildekode

350 21000

F8 50 Exercise
Youtube
Database
Firebase
Kildekode

250 12500

F9 30 Exercise
Youtube

250 7500

Database
Firebase
kildekode

F10 30 Bilde/post
user info
Database
Firebase
kildekode

350 10500

F11 50 Bruker info
bilder
database
firebase
kildekode

350 17500

F12 40 Bruker info
bilder
database
firebase
kildekode

350 14000

F13 <10 Bilder/post
Kildekode

110 1100

D. Testing

D.1. Functional Testing

D.1.1. Functional Testing, sprint 1

Functional Test 1

ID FT1
Description Tries to log in
Date 27.09.16.
Tester Ivar
Preconditions App must be running, password and email

correspond, and exist in the database
Tasks 1. Type in email

2. Type in password
3. press the log in button
4. confirm that you are redirected to home-screen

Result When the log in button is pressed the user is
redirected to the home screen.

Table D.1.: Functional Test 1

161

Functional Test 2

ID FT2
Description Validate the possibility to navigate to compo-

nents from home screen
Date 29.09.16.
Tester Ivar
Preconditions App must be running and a user must be logged

in on the home screen
Tasks 1. Press the exercises button

2. Validate that app shows the exercise view
3. press the back button
4. confirm that you are redirected to home-screen
5. Press the getToKnow button
6. Validate that app shows the getToKnow view
7. press the back button
8. confirm that you are redirected to home-screen
9. Press the scrapbook button
10. Validate that app shows the scrapbook view
11. press the back button
12. confirm that you are redirected to home-
screen

Result It is possible to navigate back and forth between
the home screen and the different functionality

Table D.2.: Functional Test 2

162

D.1.2. Functional Testing, sprint 2

Functional Test 3

ID F2.1
Description Tries to post image on scrapbook
Date 7.10.16.
Tester Matias
Preconditions App must be running, and user must be logged

in
Tasks 1. Press Scrapbook button

2. Press new Post button
3. Add text
4. Add at least one tag
5. Press add image, and select from library
6. Select an image.
7. Press Post button

Result When the Post button is pressed the user is
redirected to the home screen, and that the post
was made can be verified on Firebase.

Table D.3.: Functional Test 3

Functional Test 4

ID FT2.2
Description Tries to view specific exercises
Date 7.10.16.
Tester Matias
Preconditions App must be running, and user must be logged

in
Tasks 1. Press exercise button

2. Scroll until you see desired exercise
3. Press exercise
4. Read info regarding exercise

Result When the exercise is pressed, an image from the
exercise is displayed along with text that explains
how the exercise is done.

Table D.4.: Functional Test 4

163

D.1.3. Functional Testing, sprint 3

Functional Test 5

ID FT3.1
Description Tries to change profile picture
Date 20.10.16.
Tester Vigleik
Preconditions App must be running, and user must be logged

in
Tasks 1. Press sidemenu button

2. Press ”change profile picture”
3. Choose picture from gallery or camera
4. Press ”save profile picture”

Result When the save button is pressed the user is redi-
rected to the home screen, and the new profile
picture is uploaded to Firebase. The old profile
picture displayed on the home screen is automat-
ically refreshed with the new one

Table D.5.: Functional Test 5

Functional Test 6

ID F3.2
Description Tries to leave a comment on a post
Date 20.10.16.
Tester Vigleik
Preconditions App must be running, and user must be logged

in. There must exist a post
Tasks 1. Press scrapbook button

2. Press ”show comments” on an arbitrary post
3. Type in a comment
4. Press send

Result When the send button is pressed the comment
will be uploaded to Firebase and automatically
updated on the app.

Table D.6.: Functional Test 6

164

Functional Test 7

ID F3.3
Description See if tag statistics is updated properly when a

new post is uploaded
Date 20.10.16.
Tester Vigleik
Preconditions App must be running, and user must be logged

in. No other users is currently posting
Tasks 1. Make a note of the tag stats

2. Press scrapbook button
3. Press new Post button
4. Add text
5. Add at least one tag
6. Press Post button
7. Press back button
8. Compare the current stats with the numbers
from task 1.

Result The numbers next to the tag(s) from task 5 is
now incremented by 1.

Table D.7.: Functional Test 7

165

D.1.4. Functional Testing, sprint 4

Functional Test 8

ID FT4.1
Description Tries to generate student pairs
Date 20.10.16.
Tester Ivar
Preconditions App must be running, and user must be logged

in as a teacher. The class must contain at least
two students

Tasks 1. Press GetToKnow button
2. Press scrapbook button
3. Press generate new classification
3. Press choose exercise
4. Toggle an arbitrary exercise
5. Press save

Result When the save button is pressed the user is redi-
rected back to the teacher pairing view showing
the updated grouping

Table D.8.: Functional Test 8

166

Functional Test 9

ID FT4.2
Description Tries to report a post
Date 21.10.16.
Tester Ivar
Preconditions App must be running and user must have access

to both a teacher account and a student account
from the same class

Tasks 1. Log-in with a student account
2. Press scrapbook button
3. Press report button on an arbitrary post
3. Press side menu button
4. Press log-out
5. Log-in with a teacher account
6. Press scrapbook button
7. Find the post from task 3.

