

The Norwegian University of Science and Technology (NTNU)
Faculty of Information Technology and Electrical Engineering (IE)
Department of Computer Science (IDI)
Version 03.05.2018

Compendium TDT4240
Customer Driven Project

Abstract: ​This compendium is an introduction to the course TDT4240 Customer Driven
Project, where groups of students work on a software engineering project with a real life
customer. The compendium provides useful information about the course in general, the
goal and rationale of the course, as well as some software engineering guidelines meant for
helping the students with their project.

This document has evolved during the years and the last revision 18.05.2018
by Letizia Jaccheri; Anniken Holst; Jon Atle Gulla

Compendium TDT4240 Department of Computer Science

Table of Contents

1 Introduction 3
1.1 General Information 3
1.2 Goal and Rationale of the Course 3
1.3 Required Knowledge 4

2 Motivation on Project Work and Group Dynamics 5
2.1 About the Course 5
2.2 Project Work in a Didactic Perspective 5
2.3 Training in Group Dynamics 6

3 Project Management 8
3.1 Workload 8
3.2 Allocation to Groups 8
3.3 Customer 8
3.4 Supervision and Meetings 9
3.5 Evaluation of Project Work 10
3.6 Project Presentation and Demonstration 10
3.7 Anti-plagiarism 11
3.8 Copyright or Intellectual Property Rights (IPR) 11
3.9 Course Reflection, Evaluation and Feedback 12

4 Software Engineering Guidelines 13
4.1 Project Report 13

4.1.1 Introduction 13
4.1.2 Planning 13
4.1.3 Pre-study of the Problem Space vs. Solution Space 13
4.1.4 Development Methodology 14
4.1.5 Requirements Specifications 14
4.1.6 Architecture 15
4.1.7 Implementation/Sprints 15
4.1.8 Security 15
4.1.9 Testing 16
4.1.10 Internal and External Documentation 17
4.1.11 Evaluation 17
4.1.12 Report Appendices 18

4.2 Scrum, Extreme Programming (XP) and Kanban 18
4.2.1 Scrum 18
4.2.2 Extreme Programming (XP) 18
4.2.3 Differences between Scrum and XP 19

1

Compendium TDT4240 Department of Computer Science

4.2.4 Kanban 19
4.2.5 Other Agile Methodologies 20

4.3 Project Planning and Management 20
4.3.1 Project Schedule 21
4.3.2 Team Organization 21
4.3.3 Project Work Organization 22

Product backlog 22
Sprint Planning 22
Daily SCRUM 23
Sprint Review Meeting 23
Sprint Retrospectives 23

4.3.4 Version Control Procedures and Tools 24
4.3.5 Quality Assurance (QA) 24

Time of response 24
Routines for producing high quality internally 24
Templates and Standards 25

4.3.6 Risk Management 25
4.3.7 Effort Registration 27

4.4 Software security 29
4.4.1 Typical Software Security Activities – the Touchpoints 30
4.4.2 Software Security Games for Analyzing Security Risks and Threats 30

Protection Poker 30
Microsoft Elevation of Privilege (EoP) 31

4.4.3 More on Threats, Vulnerabilities and What You Can Do About It 31

2

Compendium TDT4240 Department of Computer Science

1 Introduction

1.1 General Information
This ​master-level​ course ​TDT4290 Customer Driven Project​ deals with a ​project
assignment​ that is ​mandatory​ for all computer science ("Datateknologi") students in their
4th study year at NTNU/IDI, typically with mostly Norwegian students. In addition, there are
participants from the two-year, international master program in Information Systems at IDI
(with 5-10 students from all over the world), and Erasmus and other guest students (usually
Europeans). In 2017 there were more than 100 students in total. Since many of the students
in the course are foreign, with limited or no knowledge to Norwegian language, the lectures
and seminars are held in English.

In the beginning of the course, the students will be divided in project groups of 6-8 students
(detail in​ ​Section 3.2​).​ Each group will be allocated an advisor from IDI - either a faculty
member, a postdoc or a PhD student - plus a main customer representative. ​Towards the
end of the semester, the groups must deliver a project report in English, and hold a
presentation and demonstration of the final ​prototyped​ product for the customer, while an
external examiner (censor) is present.

This compendium contains all the necessary information for this course and a suggested
outline for the final project report, in addition to some examples of what a project plan should
contain. Practical information regarding project-group composition, dates etc. can be found
on the course page on Blackboard.

1.2 Goal and Rationale of the Course
The ​goal​ of course TDT4290 is to learn – by working in groups – software engineering skills
in the context of a ​development project​ to make a realistic ​prototype​ of an information
system ​"on contract"​ for a real-world customer.

Through the project, all the phases of a typical software project are to be covered, e.g.
project management and planning, pre-study, requirements, design, programming, testing,
evaluation and documentation, but no "maintenance". Due to resource constraints, the focus
should nevertheless be on delivering a system prototype called ​the minimum viable product
(MVP).

1.3 Required Knowledge
Required theories and methods for making large and long-lived systems are mostly covered
in previous, bachelor-level courses. This knowledge base is supplemented by a set of
relevant lectures held by representatives from the IT industry. Attendance to the lectures is
mandatory.

3

Compendium TDT4240 Department of Computer Science

Since 2008 in this course, the students have been encouraged to use the Agile software
development method Scrum. Given the time constraints of this student project, there is
hardly time for more than 2-3 increments, called "sprints" in Scrum . Other agile methods, 1

namely Extreme Programming, Kanban, Lean Software Development, Mobile-D and others
may be considered as well. In reality, the method followed in the course will be a
composition of many methods. This should be carefully documented in the project
documentation. Information about Scrum and some of the other software methodologies can
be found in ​section 4.3​.

1 Atlassian’s description of Scrum: ​https://www.atlassian.com/agile/scrum

4

https://www.atlassian.com/agile/scrum

Compendium TDT4240 Department of Computer Science

2 Motivation on Project Work and Group Dynamics

2.1 About the Course
The goal of this course is to learn fundamental software engineering skills through realistic
training in software development and project management. You will have the opportunity to
apply the knowledge you have gained previously in your studies. During the course, you will
experience situations that will require:

● Making decisions for, designing and developing a relatively large and complex
system.

● Creative and collaborative problem solving. Earlier in your studies, the tasks have
been smaller and more well-defined. In this project, there are (conflicting) decisions
to be made with short time limits.

● Coordination of efforts and distribution of work and responsibilities.
● Project management, cooperation, decisions, follow-ups, and dispute resolution.
● Ability to adapt to non-ideal working situations.
● Planning and execution of plans. This involves creation of project plans and

registration and monitoring of effort and resource usage.
● Handling of difficult customers, who might be unreliable and/or unavailable. An

important part of this course is to manage the group project, so that the results match
the customer's needs, even though the situation may turn difficult.

