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1 Introduction 
 
In electromagnetism a transmission line transmits the fundamental 
TEM mode which propagates signals at arbitrarily low frequencies. 
This requires at least two conductors. In this note we will consider 
components which do not transmit the TEM mode, but nevertheless 
are used for transmission of signals. These components are here called 
waveguides. One example is a hollow metallic waveguide which 
transmits waves in its interior and contains only one conductor. 
Another example is a dielectric slab which does not contain a 
conductor at all. A third example is a regular transmission line 
operated in a mode different from the TEM mode. In a certain sense 
the two terms are overlapping: A transmission line is guiding waves, 
and a waveguide does transmit signals. Nevertheless, we shall define 
the transmission line as one transmitting the TEM mode, and a 
waveguide as propagating other modes. A consequence of this is that 
metallic waveguides (but not dielectric ones) are associated with a 
distinct frequency below which the mode of interest can not 
propagate. Also, in a waveguide the group velocity and phase velocity 
are both different from the plane wave velocity. 
 
Applications are primarily within all uses of high frequencies where 
the specific properties are advantageous. A metallic waveguide has 
lower loss and can transmit higher power than regular transmission 
lines. The signal also leaks out to a much less extent. A dielectric 
waveguide such as an optical fiber can transmit significantly more 
information than any other waveguiding device or transmission line. 
 
In the following discussion we shall consider only lossless materials. 
This means that all conductors and dielectrics have perfect material 
properties. 

2 Propagation in waveguides, general relations 
 
We will consider some relations which are valid for waveguide 
structures of arbitrary cross section. We assume that the waveguide 
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structures are cylindrical which means that the cross section is 
uniform, so that it does not vary along the propagation path.  
 
We assume that the wave propagation is in the +z-direction and is 
harmonic with time. This means that all field components can be 
described by the factor ( )j t z z j t ze e e eω γ α ω β− −= , where γ  is the propagation 
constant and ω is the angular frequency. As an example, a physical or 
instantaneous electric vector field ( , , , )E x y z t

r  that is part of an 
electromagnetic wave has three cartesian components and varies in 
space and time. With harmonic wave propagation in z-direction this 
physical field can be represented by an electric field phasor vector 
ˆ( , , )E x y z
r

 so that 
 
 { } { }0ˆ ˆ( , , , ) Re ( , , ) Re ( , )j t j t zE x y z t E x y z e E x y eω ω γ−= =

r rr , (1) 

 
where the z-independent electric field phasor vector 0ˆ ( , )E x y

r
 has been 

introduced. This quantity varies with the transverse coordinates only 
and is convenient to introduce to suppress the z-variation in the 
following equations. Since we have harmonic propagation, we can do 
formal substitutions in the equations so that 
 

 
 Fig. 1. Uniform waveguide with constant cross section along z-
axis. 
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We shall now discuss what this means to propagation in a waveguide 
as shown in Fig. 1. Previously we have developed the Helmholtz's 
equations for the electric and magnetic fields expressed by the phasor 
vectors so that we obtain (when suppressing the z-variation) 
 
 2ˆ ˆ 0E k E2∇ + =

r r
, (3) 

 2ˆ ˆ 0H k H2∇ + =
r r

. (4) 
 
Here the wave number of an unbounded medium k ω µε=  has been 
used, and Ê

r
 and Ĥ

r
 are functions of three space coordinates. 

 
Since we know that the solution represents a wave in the z-direction, 
we want to separate the z-part of the Laplacian operator. As an 
example, we write for the electric field in Cartesian coordinates 
 
 ( ) ( ) ( )

2
2 2 2 2 2 2 2

2
ˆ ˆ ˆ ˆ ˆ

z xy z xy xyE E E E E
z

γ2
⊥

⎛ ⎞∂
∇ = ∇ +∇ = ∇ +∇ = ∇ + = ∇ +⎜ ⎟∂⎝ ⎠

r r r r r
, (5) 

 
where we have replaced the transverse part of the Laplacian operator 

2
⊥∇  by the Cartesian version 

2 2
2

2 2xy x y
∂ ∂

∇ = +
∂ ∂

. Substituted into Eq. (3) and 

multiplied by zeγ  this gives 
 
 ( )2 0 2 2 0 2 0 2 0ˆ ˆ ˆ ˆ 0xy xyE k E E h Eγ∇ + + =∇ + =

r r r r
, (6) 

 
so that now only variation in the transverse coordinates is involved. 
By the same procedure we obtain  
 
 ( )2 0 2 2 0 2 0 2 0ˆ ˆ ˆ ˆ 0xy xyH k H H h Hγ∇ + + =∇ + =

r r r r
, (7) 
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where we have introduced  
 
 2 2 2h kγ= + . (8) 
 
The substitution we did above for the transverse part of the Laplacian 
operator is an arbitrary substitution. If we had chosen cylindrical 
coordinates, for example, we would have written 

2
2

2 2

1 1r
r r r r φ⊥

∂ ∂ ∂⎛ ⎞∇ = +⎜ ⎟∂ ∂ ∂⎝ ⎠
. 

 
The two vector equations (6) and (7) actually represent six second 
order differential equations, one for each spatial component of 0Ê

r
 or 

0Ĥ
r

. In solving for these unknown variables, we have to specify the 
transverse geometry and the boundary conditions. The six vector 
components (each dependent on space coordinates) are dependent 
through Maxwell’s equations. We will use the two curl equations 
(source-free case) for this purpose. Using the assumed variation with z 
and t, we obtain 
 

 

0
0 0

0
0 0

0 0
0

ˆ ˆ      

ˆ ˆ ˆ    (a)

ˆˆ ˆ    (b)

ˆ ˆ ˆ    (c)

   

z
y x

z
x y

y x
z

E j H

E E j H
y

EE j H
x

E E j H
x y

ωµ

γ ωµ

γ ωµ

ωµ

∇× = − →

⎫∂
+ = − ⎪

∂ ⎪
⎪∂ ⎪

− − = − ⎬
∂ ⎪

⎪∂ ∂
− = − ⎪

∂ ∂ ⎪⎭

r r

 (9) 
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0 0

0 0
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H H j E
x y

ωε

γ ωε

γ ωε

ωε

∇× = →

⎫∂
+ = ⎪

∂ ⎪
⎪∂ ⎪

− − = ⎬
∂ ⎪

⎪∂ ∂
− = ⎪

∂ ∂ ⎪⎭

r r

 (10) 

 
 