Result The post is now highlighted red

Table D.9.: Functional Test 9

Functional Test 10

ID FT4.4
Description Tries to hide a post
Date 21.10.16.
Tester Ivar
Preconditions App must be running and user must have access

to both a teacher account and a student account
from the same class

Tasks 1. Login with a teacher account
2. Press scrapbook button
3. Press hide button on an arbitrary post
3. Press sidemenu button
4. Press log-out
5. Log-in with a student account
6. Press scrapbook button
7. Find the post from task 3.

Result The post is now hidden

Table D.10.: Functional Test 10

167

D.2. Paper Prototype

Figure D.1.: PeopleUKnow Application

168

Figure D.2.: Get-to-know

169

Figure D.3.: Exercise

170

Figure D.4.: Scrapbook

D.3. Testplan for Usability

D.3.1. Formative

TestID 1

System PeopleUKnow App

Description Log in with an email and a password.

Requirement

Stakeholder Students, Teachers and Parents

Use Case 1

Input Email and password

Success Criteria Manage to log in

Failure Criteria Not able to log in

Table D.11.: Usability Testplan 1

171

TestID 2

System PeopleUKnow App

Description View the exercise feature

Requirement

Stakeholder Students and Teacher

Use Case 7, 8

Input

Success Criteria User is able to navigate to Exercise

Failure Criteria Not able to find exercise feature

Table D.12.: Usability Testplan 2

TestID 3

System PeopleUKnow App

Description After navigating to one of the features, then we
want to navigate back to the overview of the
application feature.

Requirement

Stakeholder Student and teacher

Use Case 12

Input

Success Criteria The user manage to get an overview of the ap-
plication

Failure Criteria Not able to find the overview

Table D.13.: Usability Testplan 3

TestID 4

System PeopleUKnow App

Description After getting assigned to a partner, it should be
possible to view the partner.

Requirement

Stakeholder Student

Use Case 5

Input

Success Criteria The user is able to see his/her partner.

Failure Criteria Not able to view the partner.

Table D.14.: Usability Testplan 4

172

TestID 5

System PeopleUKnow App

Description After someone has posted something on the scrap-
book, it should be possible to view the scrapbook.

Requirement

Stakeholder Student

Use Case 2

Input

Success Criteria Able to view the scrapbook with post

Failure Criteria Not able to view the scrapbook

Table D.15.: Usability Testplan 5

TestID 6

System PeopleUKnow App

Description In the scrapbook, it should be possible to com-
ment on the posts

Requirement

Stakeholder Student and parents

Use Case 3

Input Comment

Success Criteria The comment has been posted on the post

Failure Criteria Not able to comment on a post

Table D.16.: Usability Testplan 6

TestID 7

System PeopleUKnow App

Description Sharing on the scrapbook

Requirement

Stakeholder Student

Use Case 4

Input

Success Criteria Manage to share on the scrapbook

Failure Criteria Not able to share on the scrapbook

Table D.17.: Usability Testplan 7

173

TestID 8

System PeopleUKnow App

Description When someone has posted a post on specific
theme, it should be possible to search on that
specific theme.

Requirement

Stakeholder Student and teacher

Use Case 9

Input

Success Criteria Able to search on post-related data

Failure Criteria Not able to search on post-related data

Table D.18.: Usability Testplan 8

D.3.2. Summative

TestID T1.1

Test Name Notification on Not Successfully logged in
Test Type Usability testing
Description When user is not successfully logged in, the ap-

plication notified the user
Goal Get a notification when not manage to login
Requirement F2
Stakeholder Student, teacher
Input Wrong user credentials (email or/and password)
Completion Criteria User gets notification for not managing to login
Conditions
Dependency

Table D.19.: Test plan T1.1

174

TestID T1.2

Test Name Login
Test Type Usability testing
Description Test to see if a user can login with email and

password
Goal Be able to login
Requirement F1
Stakeholder Student, teacher
Input Email and password
Completion Criteria The user is logged in
Conditions The user has already an account
Dependency

Table D.20.: Test plan T1.2

TestID T2

Test Name View Post
Test Type Usability testing
Description Test to see if the user can see both pictures and

text from other users from their class, which
have been posted on the scrapbook, and see the
styling chosen by classmate on the posts.