● Structuring of requirements specifications.
● Documentation. The project documents must be complete, well structured and target

the technical knowledge level of the customer.
● Defend decisions that are taken on behalf of the customer. You should document all

delays, overruns, and weaknesses, so that they can be explained and argumented
for. Ideally, all decisions should match conditions coming from the customer (the
customer has the right to complain on any aberration that is not his/her fault).

● Presenting (and selling) the final product for the customer/external examiner. Under
the final presentation and demonstration, it is important to give the customer a
complete and good impression of the system delivered.

2.2 Project Work in a Didactic Perspective
Several evaluations have been carried out of previous versions of TDT4290 (i.e.
"Systemering prosjektarbeid" and "Programmering prosjektarbeid"). These evaluations are
generally very positive. 2

2 ​See Markus Sorge: "Evaluering av prosjektundervisningen ved IDI, NTNU", Program for
lærerutdanning, NTNU, spring 2000, 63p,
http://www.idi.ntnu.no/undervisning/siving/docs/prosjektevaluering.pdf​.

5

http://www.idi.ntnu.no/undervisning/siving/docs/prosjektevaluering.pdf

Compendium TDT4240 Department of Computer Science

Technology​ is experience-based knowledge – composed and refined over many years − to
be able to satisfy human-societal needs in a cost-effective way. ​Engineering​ is the process
of combining and applying suitable technologies to construct specific means, such as
houses, food, clothing, roads, bridges, vehicles, books, sewing machines − and recently −
computer- and information systems. That is, an engineer creates new reality (e.g., kitchen
tables) − not only studies the existing one (e.g., a humming bee in a forest).

Engineering requires a domain-specific methodology (a technology itself) for how to describe
the actual context − being farming, bridge-building, or banking. An engineer will apply
scientific insight (both technical and social), combined with knowledge and experience from
many sources – all representing different technologies. It is often a strong relationship
between what is being constructed and the available time, budget, and tools/methods.
Because of the substantial complexity and diversity of the engineering work and the
characteristics of the processes, it is often necessary for several people to work together.
That means that engineering has a social dimension, since it is executed as group work.
Cooperative and communicative skills are therefore essential.

Project work in teams is an important part of the engineering discipline. Your study program
at NTNU is among the ones with most emphasis on project work. Project work means on the
one hand that you need to make an agreement with a customer (customer/organization)
about what should be constructed. On the other hand, you have to design and implement
technical solutions that satisfy the elicited constraints and requirements. You also have to
consider changes over time, as most customers are not sure about what they really want. As
a consequence, the proposed unfinished solution must be modified. The project groups must
also be well organized and effective, and try to avoid destructive internal conflicts.

All this means that you will get a hectic work situation – sometimes at the edge of chaos.
You have to combine your theoretical knowledge from previous courses to solve specific and
practical problems. A considerable amount of effort has to be spent on cooperation,
communication, planning, and improvisation and you must show capabilities of working
under pressure.

Your project will give you essential training to become a professional software engineer.
Feedback from industry says, that it is almost impossible to get more done in 3 months than
what such a group of students is capable of. Further, software engineers from NTNU are
useful from day one: they posses the theoretical knowledge and know how to work efficiently
in teams.

So, the expectations are great from all participants: the IDI department, lecturers, advisors,
external customers and of course the students themselves. W​elcome to an interesting and
hectic semester in this course!

2.3 Training in Group Dynamics
Good teamwork and group dynamics are essential for the success of any collaborative
project. Therefore, "social" skills are of utmost importance to become a successful project

6

Compendium TDT4240 Department of Computer Science

co-worker. A seminar on ​group dynamics​ is planned as a part of this course, to support the
project groups to learn more about team work and group dynamics. In addition to the
seminar, ​the team should spend some time in order to create a good atmosphere​ ​among
your group, particularly at the beginning of the project.

7

Compendium TDT4240 Department of Computer Science

3 Project Management

3.1 Workload
The official web page of the course specifies 24 weekly person-hours per student for 14 3

weeks. This means that the total expected amount of workload per student is 336 hours
(24*14). For a project group of 6-8 students, the available effort per group will lie between
2016​ and ​2688​ person-hours, which is somewhere between 1 and 1.5 man-years. These
hours include own reading, meetings, lectures, and seminars. Earlier projects have shown
that it is possible to deliver really good results within that time frame.

It is important that everyone is honest and registers all effort (as person-hours) spent on the
project. This means that the project documents must show the real workload. Effort overruns
will result in less sparetime for you personally and less time for other courses. Inflated work
effort does not affect the grades given in this course!

3.2 Allocation to Groups
In 2017, the course had 100 students in total. This gives in total 14 groups with 6-8 students
per group. Each group is preallocated to one customer and one group advisor. Each group
should have a tight cooperation with their advisor.

Group assignments are essentially made ​randomly​. This is done intentionally to create
groups where the members generally do not know each other beforehand. This is a typical
situation in real-life, especially when working as a consultant. ​It is therefore encouraged to
spend some time to create a good team atmosphere among your group, particularly in the
beginning of the project.

If your group experiences that some of the team members are not participating satisfactorily,
you should immediately contact your advisor. If you experience other minor problems, the
advisor is the one to contact. However, most (minor) problems are to live with; in fact, it is a
part of the course to learn to deal with such issues in a project.

Overview of groups, customers and advisors is available on Blackboard.

3.3 Customer
Each project group is initially given a one-page ​project assignment​ from an external
customer. We do ​not​ accept customers that just want the group to write a "summary and
evaluation" of some hot topic, with no ensuing implementation. And inversely, we do ​not

3 ​http://www.ntnu.edu/studies/courses/TDT4290

8

http://www.ntnu.edu/studies/courses/TDT4290

Compendium TDT4240 Department of Computer Science

want customers that come with pre-made requirements, and just want the group to complete
a pre-designed system architecture.

The customer of a software project can sometimes be difficult to work with, unreliable and/or
unavailable. They might change directions, come up with new ideas, and have an unclear
picture of what they really want. An important part of this course is to manage the group
project, so that the results match the customer's needs, even though the situation may turn
difficult.

If a fundamental disagreement with the customer arises, the group has, if needed, "the final
word" since the group members gets the credit through a final report worth 15 Sp.
Fortunately such a dead-lock situation has hardly happened in the 40 years that this course
has been arranged! However, the group and their advisor should do what is possible to
resolve any major disagreements. Conflicts are to be explained, negotiated and resolved
(managed), as this is part of the real world work. ​It is therefore crucial that the group is
focused and has a good dialog with the customer.

The group should together with the customer agree on how the meetings and other
communication should take place. Preferably the group should meet with the customer at the
end of each sprint at a set time and place. However, as some customers are not based in
Trondheim, such frequent meetings might not be possible. An option could be to replace
some of the meetings with video conferences.

For all the meetings with the customer you should send a call for the meeting, specifying
time, place, intention (result), agenda, and background documents. It is vital to specify what
preparations you expect of the customer and the group before the meeting. You have to
agree with the customer how long in advance the calling for meeting should be sent, e.g. at
12:00 two working days before the meeting is going to take place. During the meetings you
must write meeting minutes, which should be sent to the customer after the meeting is over.