Because of the discussion that follows later, it is practical to consider 
the four transverse field components as unknown variables, and 
express them as functions of the field components in z-direction. This 
can be obtained as follows. If we inspect Eqs. (9)(a) and(10)(b), these 
two equations contain the two “unknown” variables 0ˆ

yE  and 0ˆ
xH . We 

can eliminate 0ˆ
yE  by multiplying the first equation by jωε while the 

second is multiplied by γ, followed by adding the two resulting 
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equations. This gives an expression for 0ˆ
xH . Multiplying the same two 

equations by other factors (find them!) eliminates 0ˆ
xH  and obtains 0ˆ

yE . 
By operating in the same way on Eqs. (9)(b) and (10)(a), we obtain 
results for 0ˆ

xE  and 0ˆ
yH . The result is 

 

 
0 0

0
2

ˆ ˆ1ˆ    z z
x

H EH j
h x y

γ ωε
⎛ ⎞∂ ∂

= − −⎜ ⎟
∂ ∂⎝ ⎠

, (11) 

 
0 0

0
2

ˆ ˆ1ˆ    z z
y

H EH j
h y x

γ ωε
⎛ ⎞∂ ∂

= − +⎜ ⎟
∂ ∂⎝ ⎠

, (12) 

 
0 0

0
2

ˆ ˆ1ˆ    z z
x

E HE j
h x y

γ ωµ
⎛ ⎞∂ ∂

= − +⎜ ⎟
∂ ∂⎝ ⎠

, (13) 

 
0 0

0
2

ˆ ˆ1ˆ    z z
y

E HE j
h y x

γ ωµ
⎛ ⎞∂ ∂

= − −⎜ ⎟
∂ ∂⎝ ⎠

, (14) 

 
where, as before, 2 2 2h kγ= + , jγ α β= +  and k ω µε= . We therefore solve 
the complete field problem in two basic steps:  
 

1. We first solve Eqs. (6) and (7) for the longitudinal wave field 
components.  

 
2. Then we find the transverse components from Eqs. (11) - (14). 

 
It turns out that the electromagnetic waves we will discuss, can be 
conveniently divided into three groups according to the z-components 
of the electric and magnetic fields. 
 

1. Transverse electromagnetic (TEM) waves. In this case both Ez 
and Hz are zero. An example of this is a plane electromagnetic 
wave which has both electric and magnetic field perpendicular to 
the propagation direction. 

 
2. Transverse electric (TE) waves contain no electric field 

component in the z-direction. However, the magnetic field 
contains a z-component. 
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3. Transverse magnetic (TM) waves contain no magnetic field 
component in the z-direction. However, the electric field 
contains a z-component. 

 
These wave groups will be discussed in the following. 
 

2.1 TEM waves 
 
In this case both Ez and Hz are zero. From Eqs. (11) - (14) we see that 
this implies the trivial condition that all transverse fields are also zero 
unless 2 0h = . Therefore, TEM waves exist only when 
 2 2 2 0TEM TEMh kγ= + = . (15) 
 
This further implies that 
 TEM jk jγ ω µε= = , (16) 
 
which is the same relation we know from a uniform plane wave in an 
infinite medium, and also from a TEM wave on a lossless 
transmission line. In all three cases we therefore obtain the same phase 
velocity given by 
 ( )

1
p TEMu

k
ω

µε
= = . (17) 

 
We obtain the ratio between the x-component of the electric field and 
the y-component of the magnetic field by using Eqs. (9)(b) and (16). 
This gives the wave impedance 
 
 

0

0

ˆ
ˆ
x

TEM
TEMy

E j jZ
H j

ωµ ωµ µ
η

γ εω µε
= = = =@ . (18) 

 
This shows that the phase velocity up and ZTEM are  
• equal to the plane wave velocity u and the intrinsic impedance 
η, respectively, for plane waves in the medium, 

• both independent of frequency. 
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We can also find (from Eqs. (9)(a) and (16)) that the ratio of the two 
other transverse field components can be written 
 

 
0

0

ˆ
ˆ
y

TEM
TEMx

E j Z
H

ωµ µ
γ ε

= − = − = − . (19) 

 
The results we have obtained for the transverse fields in Eqs. (18) and 
(19) can be written as the vector equation 
 
 1

z
TEM

H a E
Z

= ×
r rr , (20) 

 
after we have multiplied each wave component by ejωte-γz and taken the 
real part. This form is equal to the relation we know from propagation 
of a uniform plane wave in an unbounded medium. 
 
We will now show that waveguides of a closed cross section with only 
one conductor can not support TEM waves. In magnetostatics we have 
learned that magnetic flux lines always close upon themselves. This is 
also true in time-varying cases. Therefore a possible TEM wave in a 
waveguide would contain B and H fields forming closed loops in the 
transverse plane. By using Ampere's law around one such loop, we 
would find that there would be a current inside the loop in the 
longitudinal direction. This current would be the sum of conduction 
and displacement current. The absence of a center conductor would 
give zero conduction current. Also, the displacement current ( /D t∂ ∂

r ) 
would have no longitudinal component since for TEM waves Ez = 0 
by definition. Since no total longitudinal current occurs, the solution 
does not exist if only one conductor is present.  
 
We conclude that a hollow waveguide consisting of a single conductor 
can not support TEM waves. If we have a hollow waveguide with a 
center conductor such as in a coaxial cable, however, TEM waves are 
supported. Other two-conductor waveguides such as striplines and 
two-wire lines also support these waves. 
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2.2 TE waves 
 
Transverse electric (TE) waves have no electric field component in the 
z-direction. They can be analyzed by solving for the z-component of 
Eq. (7) to give: 
 
 2 0 2 0ˆ ˆ 0xy z zH h H∇ + = . (21) 
 
As discussed above, the field problem can be solved by first solving 
this second-order partial differential equation with appropriate 
boundary conditions at the walls. Thereafter, we can find all 
transverse field components by setting Ez equal to zero in Eqs. (11) to 
(14). This gives the equations 
 
 

0
0

2

ˆˆ z
x

HH
h x
γ ∂

= −
∂

, (22) 

 
0

0
2

ˆˆ  z
y

HH
h y
γ ∂

= −
∂

, (23) 

 
0

0
2

ˆˆ z
x

j HE
h y
ωµ ∂

= −
∂

, (24) 

 
0

0
2

ˆˆ   z
y

j HE
h x
ωµ ∂

=
∂

. (25) 

 
The wave impedance is the ratio between two perpendicular field 
components. We find  
 

 
00

0 0

ˆˆ
ˆ ˆ

yx
TE

y x

EE jZ
H H

ωµ
γ

= − =@ . (26) 

 
It should be noted that although the field components are functions of 
the transverse coordinates, the wave impedance does not vary over the 
cross section. Eq. (26) also implies the following vector equation: 
 
 ( )TE zE Z a H= − ×

r rr , (27) 
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As stated above, the waveguide problem can be solved by starting 
with the Helmholtz’ equation for the longitudinal field Hz (Eq. (21)). It 
turns out that solutions are possible only for discrete values of h. 
There is an infinite number of these values, but not all values are 
possible. These values are called characteristic values or eigenvalues 
of this specific problem. Each of these eigenvalues is associated with a 
particular mode which is characterized by a unique combination of its 
own 
 
• velocity and 
• field distribution. 