Goal View post and styling from other classmate
Requirement F3
Stakeholder Student
Input
Completion Criteria
Conditions User is logged in, the class has something on the

scrapbook
Dependency T1.2

Table D.21.: Test plan T2

175

TestID T3

Test Name Post Comment
Test Type Usability testing
Description Test to see if the user can comment on a class-

mate’s post
Goal Comment on a classmate’s post
Requirement F4
Stakeholder Student
Input Comment/text
Completion Criteria The user manage to comment on the post, which

is displayed
Conditions User is logged in, the class has something in their

scrapbook
Dependency T1.2

Table D.22.: Test plan T3

TestID T4

Test Name Post and Style
Test Type Usability testing
Description Testing to see if a user can post pictures and

text to the class scrapbook, and then choose the
styling for the post

Goal Post picture and text and choose the styling
Requirement F5
Stakeholder Student
Input Picture, text and styling
Completion Criteria The post with picture and text is posted with

customized styling
Conditions User is logged in
Dependency T1.2

Table D.23.: Test plan T4

176

TestID T5

Test Name View Pairs
Test Type Usability testing
Description Test to see if the user can view which pair the

user is assigned with by the teacher
Goal See the assigned pair
Requirement F6
Stakeholder Student
Input
Completion Criteria The user manage to see his/her partner
Conditions User is logged in, the teacher has assigned every-

one a partner
Dependency T1.2, T6.1, T6.2, T6.3

Table D.24.: Test plan T5

TestID 6.1

Test Name Assign Pairs
Test Type Usability testing
Description Test to see if the teacher can create pairs
Goal Create student pairs
Requirement F7
Stakeholder Teacher, student
Input student names
Completion Criteria The user manage to create student pairs
Conditions User is logged in, there exist a class with students
Dependency T1.2

Table D.25.: Test plan T6.1

177

TestID 6.2

Test Name Modify Pairs
Test Type Usability testing
Description Test to see if the teacher can modify pairs
Goal Modyfyinf the student pairs
Requirement F7
Stakeholder Teacher, student
Input Student names
Completion Criteria The user manage to modify the pairs as the user

wats
Conditions User is logged in, there exists a class with stu-

dents, the pairs are already created
Dependency T1.2, T6.1

Table D.26.: Test plan T6.2

TestID T6.3

Test Name Decide who is attending
Test Type Usability testing
Description Test to see if the teachers can decide which stu-

dents are attending the class
Goal Decide who is attending the class
Requirement F7
Stakeholder Teacher, student
Input Student names
Completion Criteria the user manage to decide which one is attending

or not
Conditions User is logged in, there exists a class with stu-

dents, the pairs are already created
Dependency T1.2 , T6.1

Table D.27.: Test plan T6.3

178

TestID T7.1

Test Name View all Exercises
Test Type Usability testing
Description Test to see if it is possible to view all the exercises
Goal View all the exercises
Requirement F8
Stakeholder Teacher
Input
Completion Criteria Manage to view all the exercises
Conditions User is logged in
Dependency T1.2

Table D.28.: Test plan T7.1

TestID T7.2

Test Name Choose Exercise
Test Type Usability testing
Description Test to see if it is possible to choose an exercise

that students in pairs are going to do
Goal Choose exercise for student pairs
Requirement F8
Stakeholder Teacher, student
Input Exercise
Completion Criteria User manage to choose exercise for the student

pairs
Conditions User is logged in, student have pairs
Dependency T1.2, T7.1

Table D.29.: Test plan T7.2

179

TestID T8

Test Name View Exercise
Test Type Usability testing
Description Test to see if the user can view the exercise,

which is chosen by the teacher
Goal View the exercise
Requirement F9
Stakeholder Student
Input
Completion Criteria The user manage to see the chosen exercise
Conditions User is logged in, the students have a partner,

the teacher has chosen the exercise
Dependency T1.2, T6.1, T7.2

Table D.30.: Test plan T8

TestID T9

Test Name Profile Picture
Test Type Usability testing
Description Test to see if a user can edit profile picture
Goal Change profile picture
Requirement
Stakeholder Student, teacher
Input image
Completion Criteria User has successful change profile picture
Conditions User has a picture to change
Dependency T1.2

Table D.31.: Test plan T9

180

TestID T10

Test Name Log out
Test Type Usability testing
Description Test to see if a user is able to logout from the

application
Goal Able to log out
Requirement
Stakeholder Student, teacher
Input
Completion Criteria User is log out from the application
Conditions User is logged in
Dependency T1.2

Table D.32.: Test plan T10

181

Figure D.5.: SUS

D.3.3. Usability Test Result

Formative

We was able to find 3 different users to test the system. All of the user is studying in
upper secondary high school, which is the user PeopleUKnow is trying to reach.

182

TestID When Tester Expected Result Comments

1 25.09 Thuy Manage to login Its look like a regular login page
therefore it was easy to use.