3.4 Supervision and Meetings
Your very first ​group-internal meeting​ is scheduled for the same day as the kick-off day.
Each of you should introduce yourself to the others in the group, and try get the group
organized for the first ​customer meeting​ the following hours.

On ​the first customer meeting​ later on the kick off day you will meet your advisor and your
customer for the first time. The group is collectively responsible for making a ​written resume
of this meeting. The resume should be sent by ​email​ to the persons involved (group
members, advisor, customer) later the ​same day​. So take good notes of this meeting!

Throughout the semester you will probably need several weekly, internal group meetings.
The groups have been allocated a group room once a week, and you can find the room of
your group on Blackboard. If needed, you can book a room at IDI by contacting the reception
at IDI , or on another location on campus through ​https://tp.uio.no/ntnu/rombestilling/​. 4

4 The IDI reception can be reached on​ 735 93 440

9

https://tp.uio.no/ntnu/rombestilling/

Compendium TDT4240 Department of Computer Science

Furthermore, your group should have a main ​advisor meeting​ with your advisor once a
week​. During the ​first, pre-planned​ meeting, you will have to agree upon ​when and where
these meetings shall take place for the rest of the semester. The group is responsible for
booking a meeting room for these meetings (possibly helped by the advisor). The meetings
will have a group-specific content, and the advisor will also focus on the teamwork and group
dynamics aspects and support you to establish a good group atmosphere. The meeting
agenda must be sent to the advisor before 14:00 the day before, and should contain the
following:

- Work done since last meeting
- Problems encountered
- Planning of work for the next period
- Other issues (if there are any)

3.5 Evaluation of Project Work
Towards the end of the semester, the group must hand in some deliverables. These are a
project report, source code of the final product, and a video which explains and promotes the
product. More information about what the report can be found in​ ​section 4.1 - Project Report
and details about the video will be posted on Blackboard.

The project work will be evaluated on the basis of the quality of the project report, the
functioning prototype of the system, the video and the presentation delivered at the end of
the course. These all count towards the grade in an integrated way (they are not formally
weighted against each other). The project is intended to be conducted as a team work effort.
This means that also the team dynamics will have an impact on the final grade.

The following criteria are evaluated in an integrated way:

● Whether the group has solved the given assignment, according to the customer's
objectives of the project.

● Team work efficiency and team dynamics.
● Team work process improvement efforts.
● Reasonable grounds for decisions taken.
● Logical flow in the report.
● Visibility of limitations imposed.
● Layout and structure readability.
● The students' ability to reflect on the process during the project.

3.6 Project Presentation and Demonstration

The project presentation is divided into three parts:

10

Compendium TDT4240 Department of Computer Science

Presentation and video: ​Here you explain the project assignment and goals and the
problems and priorities you have faced through the project. You should also describe the
solution, the alternatives and why you chose this solution. The final product/prototype should
be described, and you should include some final reflections about the solution, development
process and the project in general.

Demo: ​Show your implemented prototype and its main functionalities. The presentation,
video and demo should not exceed 30 minutes.

Questions:​ 5-10 minutes

Remember to give a hand-out of the presentation to your advisor, customer and external
examiner (censor) at the presentation.

Note that since the presentation counts towards the grade, it is important that you maintain a
functioning version of your program in case you (the group) appeal the result (grade). If an
appeal is made, you will have to make your presentation for the new examiner, including a
demonstration of the system.

3.7 Anti-plagiarism
The rules for anti-plagiarism are very strict, see §36 in "Forskrift om studier ved NTNU"
(page 23 in "Studiehåndbok for Sivilingeniørstudiet 2011-12") regarding cheating and
http://www.lovdata.no/all/hl-20050401-015.html#4-7​.

See also ​http://www.idi.ntnu.no/grupper/su/publ/ese/plagiarism.html​.

3.8 Intellectual Property Rights (IPR)
Intellectual property rights issues have to be handled according to NTNU and Norwegian
regulations.

3.9 Course Reflection, Evaluation and Feedback
We intend to do a systematic evaluation of this project course. For this purpose, a "student
reference group" must be established among the course participants. The course will be
evaluated in the following ways:

● Student surveys​: individual students will be asked to fill in a questionnaire at the
beginning and at the end of the course. The questionnaires at the beginning of the
course will be used to gather data on the students' expectations and the
questionnaires at the end will be used to gather data on if the students' expectations
have been met and other relevant feedback from the students.

11

http://www.lovdata.no/all/hl-20050401-015.html#4-7
http://www.idi.ntnu.no/grupper/su/publ/ese/plagiarism.html

Compendium TDT4240 Department of Computer Science

● Customer feedback​: ​We ask customers for feedback both before and after their
projects have been carried out in order to see to that ​expectations have been met
and to gauge customer satisfaction with their project group and the course in general.

The feedback received from the different parties will be used to improve the course for the
future students.

12

Compendium TDT4240 Department of Computer Science

4 Software Engineering Guidelines
This chapter contains some software engineering guidelines that you may find helpful for the
project work.

4.1 Project Report
The project report should be written in English and contain no more than 100 pages
(excluding appendices and graphics) and should be delivered as a pdf document.

The following subsections explain what the different sections of the report should contain.
The groups are not obliged to follow this report structure to the point, it is meant as a
guideline. Project reports from previous semesters can be found on Blackboard for more
inspiration.

Even though the project report is to be delivered by the end of the semester, we
strongly encourage you to start working on the report from day one.

4.1.1 Introduction

Write a good, one-page abstract early, and explain the overall context, motivation, demands
and results.

4.1.2 Planning

The details of what to include in a project plan, as well as how to organize your project work,
is explained in​ ​section 4.3 - Project Planning and Management.

4.1.3 Pre-study of the Problem Space vs. Solution Space

The preliminary studies are vital for the group to obtain a good understanding of the total
problem. Here, you will have to describe the problem at hand. You should describe the
current system and the planned solutions (text, workflow, use-case scenarios, information
flow, and other graphical presentations you can use). It is all about getting a good
understanding of the challenges ahead! The group should investigate if existing and
potentially competing solutions exists on the market. If such solutions exist, they should be
described. You should also describe alternative solutions that fully or partially require custom
implementations. The group must also set up evaluation criteria that form the basis for
choice of a solution. Software by third party software providers (as OSS or COTS) should be
actively pursued as candidates for implementation of large parts of your software system . 5

5 ​http://sourceforge.net

13

http://sourceforge.net/

Compendium TDT4240 Department of Computer Science

In cases where existing components can be applied as modules in the project solution, a
simple cost-benefit analysis should be carried out.

Summary:

● Describe the main business requirements, both functional and non-functional, that
will constitute the requirements for the final solution and its functionality. These
requirements will later form the base for later formalization of requirements.