 
We shall now show that the eigenvalues are all real numbers. Some 
important conclusions that are valid in the general case can be found 
from this fact. We know from Eq. (8) that 
 
 2 2 2 2h k hγ ω µε= − = − . (28) 
 
Two distinct ranges for the propagation constant can be found, 
depending on whether the argument under the square root is positive 
or negative. Let us start with the value zero for this argument. The 
value γ = 0 gives the condition  
 
 2 2

c hω µε = . (29) 
 
From this equation we conclude that h is real. We find the cutoff 
frequency 
 
 

2 2
c

c
hf ω

π π µε
= = , (30) 

 
which depends on the eigenvalue of the particular eigenmode. We can 
then rewrite Eq. (28) in terms of fc into  
 

 
22

21 1
c

fh h
h f

ω µε
γ

⎛ ⎞
= − = −⎜ ⎟

⎝ ⎠
. (31) 
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We will find the wavelength for a plane wave in an unbounded 
medium given by µ and ε corresponding to fc. In this medium 1/u µε=  
is the velocity of light. Therefore, 
 
 1 2

c
c c

u
f hf

π
λ

µε
= = = . (32) 

 
Thus the eigenvalue can be interpreted as the wavenumber for plane 
waves at the cutoff frequency.  
 
 
We shall consider two main cases; frequencies above and under the 
cutoff frequency. 
 
 
Case 1.     

2

  or 1c
c

ff f f
⎛ ⎞> >⎜ ⎟
⎝ ⎠

.  

Frequency is higher than the cutoff frequency. In this range γ is 
imaginary. Its value is 
 

 
222

2 2 /1 1 1
/
c cu fhj j k h jk jk jk

k u f
ω

γ β
ω

⎛ ⎞⎛ ⎞⎛ ⎞= = − = − = − = − ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. (33) 

 
Thus we have a propagating mode with a phase constant 
 

 
2

1 cfk
f

β
⎛ ⎞

= − ⎜ ⎟
⎝ ⎠

. (34) 

 
This phase constant is characteristic of the propagation in the z-
direction which is along the waveguide axis. Thus we can define a 
periodicity along the waveguide, the guide wavelength 
 
 

2

2 2

1
g

c

k
k f

f

π π λ
λ λ

β β
= = = >

⎛ ⎞− ⎜ ⎟
⎝ ⎠

, (35) 

where 
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 2 2 u
k f
π π

λ
ω µε

= = =  (36) 

 
is the wavelength of a plane wave in an unbounded medium given by 
µ and ε.  
 
The relation between γ, k and h in Eq. (28) can be transformed into a 
relation between the wavelengths we have introduced above. From 
Eq. (28) this gives 
 
 2 2 2k hβ= +  (37) 
or 
 

2 2 2

1 1 1

g cλ λ λ
= + . (38) 

 
The phase velocity of the wave in the guide is  
 
 

2

1

g
p

c

k uu u u
k f

f

λω ω
β β λ

= = = = >
⎛ ⎞− ⎜ ⎟
⎝ ⎠

. (39) 

 
This equation shows that the phase velocity for a propagating mode in 
a waveguide is always higher than the plane wave velocity in an 
unbounded material of the same properties, and that it is frequency 
dependent. Thus the mode is dispersive in a single-conductor 
waveguide, although a plane wave in an unbounded medium of the 
same properties is nondispersive. 
 
The group velocity is 
 
 1

gu d dβ ω
= , (40) 

where from Eq. (34) we can write 
 

 
2

2 2 2 211 c
c c

kk
u

ω
β ω ω ω ω

ω ω
⎛ ⎞= − = − = −⎜ ⎟
⎝ ⎠

. (41) 
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This yields 
 

 
2

1 c
g

g

fu u u uf
λ
λ

⎛ ⎞= − = <⎜ ⎟
⎝ ⎠

. (42) 

 
By multiplying Eqs. (39) and (42) we find 
 
 2

p gu u u= . (43) 
 
An illustration of these relations will be found later. 
 
From Eqs. (26) and (33) we find the wave impedance to be 
 
 

2 2 2

1 1 1
TE

c c c

j jZ
f f fjk j
f f f

ωµ ωµ η

ω µε

= = =
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

− − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. (44) 

 
This shows that the wave impedance of a propagating TE mode in a 
waveguide consisting of a lossless dielectric is purely resistive. 
 
 
Case 2.     

2

 or 1c
c

ff f f
⎛ ⎞< <⎜ ⎟
⎝ ⎠

.  

Frequency is lower than the cutoff frequency and γ is real. From Eq. 
(31) we see: 
 

 
2

1
c

fh
f

γ α
⎛ ⎞

= = −⎜ ⎟
⎝ ⎠

. (45) 

 
This means that the phase constant is zero, so the mode is non-
propagating or evanescent. The attenuation constant α causes the 
amplitude to be attenuated according to e-αz.  
 
We have seen that the waveguide acts as a high-pass filter such that 
only frequencies f > fc for the relevant mode can propagate in the 
waveguide. Lower frequencies will not be transmitted through the 
waveguide. 
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2.3 TM waves 
 
Transverse magnetic (TM) waves have no magnetic field component 
in the z-direction. They can be analyzed by solving Eq. (6) for 0ˆ

zE : 
 
 2 0 2 0ˆ ˆ 0xy z zE h E∇ + = . (46) 
 
In the same way as for TE waves, this equation can be solved by 
applying the appropriate boundary conditions at the walls. The 
detailed solutions have some distinct differences from the TE case. On 
the other hand, the methods and solutions for the two mode classes 
have many similarities. We will therefore not pursue this theme 
further here. 
 
We shall next look into wave propagation of TE waves in specific 
geometries. 
 

3 TE modes in metallic waveguides 
We shall now discuss metallic waveguides. This means that 
propagation of the electric and magnetic fields is along one or several 
electric conductors. 
 

3.1 TE modes in a parallel-plate waveguide 
 
The parallel-plate waveguide consists of two parallel metal sheets as 
shown in Fig. 2. This configuration is also known as a planar 
transmission line. From earlier we know that this configuration can 
transmit signals of frequencies all the way down to zero. Operated in 
this way the signal is transmitted as a TEM mode. We shall see that 
this is not the only mode that can be transmitted. 
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Fig. 2. An infinite parallel-plate waveguide. 
 
