

Subject Description Form

Subject Code COMP302

Subject Title Foundations of Software Engineering

Credit Value 3

Level 3

Pre-requisite /
Co-requisite/
Exclusion

Pre-requisite: COMP201, COMP210

Co-requisite/ Exclusion: Nil

Objectives

 This subject provides students with:

• a general knowledge of the application of software engineering techniques in
different stages and aspects of software development;

• practice in applying the theories, concepts and techniques acquired during
lectures through the actual accomplishment of a guided case study project.

Intended Learning
Outcomes

Upon completion of the subject, students will be able to:

 Professional/academic knowledge and skills

(a) apply software engineering techniques in the systems specifications and design
stages of software projects;

(b) apply software engineering techniques to real-life case study projects;

(c) acquire concepts in software quality assurance standards and be able to develop
skills and practices in quality software development;

Attributes for all-roundedness

(d) solve complex problems in groups and be able to communicate effectively
through project presentations;

(e) communicate in writing with technical documentation throughout the various
stages of project development.

Alignment of Programme Outcomes:
Programme Outcome 1: Practice communication skill in discussion and project
presentation and documentation.

Programme Outcome 4: Think and reason critically on developing alternatives in
problem solving and system development, and be able to design and test systems by
applying related technologies.

Programme Outcome 6: Follow closely the advancement in software design and
testing and their impact to the software development projects.

Programme Outcome 7: Work together as a team in project design and development.

Subject Synopsis/
Indicative Syllabus

Topic Duration of
Lectures

1. Software process
 Software process and process models; software reuse.

2.5

2. Specification and requirement analysis
 Event-based specification; model-based specification;

requirements analysis; prototyping.

5

3. Software analysis and design
 System analysis and models; overview of software design

process and strategies; function-oriented design; objected-
oriented design.

12.5

4. Programming techniques and tools
 Programming style; fault avoidance and tolerance; exception

handling; defensive programming; computer-aided software
engineering; software development environment; features of
programming languages.

2.5

5. Software verification and validation
 Testing techniques and tools; static analysis; formal proof;

design and code reviews, inspection, walkthrough; software
reliability; software safety.

7.5

6. Software metrics
 Complexity metrics; use of metrics for software monitoring

and control; software quality assurance.

5

Total 35

Case Study:
Students will practise their skills in developing a group project representing a real-
life application.

Teaching/Learning
Methodology

Lectures focus on introduction and explanation of key concepts and techniques.
Tutorial and lab sessions provide students opportunity to practice the techniques and
tools presented in class. Assignments and project allow students to deepen their
understanding of the concepts taught in class and apply the theory and techniques to
software design and testing. Students will be encouraged to work in groups to share
and present ideas, review other’s work, and develop teamwork skill.

Assessment
Methods in
Alignment with
Intended Learning
Outcomes

Specific assessment
methods/tasks

% weighting Intended subject learning outcomes to be
assessed (Please tick as appropriate)

a b c d e

1. Assignments

60%

2. Lab exercises

3. Project

4. Mid-term

5. Examination 40%

Total 100 %

Explanation of the appropriateness of the assessment methods in assessing the intended
learning outcomes:

Assignments, project and mid-term test act as a measure on the understandings of the
students on the basic concepts of the software specification, design and testing.

In addition, project will be used to measure the understandings of the students about the
current practice in software design and testing. The students can improve their presentation
and communication skills through the project presentation, and practice team work.
Students can also develop their analytic and problem solving skills.

Examination will be used as an overall measure of the understandings of the students on
software development process, software specification, design and testing concepts and
technologies.

Student Study
Effort Required

Class contact:

 Lecture 35 Hrs.

 Tutorial 14 Hrs.

Other student study effort:

 Work on assignments and project; study related
material/ team work 84 Hrs.

 Study for mid-term and examination 25 Hrs.

Total student study effort 158 Hrs.

Reading List and
References

Textbooks:

1. Pressman, R., Software Engineering: A Practitioner's Approach, 6th Edition,
McGraw-Hill, 2005.

Reference books:

1. Sommerville, I., Software Engineering, 9th Edition, Addison-Wesley, 2010.

2. Booch, G., Object Oriented Analysis & Design with Applications, Second
Edition, Addison-Wesley, 1994.

3. Jacobson, I., Booch, G. and Rumbaugh, J., The Unified Software Development
Process, Addison-Wesley, 1999.

4. Pierre Bourque and Robert Dupuis, Guide to the Software Engineering Body of
Knowledge, IEEE Computer Society, 2004.

5. Kathy Schwalbe, Information Technology Project Management, 6th Edition,
Cengage Learning, 2009.