2 25.09 Thuy View Exercise Easy to find. Could maybe include
progressbar or something?

3 25.09 Thuy Get an overview of application Ok, pushed back button to get back
to overview of the application.

4 25.09 Thuy View Pairs The user pushed the scrapbook for
viewing pairs. The reason because it
looked like a chat box where user can
talk to each other. The user manage
to view the pairs in the end. Strange
that view pairs is in the get-to-know.

5 25.09 Thuy View Scrapbook Manage to find it.

6 25.09 Thuy Comment on a post The user pushed the new post func-
tion on the scrapbook page

7 25.09 Thuy Sharing on the scrapbook

8 25.09 Thuy Search on Post-related data User pushed the menu bar on the
right corner.

Table D.33.: User Testing 1

TestID When Tester Expected Result Comments

1 25.09 Minh Manage to login Ok

2 25.09 Minh View Exercise Ok, asked what happens when push-
ing the profile picture

3 25.09 Minh Get an overview of application Ok

4 25.09 Minh View Pairs Ok

5 25.09 Minh View Scrapbook Ok

6 25.09 Minh Comment on a post How do I comment did the user asks?
It does not say anything about it.
User push the new post. And then
the user push the picture

7 25.09 Minh Sharing on the scrapbook Ok

8 25.09 Minh Search on Post-related data Pushing the menu bar on the right

Table D.34.: User Testing 2

183

TestID When Tester Expected Result Comments

1 25.09 Quit Manage to login This user pushed the Iphone button.
But after managed to log in.

2 25.09 Quit View Exercise Push the profile picture. But then
manage to push the right button.

3 25.09 Quit Get an overview of application Push the back button, since it is not
any other buttons to push.

4 25.09 Quit View Pairs Ok

5 25.09 Quit View Scrapbook Ok

6 25.09 Quit Comment on a post Pushing the picture.

7 25.09 Quit Sharing on the scrapbook Pushing the button on the right cor-
ner. The user don’t know where
things are.

8 25.09 Quit Search on Post-related data Pushing the picture.

Table D.35.: User Testing 3

184

Summative

TestID When Test
Obj.

Expected Result Comments

T1.1 26.10 student1 Gets error notification When user tried to enter in password,
user tried to swipe down to see the
password field. After some tries user
manage to click on the keyboard re-
turn and finally manage to type in
password.

T1.2 26.10 student1 Manage to login ok

T2 26.10 student1 View post User clicked first on exercise, after
user tries to click on different tags
and later manage to click on scrap-
book.

T3 26.10 student1 Comment on post ok

T4 26.10 student1 Create a new post with styling Created a post without picture.

T5 26.10 student1 View pair ok

T8 26.10 student1 View exercise User did not know where to find the
exercise so user clicked on ”drømmer”
and then ”aktiviteter”. User then
tried menu bar and then manage to
find week buddy in getToKnow.

T9 26.10 student1 Take a new profile picture User manage to take a profile picture,
but forgot to save the picture in the
end.

T10 26.10 student1 Log out Found the button since the user had
navigated to menu bar before.

Table D.36.: User Testing 1

Feedback from student 1

• Have some description on the menu button. So far the button is only . . . (dash
dash dash).

• It should be possible when clicking on the picture

• Would use the application, but user said that the user needed some help using it
before user could use it by him self.

185

TestID When Test
Obj.

Expected Result Comments

T1.1 26.10 student2 Get error notification Tried to scroll down to type in pass-
word.

T1.2 26.10 student1 Manage to login ok

T2 26.10 student2 View post User tried to click on every tags, ex-
ercise and then found Scrapbook.

T3 26.10 student2 Comment on post ok

T4 26.10 student2 Create a new post with styling Wondering if it was possible to see
picture before posting.

T5 26.10 student2 View pair Found this because user had manage
to click on this earlier.

T8 26.10 student2 View exercise ok

T9 26.10 student2 Take a new profile picture User clicked on the profile picture,
but then manage to navigate to side
menu and then changed profile pic-
ture.

T10 26.10 student2 Log out ok

Table D.37.: User Testing 2

Feedback from student 2

• Should be able to see which tags that user has choosen.

• Menu button should be more down

• Maybe the post should be sorted by tags

• It was easy to use

• Liked the side menu part

• Maybe should change the name of the side menu button

• Wanted it should be possible to change the color of the profile picture circle

186

TestID When Test
Obj.