 
In Fig. 2 two parallel metal plates with a dielectric material in between 
constitute the transmission line with propagation in z-direction. The 
dimension in this direction is assumed to be infinite. In this analysis 
we assume the plate distance b to be much smaller than the plate 
width in the x-direction. We therefore neglect fringe fields at the plate 
edges, and assume uniform fields along x-direction as if the plates 
have an infinite width. This means that we can do a two-dimensional 
analysis where any variation in the x-direction is zero. After the 
mathematical analysis we shall discuss a physical interpretation of this 
case and also illustrate some more general concepts related to 
waveguide propagation. 
 

3.1.1 Mathematical analysis 
Since there is no x-variation, Eq. (21) can be written 
 

 ( ) ( )
2 0

2 0
2

ˆ
ˆ 0z
z

d H y
h H y

dy
+ = . (47) 

 
The general solution of this problem can be written 
 

z 

x 

y 

b 
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 ( ) ( ) ( )0ˆ sin coszH y A hy B hy= + . (48) 
 
The boundary condition we need to determine the constants can be 
obtained from Eq. (24). The tangential electric field Ex must vanish at 
the boundaries, therefore 
 

 ( )0ˆ
0  at 0 and zdH y

y y b
dy

= = = . (49) 

 
 
The first condition gives A = 0 while the second condition gives 
 
 nh

b
π

= . (50) 

where n is an integer. Therefore,  
 ( )0ˆ cosz n

n yH y B
b
π⎛ ⎞= ⎜ ⎟

⎝ ⎠
, (51) 

 
and the only two other fields are 
 
 ( )0ˆ siny n

n yH y B
h b
γ π⎛ ⎞= ⎜ ⎟

⎝ ⎠
, (52) 

 
 ( )0ˆ sinx n

j n yE y B
h b
ωµ π⎛ ⎞= ⎜ ⎟

⎝ ⎠
. (53) 

 
We note that the integer n gives the number of half periods of the 
variation of the fields over the cross section. Therefore these modes 
are denoted TEn modes. The value n = 0 must be excluded since this 
case corresponds to fields having no variations over the cross section, 
and we have already the condition that the electric field is zero at the 
boundaries. In the following discussion we shall limit ourselves to the 
case n = 1. 
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3.1.2 Physical interpretation 
 
We now want to discuss more physical aspects of the TE1 mode 
obtained from these results. In accordance with the previous section, 
let us start by assuming a two-dimensional problem with the electric 
field parallel to the x-axis. This is illustrated in Fig. 3. 
 
 

 
Fig. 3. Two-dimensional TE problem. 
 
 
Let us attempt to transmit a single plane uniform TEM wave of this 
polarization through this structure. We see that any such single wave 
propagating within the structure will have tangential electric fields 
different from zero at the metallic boundaries. This violates the 
boundary conditions for perfect conductors. Therefore this solution 
does not exist. 
 
It is, however, possible to satisfy the boundary conditions if we 
introduce two plane waves of this polarization which propagate in 
different directions within the structure.  
 
 
 
 
 
 
 
 
 
 
Fig. 4. TE mode as a sum of two TEM waves. 
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Assume a plane wave traveling along the inner part of the structure at 
an angle θ with the surface normal as indicated by thick lines in Fig. 
4. The propagation direction is shown by an arrow and the phase 
planes by full lines (+ phase) and dashed lines (- phase), respectively. 
The phase planes are perpendicular to the propagation direction. This 
upward directed wave will be reflected by the metallic surface into a 
downward propagating wave (thin lines) at the same angle θ. Upon 
reflection from the upper plane, y = b, the boundary conditions for the 
tangential field, Etang = 0 must be satisfied. This means that the 
upward propagating wave will have a positive extremum value at the 
same location as the downward propagating wave has a negative 
extremum. A similar reflection will occur at the lower boundary, y = 
0. For the two waves to give zero total field also here, the two waves 
must have the same amplitude and be at opposite phase here. From the 
triangle ABC in Fig. 4 we find that 
 
 cos

2b
λ

θ = . (54) 

 
Since we must have cos 1θ ≤  we require 2 cbλ λ≤ =  where cλ  is the cutoff 
wavelength. If we write this condition 
 
 c

u u
λλ

≤ , (55) 

 
we obtain the following frequency condition, 
 
 c

c

uf f
λ

≥ = , (56) 

 
where fc is the cutoff frequency. The meaning of this is that the mode 
can be propagated only at frequencies above this cutoff frequency as 
was also found in Chapter 2. 
 
Returning to Eq. (54), we see that it can be written 
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 cos c

c

f
f

λ
θ

λ
= = , (57) 

 
which means that the angle θ varies with frequency.  
 
We can define the periodicity along the waveguide by the guide 
wavelength (distance BD) 
 
 

2 2

2
sin 1 cos

1
g

cf
f

π λ λ λ
λ λ

β θ θ
≡ = = = ≥

− ⎛ ⎞
− ⎜ ⎟
⎝ ⎠

. (58) 

 
Thus we have shown on a field basis that this propagating mode can 
be interpreted as the interference of two plane waves which are 
coupled together by boundary conditions satisfied by reflections at 
these boundaries.  

3.1.3 Velocities 
 
We can define three different velocities in the planar waveguide. With 
reference to Fig. 5, we consider two phase planes at a distance δr, 
corresponding to the distance the plane wave has propagated during 
the time δt.  
 
This defines the plane wave velocity 1ru

t
δ
δ µε

= = . If we consider the 

velocity at which a phase plane intersection with the boundary 
propagates in z-direction, we find that this phase velocity is 
 
 

2sin
1

p

c

u uu
f
f

θ
= =

⎛ ⎞
− ⎜ ⎟
⎝ ⎠

. (59) 

 
If we send a short pulse of energy along the waveguide, it bounces up 
and down between the two boundaries by reflection. The velocity of 
the energy propagation in the direction of the waveguide axis is the 
component of u along the guide axis. It is called the energy or group 
velocity and it is given by  
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2

sin 1 c
g

fu u u
f

θ
⎛ ⎞

= = − ⎜ ⎟
⎝ ⎠

, (60) 

 
where θ  is found from Eq. (57). The variation of these three velocities 
with frequency is shown in Fig. 6. The figure demonstrates the 
dispersion of up and ug.  
 

 
 
Fig. 5. Demonstration of three different velocities. 
 

 
Fig. 6. Phase velocity and group velocity as functions of frequency in 
relative magnitudes. Straight line corresponds to plane wave velocity. 
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1u µε=
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As is apparent from these two equations, the velocities satisfy the 
following relations: 
 
 g pu u u≤ ≤ , (61) 
 2

g pu u u= . (62) 
 
This agrees with our previous general discussion of the different 
velocities. In particular, it is seen that when ,  0  and  c g pf f u u→ → →∞ . 
 