● Describe the situation and solutions of today ("as-is")
● Describe the wanted situation and its possible solutions ("to-be")
● Evaluation criteria
● Market investigations
● Description of alternative solutions
● Evaluation of alternative solutions, including adjusted requirements and potential

costs and benefits
● Choice of solution, in dialog with customer

4.1.4 Development Methodology

For the realization of the recommended requirements above, the groups are fairly free to
choose the methodology that they wish in cooperation with the customer and under the
supervision of the supervisor. In the last ten years, it has been common to use variants of
the agile method. Use of the agile methodologies Scrum, Extreme Programming and
Kanban are covered briefly in​ section 4.2 - SCRUM, XP and Kanban​.

In the report you should explain which development methodologies you have chosen to use,
and reflect on why you have chosen these instead of other methods.

4.1.5 Requirements Specifications

It is important to explicitly state the system requirements and link them to the business
requirements from the pre-study phase. Typically, requirements are divided into functional
and non-functional requirements. Structure the requirements such that the presentation is
well organized. The IEEE provide recommended practices for writing requirement
specifications . 6

Some persons like to enumerate requirements (R1, R2 ...), which may create "boring"
reading where it is easy to lose track of the content. The advantage with numbering is that it
is then easy to separate the requirements from the rest of the text, each becomes explicit,
and you achieve traceability and structure.

Use figures! ​Good figures say more than a thousand words. We strongly recommend
making use-case diagrams here, also because we then can make quick and reliable 7

6 IEEE recommendation practices for writing requirement specifications:
http://ieeexplore.ieee.org/iel4/5841/15571/00720574.pdf
7 An explanation of use-case diagrams: ​https://www.lucidchart.com/pages/uml-use-case-diagram

14

http://ieeexplore.ieee.org/iel4/5841/15571/00720574.pdf
https://www.lucidchart.com/pages/uml-use-case-diagram

Compendium TDT4240 Department of Computer Science

estimates of the ensuing design, programming and test effort.

4.1.6 Architecture

Regardless of which type of development strategy is chosen, most software implementation
projects start with system architecture and a sketch of the desired design, in order to ease
later division into parts. The architecture should be designed in order to meet the established
requirements of the product. The project most likely will be further developed later, so a
"modular" design is to prefer. Designing a modular system also makes testing a lot easier,
since defects can be tracked down to individual modules. When documenting the
architecture, figures should be included, for instance one that shows how separate modules
are related.

Knowledge about and use of patterns is useful when it comes to programming. This is briefly
covered in previous courses, but examples of patterns from architecture and coding are
found practically anywhere on the internet. A good book resource on patters is "Design
Patterns: Elements of Reusable Object-Oriented Software", see also:
http://en.wikipedia.org/wiki/Gang_of_Four_(software)​.

4.1.7 Implementation/Sprints

General knowledge about programming is expected to be covered in previous courses.
Depending on the actual project commitment, this project might require that the team
members learn new programming language(s), new concepts of programming, various
technical skills etc. The group has to plan how to obtain this knowledge, maybe in
cooperation with the customer and the advisor.

The group can also decide, in dialog with their customer, the focus and scope of the project.
For instance, groups with focus on the early phases should not omit making a working
prototype of some system parts. On the other hand, "programming-eager" groups may try to
make a rather complete product. The important issue is that the group clearly justifies their
decisions, and that there is a logical flow in the project report from start to end of all the
phases, and that all the phases and iterations build naturally on each other.

If an agile development methodology, such as scrum, is used, the iterations should each
have one chapter in the project report. For each iteration you should document the planning,
implementation, feedback from customer and effort estimation, as well as other aspects you
may find relevant. In​ ​section 4.2.4 Project Work Organization​ ​you can find an example of
how to structure your sprints.

4.1.8 Security
Security is explained in detail in ​section 4.4 - Software Security​.

15

http://en.wikipedia.org/wiki/Gang_of_Four_(software)

Compendium TDT4240 Department of Computer Science

4.1.9 Testing

Testing is usually planned and carried out in five parts:

1. Overall test plan – This should be created as the last part of the requirement
specification phase.

2. A plan for each test that needs to be carried out. – This should be done in the end of
each iteration.

3. Creation of detailed test specifications or checklists for each test. – This should be
done in the end of each iteration.

4. Execution of tests, including correction of defects, re-testing and documentation of
test results.

5. Approval of test results.

When you create a test plan it is important to specify:

● Which tests should be carried out?
● Which tests should contain checklists? (Checklists are most common for entity and

module testing)
● Which tests should contain detailed specifications? (Detailed test specifications are

common for testing systems, integrations, usability and acceptance)
● Who are the test subjects? (Project, customer, others...)
● When should the tests be carried out?

The level of detail should fit the nature of your project.

The detailed test specifications should contain:

● Test descriptions (the operations that should be carried out)
● Data that will be tested (input and expected output)

Tests carried
out

Description

Unit test
(programming
phase)

Testing of the smallest units in the projects, i.e., user interface, methods,
stored procedures, objects, classes, etc.

Model test
(design phase)

Entities integrated into bigger software components. Modules are tested to
assure that the coordination and communication between the entities are
as expected.

System test
(requirement
phase)

All modules that together form a complete version of the system should be
tested. The system are tested to assure that the coordination and
communication between models are as expected.

16

Compendium TDT4240 Department of Computer Science

Integration test
(design phase)

This is a complete test of the system and its interfaces to the world
around. The last defects should be found and it should be verified that the
system behaves well according to the requirement specifications. In some
projects integration and system tests are merged.

Usability tests
(non functional)

These are tests that assure that the interaction between users and the
system is as expected. The goal is to get user friendly applications.

Acceptance
tests (non
functional)

Here, the end users should test if the system and its user interface to its
environment are as expected. Based on this acceptance test, the
management or customer make decision on whether the product should
be used or not.

4.1.10 Internal and External Documentation

A user- and installation-guide for the final product must be created. The installation guide
should describe the installation process step by step. Note that your system and its
installation will be tested by your advisor.

It is wise to start on this documentation as soon as possible, as it describes the current state
of the project for the project team​.

4.1.11 Evaluation

The groups decide themselves what to include in the project evaluation, but we recommend
including the following elements:

1. The internal process and results: How have you worked together as a team? What
have you done well? What have you not done so well? What would you have done
differently? Conflicts that arose and how these were handled? Did you reach the
project goals? What did you learn?

2. The customer and the project task: How was the communication with the customer?
How did you experience the project assignment?

3. The advisors: How was communication with the advisors? Was the supervision good
enough? How could the course be improved for the next year?

4. Further work: Give an estimate for how much effort that is necessary to complete the
product/project.

5. Suggestions for improvement. What is missing to make this course better for both
students, customers and advisors.

It is important to describe problems that may have affected the work but is not shown in the
project report. Make sure that you also describe any additional work that is not shown in the
project report.