Expected Result Comments

T1.1 26.10 student3 Gets error notification Tried to scroll up to manage to see
password field

T1.2 26.10 student3 Manage to login ok

T2 26.10 student3 View post Tried to click on ”drømmer”, ”ak-
tiviteter”, and profile picture. Found
the Scrapbook in the end. At this
step something went wrong with
Firebase. But we continued the test
without the pictures

T3 26.10 student3 Comment on post ok

T4 26.10 student3 Create a new post with styling User asked where the picture should
come(At this stage it was something
wrong with firebase)

T5 26.10 student3 View pair User tried to click on tags such as
”samarbeid”, then user tried to click
on side menu, in the end user gets
help wth findig exercise

T8 26.10 student3 View exercise ok

T9 26.10 student3 Take a new profile picture User tries menu bar button, then
user tries to push on profile picture.
And when user tried to save the pic-
ture the applicatio stopped and work.
The profile picture did not get saved.

T10 26.10 student3 Log out ok

Table D.38.: User Testing 3

Feedback from student 3

• The application was really good

187

TestID When Test
Obj.

Expected Result Comments

T1.1 26.10 student4 Gets error notification

T1.2 26.10 student4 Manage to login

T2 26.10 student4 View post

T3 26.10 student4 Comment on post

T4 26.10 student4 Create a new post with styling

T5 26.10 student4 View pair

T8 26.10 student4 View exercise

T9 26.10 student4 Take a new profile picture

T10 26.10 student4 Log out

Table D.39.: User Testing 4

188

Feedback from student 4

TestID When Test
Obj.

Expected Result Comments

T1.1 26.10 student5 Gets error notification User tries to scroll up to see pass-
word field.

T1.2 26.10 student5 Manage to login ok

T2 26.10 student5 View post user use 4-6 secongs before user click
on Scrapbook

T3 26.10 student5 Comment on post ok

T4 26.10 student5 Create a new post with styling User tries to swipe up and then click
on ”nytt innlegg”. User manage to
click on tags button two times after
already adding a tags.

T5 26.10 student5 View pair Tries to push on ”samabeid” and
since the other tags is not buttons,
the user wont push anything other.
After user push on exercise button.

T8 26.10 student5 View exercise ok

T9 26.10 student5 Take a new profile picture User clikcs on the circle, exercise and
then clicks on the profile picture in
the exercise, user goes to the menu
bar and tries to puch on the profile
cirle of week buddy. In the end user
manage to see ”bytt profilbilde” in
the menu bar.

T10 26.10 student5 Log out User clicks on menu buttons, since
user found it from last step.

Table D.40.: User Testing 5

Feedback from student 5

• Conflict between English and Norwegian

• Menu button should be placed on a place where it is more natural or it should be
more clearer since it overlapp the battery button. The menu button looks like a
facebook messenger buton.

• Maybe more functionality

189

TestID When Test
Obj.

Expected Result Comments

T1.1 26.10 student6 Gets error notification Tried to scroll down to see the pass-
word field.

T1.2 26.10 student6 Manage to login ok

T2 26.10 student6 View post Wonder if it was scrapbook and man-
age to find post.

T3 26.10 student6 Comment on post

T4 26.10 student6 Create a new post with styling

T5 26.10 student6 View pair

T8 26.10 student6 View exercise

T9 26.10 student6 Take a new profile picture

T10 26.10 student6 Log out

Table D.41.: User Testing 6

Feedback from student 6

D.3.4. SUS result

Figure D.6.: I would imagine that most people would learn to use this system very
quickly

190

Figure D.7.: I think that I would need the support of a technical person to be able to
use this system

Figure D.8.: I found the various functions in this system were well integrated

Figure D.9.: I thought there was too much inconsistency in this system

191

Figure D.10.: I found the system very cumbersome to use

Figure D.11.: I felt very confident using the system

Figure D.12.: I needed to learn a lot of things before I could get going with this system

192

Bibliography

[1] Ambient. After school - funny anonymous school news for confessions and compli-
ments. https://itunes.apple.com/us/app/after-school-funny-anonymous/

id918396645?mt=8, 2016.

[2] Apache. Cordova. https://cordova.apache.org/, 2016.

[3] Atom. Atom ide. https://atom.io/, 2016.

[4] Miller Bangor, Kortum. Sus research paper. http://uxpajournal.org/

wp-content/uploads/pdf/JUS_Bangor_May2009.pdf, 2009.

[5] bullyingstatistics.org. Bullying statistics. http://www.bullyingstatistics.org/
content/bullying-and-suicide.html, 2016.

[6] Difi. Risikoanalyse - mal. https://www.anskaffelser.no/verktoy/

risikoanalyse-mal, 2015.

[7] draw.io. draw.io. https://www.draw.io/, 2016.

[8] ESDoc. Esdoc. https://esdoc.org/, 2016.

[9] Facebook. nuclide. https://nuclide.io/, 2016.

[10] Facebook. React native. https://facebook.github.io/react-native/, 2016.

[11] Facebook. React native. https://facebook.github.io/react-native/, 2016.

[12] Facebook.com. Facebook. https://www.facebook.com/, 2016.

[13] Feide. Feide. https://www.feide.no/virkemate, 2016.