 
 

3.1.4 Fields 
 
The electric field has one component which is directed in the x-
direction. This field is zero at the boundaries and varies sinusoidally 
between the boundaries by one half period. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Visualization of the magnetic field. Phase planes of the two 
interfering plane waves between the metal boundaries are shown as 
straight lines. 
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The magnetic field has both y- and z- components. We can find some 
important properties of this field by considering the concept of two 
interfering plane waves. We first consider point B on the metal 
boundary in Fig. 7 where both waves have a maximum amplitude, and 
where they are of opposite phase. At this point the magnetic field of 
one plane wave will be directed to the right of and perpendicular to 
the propagation direction while the other contribution will be directed 
to the left. This gives a resulting magnetic field vector RB which is 
directed in the z-direction. If on the other hand we consider points 
along the center line of the waveguide such as point C, the phases of 
the two plane waves are the same. The two magnetic field 
contributions will therefore be directed to the same side compared to 
the respective propagation direction of each plane wave. As a function 
of z, point C represents maximum magnitude of both fields, and the 
resulting field RC will therefore be a maximum and be directed in the 
z-direction.  
 
We further note that the two points B and C are displaced by ¼ period 
( / 4gλ ) along the waveguide. By combining this information with the 
discussion above and also with information from similar points, we 
conclude that it is possible for the H-field to describe closed loops in 
the y-z-plane. This agrees with our fundamental knowledge of the 
magnetic field. One such closed loop is indicated in Fig. 7. 
 
 
 
 
 
 
 
 
 
Fig. 8. TE1 mode in a parallel-plate waveguide, schematically. 
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�, U Electric field 
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To sum up, the instantaneous fields are as shown roughly in Fig. 8. 
The electric field normal to the paper plane is shown as arrow signs in 
both directions. The density of arrows indicates the electric field 
strength. The closed loops indicate the magnetic fields. Both fields 
vary periodically along the propagation direction. We note that the 
tangential electric field and the normal magnetic field are both zero at 
the boundaries. Thus the boundary conditions are satisfied.  
 
 
 

3.2 TE modes in rectangular waveguides 
In the previous sections we discussed the planar transmission line 
geometry. We will now discuss a waveguide consisting of only one 
single hollow conductor surrounding a region of a dielectric where 
the electric and magnetic fields propagate. We know that such a 
conductor does not transmit direct current; however, at higher 
frequencies this configuration can transmit signals. 
 
The shape of the cross section can take many forms. For technical 
reasons the preferred shape is rectangular. This type of waveguide is 
used in many critical high frequency applications where low loss and 
high power handling are desired properties. Of these, high power 
radars may be best known. 
 
We shall first give a description of a possible mode that can be 
transmitted in this structure, followed by a more general mathematical 
treatment of the subject. 
 
 

3.2.1 Transition to a TE mode in a rectangular waveguide 
 
The fields of the TE1 mode we discussed in the previous section, were 
situated between two metal plates extending infinitely in the 
transverse direction. We will show the similarity between this mode 
and a mode in a waveguide with rectangular cross section. This cross 
section can be obtained by introducing two new metallic boundaries to  
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Fig. 9. TE10 mode in a rectangular waveguide. Full lines: Electric 
field. Dashed lines: Magnetic field. 
 
 
the planar transmission line geometry, thus limiting the extent of the 
fields as indicated in Fig. 9. The dimensions of the rectangle are a and 
b in x and y directions, respectively. The same fields we calculated for 
the TE1 mode in the planar transmission line have been sketched in the 
volume limited by these four boundaries. We note that the orientation 
of the fields has been changed so that the electric field now is along 
the y-axis. We realize that the boundary conditions are satisfied 
automatically at the new boundaries (y = 0 and b) since the electric 
field is normal and the magnetic field is tangential to the surface. This 
new mode is uniform in y-direction. The mode is called a TE10 mode 
and is one of several modes which can propagate in a rectangular 
waveguide. We shall look into this more quantitatively in the next 
section. 
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3.2.2 TE modes in rectangular waveguides; general case 
To obtain the solution for TE modes in rectangular waveguides, we 
follow the prescription according to Eqs. (21) to (25). We first solve 
the differential equation 
 
 

2 2
0 2 0

2 2
ˆ ˆ 0z zH h H

x y
⎛ ⎞∂ ∂

+ + =⎜ ⎟∂ ∂⎝ ⎠
, (63) 

 
where the relation between the two quantities with and without z-
dependence is given by ( ) ( )0ˆ ˆ, , , z

z zH x y z H x y e γ−= . 
 
To solve the problem we apply the method of separation of variables, 
writing 
 
 ( ) ( ) ( )0ˆ ,zH x y X x Y y= . (64) 
 
Substituting this expression into Eq. (63) and dividing by ( ) ( )X x Y y  
gives a relation that can be written 
 
 

( )
( )

( )
( )2 2

2
2 2

1 1 0
X x Y y

h
X x x Y y y

∂ ∂
+ + =

∂ ∂
. (65) 

 
In this equation, we note that the first term depends on x only, just as 
the second term depends on y only. The last term does not depend on 
any coordinate. From this observation we can conclude that all three 
terms must be constants. The two first terms we set equal to 2 2 and -x yk k− , 
respectively. This gives a new set of ordinary differential equations: 
 
 

2
2

2

( ) ( ) 0x
d X x k X x
dx

+ = , (66) 

 
2

2
2

( ) ( ) 0y
d Y y k Y y
dy

+ = , (67) 

with 
 2 2 2+x yk k h= . (68) 
 
The general solution to the two differential equations can be written 
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 1 2( ) sin cosx xX x C k x C k x= + , (69) 
 3 4( ) sin cosy yY y C k y C k y= + . (70) 
 
We use the boundary conditions to determine relations between the 
four constants. We apply the fact that the electric field has no 
tangential components at the metal boundaries. By using Eqs. (24) and 
(25) we therefore get the following conditions: 
 
 ( )

0
0

ˆ ˆ0 0      at   0z
y

H E x
x

∂
= = =

∂
, (71) 

 ( )
0

0
ˆ ˆ0 0      at   z

y
H E x a
x

∂
= = =

∂
, (72) 

 ( )
0

0
ˆ ˆ0 0      at   0z

x
H E y
y

∂
= = =

∂
, (73) 

 ( )
0

0
ˆ ˆ0 0      at   z

x
H E y b
y

∂
= = =

∂
. (74) 

 
The first two conditions imply that ( ) /X x x∂ ∂  is equal to zero at the 
boundaries x = 0 and a. Therefore C1 must be zero and 
 x

mk
a
π

= , (75) 

 
 
where m is an integer. Likewise, the two last conditions imply that 
( ) /Y y y∂ ∂  is equal to zero at the boundaries y = 0 and b. Therefore C3 

must be zero and 
 y

nk
b
π

= , (76) 

 
 
where n is an integer. 
 