17

Compendium TDT4240 Department of Computer Science

4.1.12 Report Appendices

The appendix of your project report may for instance include the following:

1. User and installation guides (external documentation)
2. Technical/internal documents (internal documentation)
3. Other, e.g. special material provided by the customer.
4. Possible contracts and non-disclosure agreements.

4.2 Scrum, Extreme Programming (XP) and Kanban
Compared to the traditional project development processes, which usually deliver in a series
of phases, agile projects break down the development durations into releases and iterations.
At the end of every release and iteration, some small parts of the projects with functionality
could be released.

A common feature of most agile methodologies is incremental design. Incremental design
involves keeping the design simple from start and continuously improving it, rather than trying to
get it all right from the beginning and then freezing it. Despite this, it is important to still keep the
deadline in mind before further optimization.

4.2.1 Scrum

Scrum is an incremental and iterative framework for agile software development and project
management . It contains sets of predefined roles and practices by breaking down 8

development procedures into small pieces, separating features into manageable items of
work which they tackle in time-boxed iterations called sprints. The main procedures include
product backlog, sprint planning meetings, daily stand ups, the sprint review and the sprint
retrospective. These procedures will be explained in more detail in​ ​section 4.3.4 Project
Work Organization​ ​where an example of how to perform the project management is
provided. Scrum teams comprise of three distinct roles - the product owner, the Scrum
master and development team members.

4.2.2 Extreme Programming (XP)

XP focuses on customer satisfaction . It also maintains dividing development process into 9

small iterations that a team is able to handle during a small period of time. Unlike Scrum, XP
empowers the developers to confidently respond to changing customer requirements, even
late in the life cycle. Teamwork is the key factor for XP process. Like Scrum, XP teams also
comprise of three roles – manager, customers and developers. They are all equal partners in
a collaborative team, which could guarantee the effectiveness of development progress. In
XP progress, there are five essential ways help to improve the project:

8 Atlassian’s description of Scrum: ​https://www.atlassian.com/agile/scrum
9 For further details about XP: ​https://en.wikipedia.org/wiki/Extreme_programming

18

https://www.atlassian.com/agile/scrum
https://en.wikipedia.org/wiki/Extreme_programming

Compendium TDT4240 Department of Computer Science

Communication: Everyone is part of the team, and should communicate face to face daily, or
in our case every few days.

Simplicity: Promote the development progress from the most basic needs from the
beginning. And maximize the value the team could get while mitigating failures as they
happen. Keep the cost into reasonable value.

Feedback: Get feedbacks from tests and customers. Talk about the project and progresses
to each other and then make any changes and adaptations when needed.

Respect: Give respect to each other with their efforts and ideas.

Courage: Often tell truth about progress and estimates. And have the courage to adapt
changes whenever they happen.

A key concept of XP is pair programming. Pair programming that all code to be sent into
production is created by two people working together on a single computer. Pair
programming increases software quality without impacting time to deliver. The best way to
pair program is to sit side by side in front of the monitor and code together.

4.2.3 Differences between Scrum and XP

1. Scrum often has two-week to one-month long sprints, versus usually one or two
weeks long iterations of XP.

2. Scrum doesn't allow any changes to the chosen sprint backlog after planning, while
XP allows reasonable changes for unstarted features.

3. XP teams should always obey the priority order while Scrum teams could choose
lower priority items during development.

4. XP focuses on engineering practices, while Scrum mandates planning ceremonies
and artifacts. More specifically, XP is a test-driven development which focus on
automated testing, pair programming, simple design, refactoring and so on.

It could be said that Scrum is a methodology, which is more concerned with productivity,
while XP is more concerned with engineering.

The combination of Scrum and XP is one of the most popular agile methodologies in use
today. Some steps of XP can be directly addressed by Scrum and can be seen as
overlapping, like Sprint Planning Meeting of Scrum and Planning Game of XP, Sprint Review
of Scrum and Small Releases of XP.

4.2.4 Kanban

Lean development practices are based on the lean methodologies that have been used 10

successfully in manufacturing processes. Kanban is a lean software development 11

methodology that focuses on just-in-time delivery of functionality and managing the amount
of work in progress (WIP). It is a way to make the development process visualizing and vivid.

10Lean software development: ​https://en.wikipedia.org/wiki/Lean_software_development
11 Kanban: ​https://en.wikipedia.org/wiki/Kanban_(development)

19

https://en.wikipedia.org/wiki/Lean_software_development
https://en.wikipedia.org/wiki/Kanban_(development)

Compendium TDT4240 Department of Computer Science

Since the progress of work can be seen explicitly, the project schedule could be handled
more easily.

A feature of Kanban which is commonly used in combination with other agile methodologies
is the Kanban board. These are typically presented on a big whiteboard or empty wall space
where the team can place post-its with all kinds of information about the product and project.
The process visualisation techniques of Kanban makes it ideally suited for co-located teams
who are working on items that is subject to frequent change.

4.2.5 Other Agile Methodologies

There exist many other agile methodologies and you could always find the resources you
need online. Lean, Feature Driven Development (FDD), Crystal, and Dynamic Systems
Development Method (DSDM) are some examples . You can choose one or combine 12

several according to your needs and requirements.

4.3 Project Planning and Management
This section gives an example of how to structure a project plan. The project plan is dynamic
and will evolve throughout the whole project. It regulates the administrative part of the

12 A quick glance at other agile methodologies:
https://www.versionone.com/agile-101/agile-methodologies/

20

https://www.versionone.com/agile-101/agile-methodologies/

Compendium TDT4240 Department of Computer Science

project and guides the project. Depending on the type of lifecycle model you use you will
have to structure the project plan differently.

4.3.1 Project Schedule

The project schedule should contain information about sprints/iterations, activities in each of
these, milestones and person-hours spent on each activity and iteration, lectures, project
management, and so on. It is suggested to include a Gantt diagram to represent the 13

schedule, and this can be attached as an appendix to the report.

4.3.2 Team Organization

Before starting a project, roles should be determined within a team. Each of the members
could have one or two roles without prejudicing to the development processes. A description
of typical roles used in Scrum is presented in the table below.

Roles Responsibility

Project Manager
(PM)

1. Ensure the completion of the project in the available time, within
budget;

2. Organize weekly meeting and customer meeting;

3. Assign tasks and check progress;

4. Manage the time budget;

Quality Manager
(QM)

1. Ensure the quality of the end product and the overall process;

2. Check that all project documents are consistent;

3. Arrange internal and external reviews;

4. Monitor and review all testing activities.

Product
Owner/Customer

1. Make sure that all requirements asked by the customer are
represented

2. Check that the items in the product backlog are user centered
rather than technical

SCRUM Master 1. Ensure that the SCRUM process is followed;

2. Create the sprint backlog and check that the backlog is updated;

3. Lead the daily/weekly scrum and make sure that afterwards
everybody knows what to do;

13 Gantt Diagram: ​https://en.wikipedia.org/wiki/Gantt_chart

21

https://en.wikipedia.org/wiki/Gantt_chart

Compendium TDT4240 Department of Computer Science

Development Team
Member

1. Assisting the Team Leader or Project Manager by signaling
problems in an early stage;

2. Executing plans made by the Team Leader and by the Project
Manager;

3. Keeping track of time spent on various tasks;

4. Following procedures and plans.

Team Leader 1. Planning and coordinating team activities;

2. Providing feedback about team progress to the PM;

3. Motivating team members;

4. Chairing internal reviews of the items made by his/her team.

4.3.3 Project Work Organization

Here follows an example of how to organize your project work using the agile methodologies
Scrum, Extreme Programming (XP) and Kanban as described in​ ​section 4.2 - SCRUM, XP
and Kanban​. ​The example starts out with Scrum, and then in addition uses XP and Kanban
during every iteration.