[14] Firebase. Integrate with google cloud platform. https://firebase.google.com/

docs/storage/gcp-integration, 2016.

[15] Firebase. Integrate with google cloud platform. https://firebase.google.com/

docs/database/security, 2016.

[16] Github.com. Github. https://github.com/, 2016.

[17] Google. Firebase. https://firebase.google.com/, 2016.

[18] Google. Google drive. https://drive.google.com/, 2016.

193

https://itunes.apple.com/us/app/after-school-funny-anonymous/id918396645?mt=8
https://itunes.apple.com/us/app/after-school-funny-anonymous/id918396645?mt=8
https://cordova.apache.org/
https://atom.io/
http://uxpajournal.org/wp-content/uploads/pdf/JUS_Bangor_May2009.pdf
http://uxpajournal.org/wp-content/uploads/pdf/JUS_Bangor_May2009.pdf
http://www.bullyingstatistics.org/content/bullying-and-suicide.html
http://www.bullyingstatistics.org/content/bullying-and-suicide.html
https://www.anskaffelser.no/verktoy/risikoanalyse-mal
https://www.anskaffelser.no/verktoy/risikoanalyse-mal
https://www.draw.io/
https://esdoc.org/
https://nuclide.io/
https://facebook.github.io/react-native/
https://facebook.github.io/react-native/
https://www.facebook.com/
https://www.feide.no/virkemate
https://firebase.google.com/docs/storage/gcp-integration
https://firebase.google.com/docs/storage/gcp-integration
https://firebase.google.com/docs/database/security
https://firebase.google.com/docs/database/security
https://github.com/
https://firebase.google.com/
https://drive.google.com/

[19] https://xtensio.com/user persona/. User personas. https://xtensio.com/

user-persona/, 2016.

[20] NTNU IDI. Course compendium appendix. http://www.idi.ntnu.no/emner/

tdt4290/docs/TDT4290-compendium-2016.pdf, 2016.

[21] Henrik Kniberg. Scrum. https://www.crisp.se/file-uploads/

Kanban-vs-Scrum.pdf, 2016.

[22] Philippe Kruchten. 4+1 view model. http://www.cs.ubc.ca/~gregor/teaching/
papers/4+1view-architecture.pdf, 1995.

[23] Philippe Kruchten. 4+1 view model. http://www.cs.ubc.ca/~gregor/teaching/
papers/4+1view-architecture.pdf/, 1995.

[24] Deborah Lessne and Incorporated (SEI) Melissa Cidade of Synergy Enterprises.
Student reports of bullying and cyber-bullying: Result from the 2013 schoold
crime supplement to the national crime victimization survey. http://nces.ed.gov/
pubs2015/2015056.pdf, 2016.

[25] Lovdata.no. Lov om behandling av personopplysninger. https://lovdata.no/

dokument/NL/lov/2000-04-14-31#KAPITTEL_2, 2016.

[26] Marvel. Marvel. https://marvelapp.com/, 2016.

[27] Gary McGraw. The 7 touchpoints of secure software. http://www.drdobbs.com/
the-7-touchpoints-of-secure-software/184415391, 2016.

[28] Microsoft. The stride threat model. https://msdn.microsoft.com/en-us/

library/ee823878%28v=cs.20%29.aspx, 2016.

[29] Lorraine Millan. The social navigator. http://www.socialnavigatorapp.com/

social_navigator.php, 2016.

[30] nobullying.com. What are the causes of bullying. https://nobullying.com/

what-are-the-causes-of-bullying/, 2016.

[31] Rhine o Enterprises LLC. Team shake. https://itunes.apple.com/us/app/

team-shake/id390812953?mt=8, 2016.

[32] owasp. op 10 2014-i2 insufficient authentication/authorization. https:

//www.owasp.org/index.php/Top_10_2014-I2_Insufficient_Authentication/

Authorization, 2016.

[33] Karen N. Peart. Bullying-suicide link explored in new study
by researchers at yale. http://news.yale.edu/2008/07/16/

bullying-suicide-link-explored-new-study-researchers-yale, 2016.

[34] PeopleUKnow. Peopleuknow websitel. http://peopleuknow.no, 2016.