From Eq. (64) we can write the solution of the form 
 
 ( )0

0
ˆ ˆ, cos cosz

m x n yH x y H
a b
π π⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
, (77) 

 
where we have introduced the constant 0 2 4Ĥ C C= . 
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The eigenvalue can be found from Eq. (68) combined with (75) and 
(76): 
 

 
2 2

2 m nh
a b
π π⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. (78) 

 
Knowing 0ˆ

zH , we can apply Eqs. (22) - (25) to obtain the transverse 
fields. The result is: 
 
 0

02
ˆ ˆ sin cosx

m m x n yH H
h a a b
γ π π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

, (79) 

 0
02

ˆ ˆ cos siny
n m x n yH H

h b a b
γ π π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

, (80) 

 0
02

ˆ ˆ cos sinx
j n m x n yE H
h b a b
ωµ π π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
, (81) 

 0
02

ˆ ˆ sin cosy
j m m x n yE H
h a a b
ωµ π π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
, (82) 

 
where the value of γ is found from Eqs. (33), (68), (75) and (76) to be  
 

 
2 2

2 2 2 2 2 2
x y

m nj j k h j k k j
a b
π π

γ β ω µε ω µε ⎛ ⎞ ⎛ ⎞= = − = − − = − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (83) 

 
Every combination of m and n defines a mode, and this is called a 
TEmn mode. The first subscript denotes the number of half periods of 
the field variation in the x-direction, and the second subscript gives the 
number of half periods of the field variation in the y-direction. A few 
examples of different TE modes are shown in Fig. 10. 
 
All modes have a cutoff frequency which can be found from this 
relation by putting γ = 0. This gives 
 

 
2 2

,
,

1
2 2
c mn

c mn
m nf
a b

ω

π µε
⎛ ⎞ ⎛ ⎞= = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (84) 

 
which is consistent with Eq. (30). The value of the corresponding 
cutoff wavelength is 
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 , 2 2

,

2
c mn

c mn

u
f m n

a b

λ = =
⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (85) 

 
From the  transverse  field  expressions  we see that either m or n, but 
not both, can be zero. If a > b, the mode with the lowest cutoff 
frequency has m = 1 and n = 0. For this TE10 mode we have 
 
 

 
 
Fig. 10. Some TE modes in a rectangular metallic waveguide. a) end 
views; b) top views. 
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 ,10

1
22c
uf
aa µε

= =  (86) 

 
Below this frequency there is no propagating mode, and all other 
modes have higher cutoff frequencies. Thus there is a certain 
frequency range where only one mode propagates. This is an 
advantage for transmitting signals with low distortion. For this reason 
the TE10 mode is denoted the dominant mode.  
 
 
Example 
 
We want to discuss the TE modes occurring in a metallic waveguide 
of rectangular cross section where a = 5 cm and b = 2.5 cm, in 
particular the operating frequencies and at what frequencies a single 
mode is transmitted. Let us find the cutoff frequencies for some lower 
modes. Using Eq. (84) and a value u = 3·108 m/s, we find the values 
shown in the table below. The result is also indicated graphically to 
the right of the table. It is seen that in this example the lowest, 
dominant mode is the only propagating mode in the frequency range 3 
to 6 GHz. Therefore this frequency range is the best for signal 
transmission in this case. 
 
 
Mode ,c mnf  
(m,n) (GHz) 
1,0 3 
0,1 6 
1,1 6.7 
2,0 6 
2,1 8.5 
 
 
 
 
 

 0                                                      10                          GHz 

Single mode range 
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4 TE modes in a dielectric slab waveguide 
 

4.1 Discussion 
Metallic waveguides are used in high frequency techniques up to the 
microwave range. When the frequency increases, the losses are 
becoming more severe, and in the optical range dielectric waveguides 
are predominant. In integrated optics thin dielectric films are 
deposited on the surface of a substrate to serve as waveguides, and 
circular dielectric waveguides are used in fiber optics. Based on what 
was developed in the first parts of this note, we shall find some key 

properties of a dielectric slab waveguide which is depicted in Fig. 11. 
This will illustrate the properties of dielectric films in integrated 
optics, although we discuss a simplification of the real situation where 
the waveguide is surrounded by two different dielectrics. Our model 
has vacuum on both sides of the guiding structure. 
 
Fig. 11. Dielectric slab waveguide. 
 
 
The thickness of the slab is d, and it is symmetrically located around y 
= 0. Its permittivity is εd and the permeability is assumed to be the 
same as for the surrounding vacuum, µ0. Vacuum has permittivity ε0. 
The dielectric material is assumed to be lossless. The propagation is in 
the z-direction while we assume no variation in x-direction. We shall 
analyze the TE modes of this configuration.  
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ε0,µ0 

ε0,µ0 

εd,µ0 
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Since the fields exist in all regions, we have to consider them in both 
the slab region as well as in the surrounding medium. For TE waves, 
0ˆ 0zE = , and from Eq. (21) we have the following differential equation 

that must be satisfied in both regions (though with different 
parameters), 
 

 ( ) ( )
2 0

2 0
2

ˆ
ˆ 0z
z

d H y
h H y

dy
+ = , (87) 

where  
 

2 2 2
2 2 2 ` 0

2 2 2
0 0 0

  in the dielectric
    in vacuum  

d dhh k
h

γ ω ε µ
γ

γ ω ε µ

⎧ + =
= + = ⎨

+ =⎩
, (88) 

and jγ β=  expresses the propagation in the z-direction.  
 
Solutions of Eq. (87) for the different regions must be matched at the 
boundaries. In the slab region we seek solutions which vary 
sinusoidally over the cross section. This requires the quantity 
 
 2 2 2 2

0d d yh kω ε µ β= − =  (89) 
to be positive, with general solution  
 
 ( )0ˆ ˆ ˆsin cos , y

2z o y e y
dH y H k y H k y= + ≤  (90) 

 
where yk  is real, and ˆ oH  corresponds to asymmetric (odd) functions 
while ˆ eH  corresponds to symmetric (even) functions around 0y = , 
respectively. 
 
In the vacuum region we require that the waves do not radiate from 
the waveguide structure. This means that solutions to Eq. (87) must 
have exponential decay in the outward y-direction, which is to say that  
 
 2 2 2 2

0 0 0h ω ε µ β α= − = −  (91) 
 
where α is real and positive. This gives the following solutions: 
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 ( )
( )

( )

/ 2
1

0

/ 2
2

,   y             (a)
2ˆ

,   y            (b)
2

y d

z
y d

dC e
H y

dC e

α

α

− −

+

⎧ ≥⎪⎪
= ⎨
⎪ ≤ −
⎪⎩

 (92) 

 
Equations (89) and (91) are known as dispersion relations since they 
show the (nonlinear) dependence of the phase constant β on ω. We 
should note that we have still not determined the constants α or ky in 
these equations. We also need to determine the relations between the 
coefficients ˆ oH , ˆ eH , C1 and C2. This is done in the following where we 
consider the odd and even TE modes separately. However, we first 
realize that 0ˆ

zH  has no x-variation. From Eqs. (22) - (25) this means 
that the electric and magnetic fields have only one transverse 
component each, in addition to the longitudinal magnetic field 0ˆ

zH . 
 