Product backlog

A key concept of Scrum is the product backlog, or just backlog items. It is a list containing all
requirements, stories, or features of the product, with priorities. The backlog should be made
in the initial phase of the project, but it can be changed and altered throughout the project as
the requirements evolve. The backlog must not be mistaken with the requirements
specifications. Consider the backlog as a more informal document. A backlog often contains
an ID, Name, Importance, Initial Estimation Time, Demo and Notes.

Sprint Planning

Before beginning a new sprint you should have a sprint planning meeting. This meeting is
attended by the product owner (customer), the Scrum master and the rest of the Scrum
team. The meeting could also be open for any interested.

During the meeting the Scrum team and the product owner should come to an agreement
about which features and functions that have the highest priority. Based on this, the Scrum
team should be able to determine which tasks they will move from the product backlog to the
sprint backlog. The Scrum team and the product owner should collectively define a sprint
goal - a short description of what the sprint will achieve. The fulfillment of this goal will later
be discussed during the sprint review meeting. After the sprint planning meeting, the Scrum
team will have to discuss how much they are able to commit during the sprint. This might

22

Compendium TDT4240 Department of Computer Science

lead to renegotiation with the product owner, but it will always be up to the team how much
they can achieve during the sprint.

The Scrum team organization is well suited for a group of students, because none of the
traditional software engineering roles like programmer, architect, designer or tester exist.
Instead the SCRUM team focuses on collectively completing the tasks within the sprint.

Daily SCRUM

The daily Scrum(-meeting) should be held every day during a sprint. Usually these meetings
are held in the morning, so that the team members can plan the rest of the day. Anyone can
attend these meetings, but only the team members do the talking, the other should only
listen. The daily Scrum should not be used as a meeting for problem solving; this should
rather be discussed after the meeting only by the involved team members. During the daily
Scrum every team member should answer the three following questions:

1. What did you do yesterday?

2. What will you do today?

3. Are there any impediments in your way?

The daily Scrum is not a status update, it is more like a commitment to the other team
members of what you will do till the next day, and what you have done since last meeting.
The good thing about having a daily Scrum meeting is that it helps the team see how
important these commitments are to themselves and the team. Since this is a student
project, and you all have other courses to attend (and students are not known to work from
08-16) it is not always possible to have a Scrum meeting every day or in the morning. The
team has to work out a solution that every team member feels comfortably about and which
at the same time makes it possible to monitor the progress of each team member.

Sprint Review Meeting

After each sprint a sprint review meeting is held. This is an informal meeting, which typically
can consist of a demo of the new features made during the sprint. As for the other meetings
this one is also open for everyone interested, but the Scrum team, Scrum master and the
customer should normally participate this meeting.

Sprint Retrospectives

A sprint retrospective should be held before a new sprint. During the retrospective, everyone
is allowed to contribute and discuss the ideas. Some suggestions might help for you:

● Sprint retrospective could happen at any place, you could do it in a cafe or rest room.

● Within this process, the SCRUM master shows the sprint backlog and with help from
the team, summarizes the sprint, such as important events and decisions, etc.

● Everyone gets the chance to say something, like what they thought was good, what
they think could have been better, and what they would like to do differently next
sprint.

23

Compendium TDT4240 Department of Computer Science

● Look at the estimated vs actual velocity. If there is a big difference, try to analyze
why.

● Alway assign a secretary when doing retrospective, and in the end, he/she should try
to summarize concrete suggestions about what they can do better next time.

4.3.4 Version Control Procedures and Tools

The group must create a ​systematic procedure​ for version control for ​all​ textual documents,
source code, etc. Some recommended tools to use are git, Google Drive, OneDrive etc. You
are also encouraged to use other types of tools to help you in the development process or
project management. The tools used must be documented and described.

4.3.5 Quality Assurance (QA)

QA assumes that the relevant product qualities have been identified, so that the
development process can be tailored to achieve these, e.g. reliability, performance,
usefulness etc. There exists an ISO-standard for this (ISO 9126) . 14

Time of response
Make agreements with the customer. There should be time of response on:

● Approval of minutes of customer meeting (e.g. 24 hours)
● Feedback on phase documents the customer would like for review (max 48 timer)
● Approval of phase documents (max 48 hours)
● Answer to a question (e.g. 24 hours)
● To get agreed documents etc (e.g. 24 hours)
● Other

Routines for producing high quality internally
This has something to do with how you organize the specification and programming work,
e.g. user involvement, "pair programming", design examination, peer reviews etc. The
number of people involved should be weighed against available resources. Some useful
practices are described below.

Best practices:​ The code you write might be used as a base for further development, and will
probably be used by the other team members. It will be practical to follow common design
and code conventions that all group members understand and practice. If the customer has
a coding convention, they may want you to use this.

Legal issues:​ Please observe that some freeware or trial ware licenses of code editors etc.
states that is it prohibited to use them to write code for commercial use. Check the license of
the software that you decide to use in the project, and discuss it with the customer if there
are such clauses that you might be in conflict with.

Coding style:​ How to write source code should also be specified. Such documentation
should typically contain:

14 ​http://en.wikipedia.org/wiki/ISO_9126

24

http://en.wikipedia.org/wiki/ISO_9126

Compendium TDT4240 Department of Computer Science

● Programming conventions, e.g. in use by the customer
● Standards for commenting source code.
● Show examples of source for how the programming conventions look like in practice.

The source code should be commented and documented proficiently, so that the customer
easily can make modifications and build on your work after the project is finished. At the end
of your project, the source code and necessary resources should be referenced and
supplemented with a Readme.txt file.

Code Review:​ ​Code Review, or Peer Code Review, is the act of consciously and
systematically convening with one's fellow programmer to check each other's code for
mistakes, and has been repeatedly shown to accelerate and streamline the process of
software development like few other practices can. There are some crucial insights about the
code review from the book Best-Kept Secrets of Peer Code Review, which is about Cisco's
peer-code review process conducted by SmartBear team : 15

● Lines of code (LOC) under review should be less than 200, not exceeding 400, as
anything larger overwhelm reviewers and they stop uncovering defects;

● Authors who prepare the review with annotations and explanations have far fewer
defects than those that do not;

● Inspection rates should not be too fast or you might miss a significant percentage of
defects.