194

https://xtensio.com/user-persona/
https://xtensio.com/user-persona/
http://www.idi.ntnu.no/emner/tdt4290/docs/TDT4290-compendium-2016.pdf
http://www.idi.ntnu.no/emner/tdt4290/docs/TDT4290-compendium-2016.pdf
https://www.crisp.se/file-uploads/Kanban-vs-Scrum.pdf
https://www.crisp.se/file-uploads/Kanban-vs-Scrum.pdf
http://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf
http://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf
http://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf/
http://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf/
http://nces.ed.gov/pubs2015/2015056.pdf
http://nces.ed.gov/pubs2015/2015056.pdf
https://lovdata.no/dokument/NL/lov/2000-04-14-31#KAPITTEL_2
https://lovdata.no/dokument/NL/lov/2000-04-14-31#KAPITTEL_2
https://marvelapp.com/
http://www.drdobbs.com/the-7-touchpoints-of-secure-software/184415391
http://www.drdobbs.com/the-7-touchpoints-of-secure-software/184415391
https://msdn.microsoft.com/en-us/library/ee823878%28v=cs.20%29.aspx
https://msdn.microsoft.com/en-us/library/ee823878%28v=cs.20%29.aspx
http://www.socialnavigatorapp.com/social_navigator.php
http://www.socialnavigatorapp.com/social_navigator.php
https://nobullying.com/what-are-the-causes-of-bullying/
https://nobullying.com/what-are-the-causes-of-bullying/
https://itunes.apple.com/us/app/team-shake/id390812953?mt=8
https://itunes.apple.com/us/app/team-shake/id390812953?mt=8
https://www.owasp.org/index.php/Top_10_2014-I2_Insufficient_Authentication/Authorization
https://www.owasp.org/index.php/Top_10_2014-I2_Insufficient_Authentication/Authorization
https://www.owasp.org/index.php/Top_10_2014-I2_Insufficient_Authentication/Authorization
http://news.yale.edu/2008/07/16/bullying-suicide-link-explored-new-study-researchers-yale
http://news.yale.edu/2008/07/16/bullying-suicide-link-explored-new-study-researchers-yale
http://peopleuknow.no

[35] Margaret Rouse. Use case. http://searchsoftwarequality.techtarget.com/

definition/use-case, 2016.

[36] Jeff sauro. Sus research. https://www.measuringu.com/article.php?uname=sus.
php, 2011.

[37] ShareLatex.com. Sharelatex. https://www.sharelatex.com/, 2016.

[38] Dag Sjøberg. Kravh̊andtering. http://www.uio.no/studier/emner/matnat/ifi/
INF1050/v14/timeplan/inf1050.krav.29.1.2014.pdf, 2016.

[39] Slack.com. Slack. https://slack.com/, 2016.

[40] SmashingMagazine. Smashingmagazine. https://www.smashingmagazine.com/

wp-content/uploads/2016/06/02-react-native-architecture-opt.png, 2016.

[41] socialskillbuilder. Social skill builder: My school day. https://itunes.apple.com/
us/app/social-skill-builder-my-school/id570787918?mt=8, 2016.

[42] Everyday Speech. Let’s be social: Social skills development. https://itunes.

apple.com/us/app/lets-be-social-social-skills/id772244049?mt=8, 2016.

[43] Sublime. Sublime. https://www.sublimetext.com/, 2016.

[44] Trello.com. Trello. https://trello.com/, 2016.

[45] Inger Anne Tøndal. Protection poker: Spill deg til bedre programvare-
sikkerhet! http://infosec.sintef.no/informasjonssikkerhet/2016/05/

protection-poker-spill-deg-til-bedre-programvaresikkerhet/, 2016.

[46] Wikipedia. Model view controller. https://en.wikipedia.org/wiki/Model%E2%
80%93view%E2%80%93controller, 2016.

[47] Wikipedia. Waterfall method. https://en.wikipedia.org/wiki/Waterfall_

model, 2016.

[48] www.crisp.se. Planning poker. https://www.crisp.se/bocker-och-produkter/

planning-poker, 2016.

[49] Xamarin. Xamarin. https://www.xamarin.com/, 2016.

[50] Youtube. Statistics. https://www.youtube.com/yt/press/statistics.html,
2016.

195

http://searchsoftwarequality.techtarget.com/definition/use-case
http://searchsoftwarequality.techtarget.com/definition/use-case
https://www.measuringu.com/article.php?uname=sus.php
https://www.measuringu.com/article.php?uname=sus.php
https://www.sharelatex.com/
http://www.uio.no/studier/emner/matnat/ifi/INF1050/v14/timeplan/inf1050.krav.29.1.2014.pdf
http://www.uio.no/studier/emner/matnat/ifi/INF1050/v14/timeplan/inf1050.krav.29.1.2014.pdf
https://slack.com/
https://www.smashingmagazine.com/wp-content/uploads/2016/06/02-react-native-architecture-opt.png
https://www.smashingmagazine.com/wp-content/uploads/2016/06/02-react-native-architecture-opt.png
https://itunes.apple.com/us/app/social-skill-builder-my-school/id570787918?mt=8
https://itunes.apple.com/us/app/social-skill-builder-my-school/id570787918?mt=8
https://itunes.apple.com/us/app/lets-be-social-social-skills/id772244049?mt=8
https://itunes.apple.com/us/app/lets-be-social-social-skills/id772244049?mt=8
https://www.sublimetext.com/
https://trello.com/
http://infosec.sintef.no/informasjonssikkerhet/2016/05/protection-poker-spill-deg-til-bedre-programvaresikkerhet/
http://infosec.sintef.no/informasjonssikkerhet/2016/05/protection-poker-spill-deg-til-bedre-programvaresikkerhet/
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model
https://www.crisp.se/bocker-och-produkter/planning-poker
https://www.crisp.se/bocker-och-produkter/planning-poker
https://www.xamarin.com/
https://www.youtube.com/yt/press/statistics.html