From Eq. (89) we conclude that 
 
 0d dkβ ω ε µ< = , (93) 
 
 
where kd is the wave number of a plane wave in the dielectric, and 
from Eq. (91) 
 
 0 0 0kβ ω ε µ> =  (94) 
 
where k0 is the wave number of a plane wave in vacuum. Combining 
these two equations, we conclude that 
 
 0d pu u u< <  (95) 
 
where ud and u0 are the plane wave velocity of the two media, and up 
is the phase velocity in this structure. Thus for a mode to propagate we 
require the plane wave velocity of the dielectric to be smaller than the 
surrounding medium. The propagation velocity of this mode is always 
between these two plane wave velocities.  
 
 



  p. 33 

a) Odd TE modes. From Eqs. (23), (25) and (90) we obtain 
 
1) In the dielectric slab region, / 2y d≤ : 
 
 ( )0ˆ ˆ sinz o yH y H k y=  (96) 

 ( ) ( )0
0

2

ˆ
ˆ ˆ = cosz
y o y

d y

H y jH y H k y
h y k
γ β∂

= − −
∂

 (97) 

 ( ) ( )0
0 0 0

2

ˆ
ˆ ˆ = cosz
x o y

d y

H yj jE y H k y
h y k
ωµ ωµ∂

= − −
∂

 (98) 

 
2) In the upper vacuum region, / 2y d≥ : 
Continuity of the tangential magnetic field 0ˆ

zH  across the boundary 
combined with Eq. (92) determines the constant C1 so that 
 
 ( ) ( ) ( )/ 20ˆ ˆ sin / 2 y d

z o yH y H k d e α− −=  (99) 
thus 

 ( ) ( ) ( ) ( )
0

/ 20
2
0

ˆ
ˆ ˆ = sin / 2 y dz
y o y

H y jH y H k d e
h y

αγ β
α

− −∂
= − −

∂
 (100) 

 ( ) ( ) ( ) ( )
0

/ 20 0 0
2
0

ˆ
ˆ ˆ = sin / 2 y dz
x o y

H yj jE y H k d e
h y

αωµ ωµ
α

− −∂
= − −

∂
 (101) 

 
3) In the lower vacuum region, / 2y d≤ − : 
The boundary condition requiring continuity of the longitudinal 
magnetic field at the boundary / 2y d= −  determines the constant C2 so 
that 
 
 ( ) ( ) ( )/ 20ˆ ˆ sin / 2 y d

z o yH y H k d eα += −  (102) 
and further 

 ( ) ( ) ( ) ( )
0

/ 20
2
0

ˆ
ˆ ˆ = sin / 2 y dz
y o y

H y jH y H k d e
h y

αγ β
α

+∂
= − −

∂
 (103) 

 ( ) ( ) ( ) ( )
0

/ 20 0 0
2
0

ˆ
ˆ ˆ = sin / 2 y dz
x o y

H yj jE y H k d e
h y

αωµ ωµ
α

+∂
= − −

∂
 (104) 

 
So far we have determined the constants C1 and C2 by using the 
boundary conditions for 0ˆ

zH  at the interface between the dielectric and 
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vacuum. We also need to determine α, ky and β. We start by requiring 
ˆ
xE  to be continuous at / 2y d= , which gives (from Eqs. (98) and (101)) 

 
 0 0ˆ ˆcos / 2 sin / 2o y o y

y

j jH k d H k d
k
ωµ ωµ

α
=  (105) 

or 
 tan

2
y

y

k d
kα =  (106) 

 
From the two dispersion relations (89) and (91) we can eliminate β. 
This gives 
 
 ( )

1
22 2

0 0d ykα ω µ ε ε⎡ ⎤= − −⎣ ⎦  (107) 
 
We eliminate α by comparing the last two equations, giving  
 
 ( )

1
22 2

0 0 tan
2
y

d y y

k d
k kω µ ε ε⎡ ⎤− − =⎣ ⎦  (108) 

 
This is a transcendental equation to determine the transverse wave 
number ky in the dielectric. The equation can not in general be solved 
analytically; it has to be solved numerically or graphically. When 

0 0, , ,  and ddω ε ε µ  are known, the two sides of this equation can be plotted 
as functions of ky. The intersections of the two curves determine the 
value of ky corresponding to different odd TE modes. Subsequently 
the remaining unknowns α and β can be found from two of the above 
equations, for example, Eqs. (107) and (89). 
 
 
 
 
b) Even TE modes. We now use the second term of Eq. (90), i.e., 
 
 ( )0ˆ ˆ cos ,     y

2z e y
dH y H k y= ≤  , (109) 
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From this starting point we obtain the remaining field components 
inside and outside of the dielectric slab by following the same 
procedure as for the odd TE case. We then essentially do the 
following substitutions: cos → sin, sin → -cos. This means that Eq. 
(106) is replaced by 
 
 cot

2
y

y

k d
kα = −  (110) 

 
To obtain solutions, this equation must be solved together with the 
same equation (107) as in the previous case. This gives the equation 
 ( )

1
22 2

0 0 cot
2
y

d y y

k d
k kω µ ε ε⎡ ⎤− − = −⎣ ⎦  (111) 

 
 

4.2 Example 
 
To illustrate these results we shall find possible propagating modes for 
a dielectric slab applied in the optical range. The following data is 
used: εd = 2.5ε0 (corresponding to an index of refraction 

0 2.5 1.58dn ε ε= = = ), d=1 µm, f = 300 THz corresponding to an optical 
wavelength of 1 µm in vacuum.  
 
In Fig. 12 are plotted three curves to solve this problem. The thick full 
curve and the thin dashed curve represent the right hand side of Eqs. 
(108) and (111), respectively, while the circular curve represents the 
left hand side of both equations. There are three intersections between 
this circle and the two other curves, marked by small circles. They are 
denoted TE1, TE2 and TE3, respectively. Thus there are two odd mode 
solutions and one even solution. The values of ky and α for these 
solutions can be read on the horizontal and vertical axis, respectively. 
Only positive values of α are acceptable since the field must be finite. 
After ky and α have been determined, β can be found as described 
above. 
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We note that the only frequency dependent terms in the expressions 
above occur in the left hand parts of the equations. These parts 
correspond to a circle with its radius proportional to frequency. We 
then realize that more modes are included if the frequency is 
increased. On the other hand, if the frequency is reduced, there is a 
certain frequency below which only one TE mode propagates. This 
odd mode propagates down to zero frequency. 
 