The team members could use version control tools to do the review. Also, you need to
review your code before commit to the remote repository.

Templates and Standards

The group should create templates for all relevant document types. Even though it will take
some time to create these in the beginning, the group will benefit from these in two ways: 1)
the layout will be correct when creating project documents and 2) reduction of irritation and
stress within the group. Templates ought to be made for:

● agenda for meetings
● weekly status reports for the advisor meetings
● etc.

The group should also create pragmatic standards for:

● organization of files
● naming of files
● coding style
● etc.

4.3.6 Risk Management

Most likely there will sometimes be impediments between the scheduled plans and what is
actually committed from the team members. Impediments could have many and various

15 ​https://smartbear.com/SmartBear/media/pdfs/best-kept-secrets-of-peer-code-review.pdf

25

https://smartbear.com/SmartBear/media/pdfs/best-kept-secrets-of-peer-code-review.pdf

Compendium TDT4240 Department of Computer Science

causes, but it is the Scrum masters’ responsibility to resolve them as soon as possible. In
cases where the impediments regard the Scrum master, he or she should delegate tasks so
that someone else can help solving them. In more extreme cases (one on the team is not
doing his workload, serious illness etc.) the team should contact the advisors of the course.
Below are some examples of risks and impediments.

1. Miscommunication
Misinterpretations of what other team members say and write might stand in the way of a
common understanding of what to do and how to do it. This might lead to delays, unwanted
results and overlapping work.

Prevention: Throughout the project, and especially during weekly meetings, every team
member should understand the task given to him or her, by communicating openly about the
tasks during a week.

Correction: When a problem occurs, all team members should have a common
understanding of the situation and discuss the remedial measures.

2. Too many planned features lead to infeasible design
This is a problem with high frequency, especially when designing the product backlogs.

Prevention: Every item in backlogs should have a time estimation, and all of the functions
should be ready before the deadline. Always keep in mind the important dates when
developing the product and carry out execution of tasks in order of priority.

Correction: By closely monitoring progress the decision to drop certain requirements can be
made in time.

In order to handle risks, the different risk impediments that can happen in a project should be
identified and prioritized. A template for a table for handling of risks can be seen below.

Nr Activity Risk
factor

Consequ
ences

Probab
ility

Strategy and
actions

Dea
dlin
e

Responsib
le

 Which of
the
activities
of the
project
are
affected

Catchi
ng the
name
of the
risk
factors

Start with
H​, ​M​ or ​L
before
describin
g the
conseque
nces

H, M or
L

Select
strategy:
Avoid,
Transfer,
Reduce, or
Accept. Then
on the next
lines describe
the measures

Set
a
clear
dead
line
for ...

Give one
person the
responsibili
ty

26

Compendium TDT4240 Department of Computer Science

1 All Hans
is
involve
d in
UKA

H:

The
quality of
the
project
results
will
decrease

M Reduce

Assign
delimited
tasks to Hans
with clear
deadlines

Cont
inue
s

Project
leader

L = Low, M = Medium, H = High

4.3.7 Effort Registration

All projects needs to register the effort spent by each project participant on the different
activities (e.g. Prestudy, Programming etc.) and in what period (week 1, week 2 etc.). This is
needed to ensure that the project is on track according to the project plan. A weekly
registration or periodization is common.

So ​each​ of you must ​weekly​ report - in a so-called ​timesheet – seven data items per relevant
activity and period​: ​project group no, person name, date of registration, period no, activity
name or id, your effort spent and given in person-hours​ (possibly zero).

Make a ​template​ time-sheet for this information as soon as possible, and establish reporting
procedures from the very project start. The project manager (or a delegated person) should
be responsible to collect and synthesize the individual effort data into an updated ​project
effort-matrix​ on a spreadsheet. The matrix data will be used to regularly monitor the planned
(or estimated) effort vs. the actual one for the whole project. This matrix has ​time ​(period
number) as the horizontal dimension, and ​activity​ as the vertical dimension. Each ​matrix cell
contains a number measured in person-hours (ph).

So very early in the project, as part of making a Project Plan, you must ​break down​ the
project's total available or estimated effort into a dozen main activities or phases, which
again are allocated to periods. Naturally, activities belonging to the last part of the project
cannot be broken down in detail in the start.

Thus the project plan must be adjusted over time.

Example:​ Assume that we have a software project with ​three estimated activities (A1-A3)
over three time periods (T1-T3)​:

● A1. Prestudy, whose estimated effort is 40 ph (person-hours).
● A2. Requirements, with 40 ph.
● A3. Implementation, with 20 ph.
● A. Total of 100 ph.

The project has an unspecified number of participants, so our project manager must keep
track of the total resource usage (effort, time).

27

Compendium TDT4240 Department of Computer Science

Version 1​: Initial effort-matrix with very uneven effort estimates in the three periods:

Group no: ...

Date: ...

Activity\ Period T1 T2 T3 Activity sums

A1. Pre-study 40 40

A2. Requirement 40 40

A3. Implementation 20 20

Period sums 40 40 20 100

Comment: It makes sense to overlap the three activities a bit, to get a more even effort
distribution over the three periods.

Version 2:​ Reconciled matrix version, where the three "​diagonal​" ph-estimates (40, 40, 20)
are spread out to get a more even effort distribution over time - please discuss the revised
ph-estimates

Group no: ...

Date: ...

Activity\ Period T1 T2 T3 Activity sums

A1. Pre-study 20 10 10 40

A2. Requirement 10 20 10 40

A3. Implementation 0 (OK) 5 15 20

Period sums 30 35 35 100

Version 3​: Now introducing ​estimated​ (E) vs. ​actual​ (A) effort per period (T1-T3), both per
running​ period (as above) and ​accumulated​ over several periods (see after the "/"-symbol
in the below effort-matrix):

28

Compendium TDT4240 Department of Computer Science

Group no: ...

Date: ...

Activity\Period Start T1 T2 T3 Activity
sums

Activity
comments

A1. Pre-study E:20

A:0

E: 20/20

A: 13/13

E: 10/30

A:12/25

E: 10/40

A: /

E: */40

A: ..

...

A2.
Requirement

E=10

A=0

E: 10/10

A: 11/11

E: 20/30

A::19/30

E: 10/40

A: /

E: */40

A: ..

...

A3.
Implementation

E=0

A=0

E: 0/ 0

A: 2/ 2

E: 5/ 5

A: 7/ 9

E: 15/20

A: /

E: */20

A: ..

...

Period sums E=30

A=0

E:30/30

A: 26/26

E: 35/65

A: 38/64

E:35/100

A: /

E:
*/100

A: ..

...

Period
comments

 A1
delayed

A3
before

A1
delayed

A3
before

... ...

Let us assume that two time periods (T1-T2) have passed, with T3 just about to start.