	Preface
	Introduction
	Project Description
	Involved Parties
	The Development Team
	Customer
	Webstep
	End-user
	The supervisor

	Project Background
	Project Goal
	General Terms
	Scope
	Chapter Outlines

	Pre-study
	Problem Description
	Current System
	Project Solution
	Expected Solution
	Possible Solution
	Personas

	Evaluation Criteria
	Related Applications
	Choice of Solution

	Planning
	Organisational Demands
	Project Organization
	Role Descriptions

	Quality Assurance
	Quality of Code
	Quality of Documentation
	Response Time
	Document Review
	Project Meetings

	Choice of Lifecycle-model
	Waterfall
	Agile
	Comparison of Methodologies
	Selecting an Agile Method

	Phases
	Work Breakdown Structure
	Gantt
	Milestones
	Risk Management
	Identify Potential Risks
	Determine Likelihood and Impact
	Mitigation, Implementing and Control
	Risk Table

	Requirements Analysis
	Requirement Elicitation
	Functional Requirements
	Use Case
	Non-functional Requirements
	Quality Attribute Requirements
	Quality Attribute Scenarios

	Estimation of Realization Effort for Use-Case model

	Quality Assurance
	Programming Language
	Programming Environment
	Coding standard
	Code review

	Technologies
	Version Control
	Management and Communication Tools
	Google Drive
	Trello
	Facebook
	Slack

	Documentation Tools
	ShareLatex
	Google Docs
	ESDoc

	Frameworks and Development Tools
	Firebase
	React Native
	Drawio

	System Architecture
	Architectural Drivers
	Quality Requirements
	Functional Constraints
	Business Constraints

	Architectural tactics
	Modifiability
	Usability

	Architectural Pattern
	Model View Controller
	Client-server

	Architectural Views
	Architectural drift and architectural erosion
	Logical View
	Development View
	Process View
	Physical View

	Database structure

	Software Security
	Threat Modelling
	Threat Agents
	Architectural Risk Analysis
	Abuse Cases

	Protection Poker
	Assess Security Risk
	Security requirements

	Testing
	Overview of Testing
	Unit Testing
	Functional Testing
	Code Review
	Usability Testing
	Prototyping
	Formative
	Summative

	Acceptance Testing

	First Scrum-sprint
	Sprint planning
	Sprint goals
	Sprint Backlog
	Result from the Sprint
	Login functionality
	Home screen

	Customer Feedback
	Sprint Retrospective
	Sprint Burndown Chart

	Second Scrum-sprint
	Sprint planning
	Sprint goals
	Sprint Backlog
	Result form the Sprint
	Scrapbook
	Exercises

	Customer Feedback
	Sprint Retrospective
	Sprint Burndown Chart

	Third Scrum-sprint
	Sprint Planning
	Sprint Goals
	Sprint Backlog
	Result from the Sprint
	GetToKnow
	Side Menu and Changing Profile Picture
	Scrapbook Comments
	Home Screen
	Exercise List

	Customer Feedback
	Sprint Retrospective
	Sprint Burndown Chart

	Fourth Scrum-sprint
	Sprint Planning
	Sprint Goals
	Sprint Backlog
	Result from the Sprint
	Implementing security rules
	Exercises
	GetToKnow Algorithm
	Report and Hide Button
	Support for Multiple Classes

	Customer Feedback
	Sprint Retrospective
	Sprint Burndown Chart

	The Final Product
	Login
	Home
	GetToKnow
	Exercise
	Scrapbook

	Evaluation
	Group Dynamics
	What Went Well
	What Could be Improved

	What We have Learned
	What the Future Customer-Driven course Student should know about the course
	Feedback on the Customer Driven course TDT4290
	Further Work
	Conclusion

	Appendices
	Pre-Study
	Risk Tables
	Use Case

	Planning
	Meeting templates
	Meeting within the Development Team
	Daily Stands-ups
	Customer Meeting
	Supervisor Meeting
	Weekly Report

	Software Security
	Protection Poker

	Testing
	Functional Testing
	Functional Testing, sprint 1
	Functional Testing, sprint 2
	Functional Testing, sprint 3
	Functional Testing, sprint 4

	Paper Prototype
	Testplan for Usability
	Formative
	Summative
	Usability Test Result
	SUS result

