Subject Description Form

Subject Code	EIE226 (for 42077)
Subject Title	Introduction to Databases
Credit Value	3
Level	2
Pre-requisite / Co-requisite/ Exclusion	Nil
Objectives	To introduce:
	 concepts of data models and principles of data normalization database development life cycle practical skills of relational database design
Intended Subject Learning Outcomes	Upon completion of the subject, students will be able to:
Learning Outcomes	Category A: Professional/academic knowledge and skills Develop data models for a database application using ER diagrams Use the concepts of data normalization to develop well-designed database applications.
Contribution of the	Programme Outcomes:
Subject to the Attainment of the Programme Outcomes	 Category A: Professional/academic knowledge and skills Programme Outcome 4: This subject contributes to the programme outcome by providing students with laboratory exercises to write software programs to develop database applications. Programme Outcome 8: This subject contributes to the programme outcome through the teaching of the theories and concepts of databases.
	Category B: Attributes for all-roundedness Programme Outcome 11: This subject contributes to the programme outcome through providing the opportunity for students to learn independently.
Subject Synopsis/	Syllabus:
Indicative Syllabus	Database context Introduction to Database; File and database processing systems; Definition of database; DBMS examples.
	Database design 2.1 Data Modelling: Entity relationship model; Elements of the E.R. model. 2.2 Relational Model: Keys Definition; Integrity Constraints, Transforming ER diagrams into relations; Normalization. 3.3 Mapping Logical Database Designs into Physical Storage Mechanisms: Indexing; File Organisations.
	3. <u>Database Processing</u> Foundations of relational implementation; Defining relational data; Relational data manipulation; Relational algebra; Structured query language; Restricting and sorting data; Displaying data from multiple tables.
	Data Management 4.1 Data administration: data dictionaries; data quality; database security;

authentication and authorisation; concurrent access

4.2 Distributed databases: client-server architecture, replication and partitioning; Internet and Intranet databases

Laboratory Experiments

Experiment/Mini Project:

Possible mini-projects include

- Design and develop a database system for various practical applications.

Teaching/Learning Methodology

Lectures: Fundamental principles and key concepts of the subject are delivered to students.

Tutorials: Students will be able to clarify concepts and to have a deeper understanding of the lecture material; problems and application examples are given and discussed.

Laboratory Sessions: Students will do some programming exercises to enhance their understanding on database design and development.

Mini-project: Students in groups of 2-3 will design and develop a database systems for some practical applications.

Alignment of Assessment and Intended Subject Learning Outcomes

Specific Assessment Methods/Tasks	% Weighting	Intended Subject Learning Outcomes to be Assessed (Please tick as appropriate)	
		1	2
1. Continuous Assessme (Total: 60%)	nt		
Short quizzes	5%	✓	✓
Tests	20%	✓	✓
Laboratory	5%	✓	✓
Mini-project	30%	✓	✓
2. Examination	40%	✓	✓
Total	100%		<u> </u>

Explanation of the appropriateness of the assessment methods in assessing the intended learning outcomes:

Short quizzes: These can measure the students' understanding of the theories and concepts as well as their comprehension of subject materials.

Tests & Examination: End-of-chapter-type problems are used to evaluate the students' ability in applying concepts and skills learnt in the classroom; students need to think critically and to learn independently in order to come up with an appropriate design.

Laboratory: Each student is required to produce a report; the accuracy and presentation of the report will be assessed.

Miniproject: Each group of students are requierd to produce a written report; oral examination will be conducted for each group member to evaluate their technical knowledge and communication skills.

Student Study Effort

Class contact (time-tabled):

Expected	Lecture	24 Hours	
	Tutorial/Laboratory/Practice Classes	18 hours	
	Other student study effort:		
	Lecture: preview/review of notes; homework/assignment; preparation for test/quizzes/examination	36 Hours	
	Tutorial/Laboratory/Practice Classes: preview of materials, revision and/or reports writing	27 Hours	
	Total student study effort:	105 Hours	
Reading List and References	Textbooks:		
References	1. Michael V. Mannino, <i>Database Design, Application Development and Administration</i> , 3 rd ed., McGraw-Hill, 2007.		