Observation:​ in activity A1 after time T2 the Estimated running effort is 10 ph and the
estimated accumulated effort (i.e. including T1) is 20+10 = 30 ph. However, the Actual effort
for A1/T2 is 12 ph, and the accumulated effort is 13+12 = 25 ph. So it seems that A1 is a bit
behind the estimated effort ("plan") – but that can have many valid reasons. We are only
measuring resource usage (effort, time), not the actual state of the software under
development! Ex. what advice will you give to all the activities A1-A3 for the last T3 period?

4.4 Software security 16

Today, nearly all sectors of society depend on software systems to operate efficiently. As the
dependence on software has grown, so have the threats towards these systems and the
potential consequences of incidents in the systems. Though network security measures

16 ​Written by Inger Anne Tøndel, PhD student IDI, Aug 2016.

29

Compendium TDT4240 Department of Computer Science

(such as firewalls and anti-virus software) can improve the security of the software systems,
these only address the symptoms of the real problem: software that is crippled with
vulnerabilities. Because of the general dependence on software systems, software security
now needs to be taken into account for all software, not only for security-critical software.

The mantra in all information security work is that it should be risk based, so also for
software security. It is way too costly (and probably impossible for complex systems) to aim
for 100 % secure software, thus it is necessary to identify which part of the software is more
critical regarding security, and which activities will be most efficient and effective in securing
the software product.

4.4.1 Typical Software Security Activities – the Touchpoints

Taking security into account for the system, means to build security into the system
throughout the development process. One commonly referred approach for this is the seven
touchpoints that give an overview of seven activities that are in general recommended to 17

do throughout development. These touchpoints are:

1. Static analysis tools – to automatically identify security bugs in the code
2. Risk analysis at the design and architecture level
3. Penetration testing
4. Risk-based security tests
5. Abuse cases – to get into the mind of potential attackers
6. Security requirements
7. Security operations

In this course the work on software security is expected to include some activities related to
touchpoints 2, 5 and 6: Students are expected to identify key security requirements to their
system and discuss the security implications of the functionality of the system and how
attackers may go about attacking their systems, and they are expected to discuss security
related to their architecture.

4.4.2 Software Security Games for Analyzing Security Risks and Threats

Two techniques are used in this course, but students are only expected to use the technique
they receive training on, that is only one of these techniques. In this section the two
techniques are briefly described.

Protection Poker

Protection Poker is a security risk assessment technique for agile development teams 18

proposed by professor Laurie Williams at NCSU.

In a risk analysis potential unwanted incidents in the system is identified (e.g. an attacker
can get access to the database through some functionality and make changes) and one
evaluates how likely this is and potential consequences. By doing this, one is able to gain an

17 The seven touchpoints: ​http://www.drdobbs.com/the-7-touchpoints-of-secure-software/184415391
18 Details on how to play: ​http://www.sintef.no/protection-poker

30

http://www.drdobbs.com/the-7-touchpoints-of-secure-software/184415391
http://www.sintef.no/protection-poker

Compendium TDT4240 Department of Computer Science

awareness of what are the main security issues of the product and make decisions on where
to prioritise the security effort and what security mechanisms are needed

Protection Poker is played during every iteration planning meeting, and it is recommended
that the full team (including developers, testers, product managers or business owners,
project managers, usability engineers, security engineers, software security experts, and
others) participates. One person should have the role as moderator, and this person will be
responsible for leading the team through the game, and point the discussions in a good
direction. One person should be responsible for making notes from the discussion, e.g. on
potential issues, threats etc.

In one round of protection poker, the team plays about the features to be implemented in this
iteration. The team starts with one feature and identifies the assets this feature touches
upon. For assets that have not previously been assigned a value the team uses the
protection poker cards and votes and discusses about the value until some reasonable
agreement has been made. Afterwards the same thing is done for the exposure – to what
extent the feature to be implemented makes it easier to attack the system.

After playing Protection Poker the team should have gained a common understanding of the
security risks related to the features to be implemented in the iteration, and have the
necessary foundation to make decisions on how much security and what type of security is
needed.

Microsoft Elevation of Privilege (EoP)

Microsoft EoP is a game for threat modelling related to an architecture. Before playing the 19

EoP game, there should be a sketch of the architecture in place, and it is beneficial if this
sketch includes an overview of the flow of the information in the system. Then EoP is used to
identify any security problems in this architecture.

EoP is played like many other card games, and looks much like an ordinary stack of cards
except that there is different suits and that there are security hints on the cards. Players gain
points, and the one that ends up with most points win. Points are made for winning rounds,
but also for laying cards with hints that are considered to be potential issues in the system.
These issues should be noted and looked into after the game.

4.4.3 More on Threats, Vulnerabilities and What You Can Do About It

As input to playing Protection Poker and Microsoft EoP it is useful with an overview of some
common threats, vulnerabilities and things to do about them. First a few things about
terminology:

● An ​asset​ is something that is of value and that you want to protect, e.g. personal
information or payment data

● A ​threat​ is what you try to protect against, e.g. loss of this data or someone
tampering the data so that you can no longer trust it. When working with security, the

19 Details on how to play the game: ​https://www.microsoft.com/en-us/sdl/adopt/eop.aspx

31

https://www.microsoft.com/en-us/sdl/adopt/eop.aspx

Compendium TDT4240 Department of Computer Science

source of the threat is often thought to be an attacker, but harm to assets may also
be caused by errors without there being an attempt to create any harm.

● A ​vulnerability​ is a weakness in your system that make the threat possible, e.g.
sending information in clear text, trusting input from users without checking it, having
some bugs in the code that can be exploited by attackers.

● A ​risk​ is the combination of all these – you need to have both something of value (an
assets) a threat and a vulnerability for something to be a risk. The size of the risk
depends on how likely it is that this will actually happen and the consequences in
case it happens.

● A ​countermeasure​ is something that reduces the risk associated with a threat to your
system, e.g. encryption or input validation.

A commonly used threat mnemnoic is STRIDE (developed by Microsoft), and this can be 20

used as a checklist to see if one has covered the main types of threats. The main threat
categories are:

● Spoofing
● Tampering
● Repudiation
● Information disclosure
● Denial of service
● Elevation of privilege

Information on common vulnerabilities and how to mitigate them (what countermeasures to
use) can be found at the following resources:

● For web-applications see the OWASP top 10 21

● For a more general overview see the taxonomy of security errors known as the seven
kingdoms 22

20 STRIDE: ​https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
21 OWASP Top 10: ​https://www.owasp.org/index.php/Top_10-2017_Top_10
22 Seven kingdoms: ​https://cwe.mitre.org/documents/sources/SevenPerniciousKingdoms.pdf

32

https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx
https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx
https://www.ntnu.no/wiki/display/tdt4290/Compendium%3A+Introduction+to+course+++TDT4290+Customer+Driven+Project%2C+Autumn+2017#
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://cwe.mitre.org/documents/sources/SevenPerniciousKingdoms.pdf