The transverse distribution of the two magnetic field components for 
the two odd modes TE1 and TE3 is plotted in Fig. 13. The electric field 
Ex has not been plotted, but the curve shape is the same as for Hy. It is 
seen that 
• Odd modes have antisymmetric distribution of longitudinal field 

and symmetric distribution of transverse field components (also 
the electric field, not shown). The converse would be the case 
for even modes. 

• The transverse field component can be dominating, at least for 
the lowest mode. 

• Higher modes vary more quickly over the cross section. 
 

 
Fig. 12. Graphic solution of optical waveguide problem. 
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Fig. 13. Transverse distribution of the two components of the 
magnetic field. a) Lowest odd mode, b) Next odd mode. The two 
components are 90° out of phase. 
Finally we reiterate that there is another group of propagating waves, 
the TM modes, also in this configuration. They have many similar 
properties to the TE modes, but we shall not discuss them here. 
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5 Optical fiber 
5.1 Introduction 
Today optical fibers are predominant within telecommunications. In 
particular, they are well suited for transmitting large amounts of data. 
A discussion of this type of dielectric waveguide is somewhat more 
involved than for rectangular cross sections. This is because of the 
curved geometry, the two transverse field components are coupled 
together through the boundary conditions. There are, however, 
simplified theories which can be used. In the following such a 
simplified theory will be outlined, based on material that has been 
discussed previously in this note. 

5.2 Definition of the problem 
The geometry of an optical step index fiber can be described 
according to Fig. 14. The fiber has a core of radius a with an index of 
refraction n1, while the surrounding cladding has an index of 
refraction n2. We should bear in mind that the index of refraction n is 
related to the permittivity ε through 0/n ε ε=  where 0ε is the 
permittivity of vacuum. In the discussion here we assume the cladding 
extends to infinity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 14. Geometry for optical fiber. 
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1 2 1n n− <<                                                               (112) 
 
As indicated above, this geometry is more involved than geometries 
which have been considered earlier. On the other hand most fibers 
used in telecommunications are designed such that the index of 
refraction of the core and the cladding differ very little, i.e. 
 
 
This means that the the solutions for different polarizations 
(previously called TE and TM waves) vary very little. In many cases 
this difference is disregarded, as we shall do here. Under this 
condition it turns out that we end up with a scalar Helmholtz's 
equation involving a quantiy ψ to represent both Ex and Ey. In 
cylindrical coordinates this equation can be written 
 

2
2 2 2

02 2

1 1r k n
r r r r

ψ ψ
β ψ ψ

ϕ
∂ ∂ ∂⎛ ⎞+ − = −⎜ ⎟∂ ∂ ∂⎝ ⎠

  .                                    (113) 
 

where k0 is the wavenumber of vacuum. The hat symbol denoting 
phasors has been deleted from the equation. 
 

5.3 Solutions 
We base the solution on separation of variables in the two transversal 
coordinates r and ϕ, i.e., 
 

( , ) ( ) ( )r R rψ ϕ ϕ= Φ  .                                                   (114) 
 

We also assume that Φ is a periodic function of ϕ so  
 

( ) cos sinA l B lϕ ϕ ϕΦ = +     .                                                  (115) 
where l is an integer equal to zero or larger to make the solution 
unique. Substitution into Eq. (113) gives 
 

2
2 2 2

02

1 R lr R R k n R
r r r r

β
∂ ∂⎛ ⎞Φ − Φ− Φ = − Φ⎜ ⎟∂ ∂⎝ ⎠

  .                                 (116) 

 



  p. 40 

Multiplication of this equation by r2/Φ on both sides obtains a general 
equation 
 

( )( )
2

2 2 2 2 2 2
02 0R Rr r k n r l R

r r
β

∂ ∂
+ + − − =

∂ ∂
  .                                 (117) 

 
The two materials have different properties, giving two differential 
equations. They are: 
 

( )
2

2 2 2 2
12 0,   <i

R Rr r r l R r a
r r

β
∂ ∂

+ + − =
∂ ∂

                                   (118) 

( )
2

2 2 2 2
22 0,   i

R Rr r r l R r a
r r

β
∂ ∂

+ + − − = >
∂ ∂

                                   (119) 

 
where 2 2 2 2

1 0 1i k nβ β= −  and ( )2 2 2 2
2 0 2i k nβ β= − −  and the suffixes 1 and 2 stand 

for core and cladding, respectively. Both equations are of the form of 
Bessel's differential equation. Solutions of this equation are called 
Bessel functions. The solution to our problem is found by introducing 
boundary conditions similar to what was done for the dielectric slab 
case discussed above. In this case continuity of both R(r) and its 
derivative is required. Discarding solutions which diverge for r = 0 
and large values of r, respectively, the solutions can be written  
 

( )
( )0

1
1

( )  ,    l i
l i

CR r J r r a
J a

β
β

= <                                         (120) 

( )
( )0

2
2

( )  ,    l i
l i

CR r K r r a
K a

β
β

= > .                                        (121) 

 
Here Jl(x) is a Bessel function of the first kind and order l and Kl(x) 
is a modified Bessel function of the second kind and order l. Some of 
these functions are shown in the Appendix. In the same way as before, 
the boundary conditions result in transcendental equations which can 
be solved graphically or numerically. Without going in more detail on 
this procedure, we sum up the result in this way: For a given 
circumferential index l, we obtain a set of radial functions each with a 
particular value of 1 2 and i iβ β  to be applied in the last two equations. 
Each solution therefore gives a mode characterized by a double index 
(l,i). Here l determines the number of periods of the field for one 
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period in ϕ- direction and i is the number of intensity maxima in r-
direction. 
 
As mentioned above, the index of refraction of the two main regions 
of a practical fiber differs only slightly. A consequence of this is that 
the fields are almost transversal, with only small longitudinal 
components. Real fields can therefore be considered as combinations 
of two linearly polarized mode fields. For this reason the modes are 
denoted LP modes. The approximate boundary conditions we have 
applied give inaccuracies of higher order which can usually be 
disregarded. 
 
As was found for the dielectric slab, there is a frequency range where 
single mode transmission is possible. This is usually stated through a 
normalized frequency V as 
 

2 2
0 1 2 2.4048V k a n n= − <                                                      (122) 

 
We shall not go in more detail on this topic. To illustrate some results 
of the discussion, a transverse distribution of the fields of some lower 
LP modes are sketched in Fig. 15. The intensity (which is what we 
actually detect by our eyes) is obtained by squaring this amplitude. Its 
distribution is shown in Fig. 16. 
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Fig. 15. Field distribution for some LP modes. 
 

 
Fig. 16. Intensity distribution for the same modes as shown in the 
previous figure. 
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6 Appendix. Bessel functions 
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Fig. A1. Some Bessel functions. 
 


