
 Page 1 of 17

Department of Computer Science

Final Examination in TDT4105 “Information Technology,
Introduction”, with Matlab

Contact during the exam: Anders Christensen Mobile: +47 918 97181

Alf Inge Wang Mobile: +47 922 89577

Exam date: 2017-12-12
Exam time (from-to): 09:00 – 13:00
Allowed aids: Specified simple calculator

Other information:
The exam contains 4 problems. A percentage score is given to show how much each problem and sub-
problem counts when the exams are graded. Read through all the problems before you start solving them. Be
smart and make good use of your time! If you feel the problems are not fully specified, please write your
assumptions explicitly.

Answer briefly and clearly, and write so that the text is easy to read. If the text is ambiguous or longer than
necessary, points will be deducted.

Language: English
Number of pages: 17 (including front-page, forms and appendix)
Contents:

• Problem 1: Multiple Choice Questions (25%)
• Problem 2: Understanding Code (20%)
• Problem 3: Programming Average Metering: (30%)
• Problem 3: Programming Tide: (25%)
• Appendix: Useful functions
• Forms for answering multiple choice questions (2 forms)

Controlled by:

1.des 2017 Guttorm Sindre
Date Sign.

Informasjon om trykking av eksamensoppgave
Originalen er:

1-sidig � 2-sidig �
sort/hvit � farger �
skal ha flervalgsskjema �

 Page 2 of 17

Problem 1: Multiple Choice Questions (25%)
Use the two enclosed forms to solve this exercise (take one home). You can get a new form if you
need it. Only one answer is completely correct. For each question, a correct answer counts 1 point.
Wrong answer or more than one answer counts -1/2 point. No answer counts 0 points. You get no less
than 0 points total for this problem.

1. What is Alan Turing known for?
a. He developed the mathematical foundation for the computers we have today.
b. He contributed to the Turing-architecture.
c. He made the world’s first digital computer.
d. He was one the co-founders of IBM.

2. What is one of the advantages with a SSD (Solid State Drive) compared to an ordinary hard
drive?

a. It can store more data.
b. It is faster.
c. It cannot crash
d. It is cheaper than other drives.

3. Place the following persons in correct sequence (by year) related to computer history:
a. Hollerith - Zuse - von Neumann – Engelbart.
b. Engelbart - Zuse - Hollerith - von Neumann.
c. Von Neumann - Zuse - Hollerith – Engelbart.
d. Zuse - Hollerith - Engelbart - von Neumann.

4. A small part of a CPU is often abbreviated PC, what does the letters mean in this context?
a. Piece of Crap.
b. Program Counter.
c. Personal Computer.
d. Programming Chip.

5. What is the sequence of the pre-fixes related to storing from smallest to biggest?
a. mega, tera, giga, peta.
b. giga, mega, tera, peta.
c. mega, giga, tera, peta.
d. giga, mega, peta, tera.

6. What is the binary representation of the number 345?
a. 101011001.
b. 1101101010.
c. 110011.
d. 11001110.

7. CD audio is 16 bits, 44100 Hz in stereo. How much storage is required for 35 seconds in this
format?

a. Ca. 1,54 MB.
b. Ca. 3,09 MB.
c. Ca. 6,16 MB.
d. There is not sufficient information to compute an answer.

 Page 3 of 17

8. How is a floating-point number represented in a computer?
a. It is stored in the computers floating-point memory.
b. It is rounded to nearest integer.
c. It must be converted to an approximate value that can be represented.
d. It is not possible within acceptable accuracy represent a floating point in a computer.

9. How many different values can be represented with 10 bits?
a. 512.
b. 1024.
c. 1152.
d. 1280.

10. What does one bit represent?
a. One bit is not sufficient to represent anything.
b. One color in the RGB-model.
c. A random value between 0 and 1.
d. Two different states, where the interpretation of the states is up to us.

11. A local area network (LAN) consists of 9 computers. The network is organized in a mesh
topology. How many direct connections exist between the computers in the network?

a. 9.
b. 18.
c. 27.
d. 36.

12. What is a Media Access Control (MAC)-address used for?
a. Identify a specific computer on the Internet.
b. Identify a specific computer on a local area network (LAN).
c. Maintain an overview of users’ access to various files.
d. Notify the security responsible about events that can be a security risk on a local area

network (LAN).

13. An organization has four physical networks. Why can it be useful for an organization to use
three routers instead of just one to connect the networks?

a. Three routers always give better network security than one.
b. Some of the networks can still exchange data, even if one of the routers stop working.
c. One router can only connect two networks.
d. Three routers make the data transfer between the networks three times faster.

14. Which statement is correct related to layer 3 (IP) in the TCP/IP stack?
a. The layer is responsible for marking data packets with MAC addresses.
b. The layer specifies procedures which ensures reliable transfer of data on a network.
c. The layer specifies the format on packets which will be sent over the Internet in

addition to mechanisms which are used to replay data packets from one computer, via
one or more routers, and to the final destination.

d. Both statement b and c.

 Page 4 of 17

15. Which of the following alternative is NOT a security threat?
a. Hashing.
b. Buffer overflow.
c. SYN flood.
d. Wiretapping.

16. What is pseudo code?
a. Code that can run directly on the processor (CPU).
b. Graphical code which describes an algorithm with ovals, rectangles, parallelograms

and arrows.
c. Code that is based on code written by other developers.
d. Informative and compact description of programming of an algorithm.

17. Recursion means that:
a. A function runs in an eternal loop.
b. A function that calls itself.
c. A function which gradually gets more effective as the computation time gets shorter

the more times the function is called.
d. A function does not get input from or writes information to the user.

18. Which statement is NOT TRUE regarding the algorithms binary and sequential search?
a. Binary search is normally more effective on long lists.
b. Sequential search can be more effective than binary search.
c. Binary search works on all types of lists.
d. Sequential search takes longer time the longer back the element being search is in the

list.
19. Given the list of names Aron, Berit, Daniel, Frank, Jo, Marianne, Oscar, Eskil, Petter, and

Stine. Which search algorithm is the best to find a name in the list?
a. Binary search.
b. Sequential search.
c. Both works the same.
d. None of the algorithms will work.

20. What is the computational complexity of the algorithm LargestNumber as described below?
Algorithm LargestNumber
 Input: A list of numbers L.
 Output: The largest number in the list L.
 if L.size = 0 return null
 largest ← L[0]
 for each item in L, do
 if item > largest, then
 largest ← item
 return largest

Answer alternatives:

a. Θ(0).
b. Θ(1).
c. Θ(n).
d. Θ(n log n).

 Page 5 of 17

Problem 2 Understanding code (20%)

Problem 2a (5%)
The function bin_search was made to do binary search, but it results in the error
”IndexError: list index out of range”.
In what line is the error? (2%)
What should it the line be to make the function work as it should? (3%)

1 function funnet = bin_search(liste, verdi, lavIndeks, hoyIndeks)
2 midten = floor(hoyIndeks + lavIndeks);
3 if lavIndeks > hoyIndeks
4 funnet = false;
5 elseif verdi == liste(midten)
6 funnet = true;
7 elseif verdi < liste(midten)
8 funnet = bin_search(liste, verdi, lavIndeks, midten-1);
9 else
10 funnet = bin_search(liste, verdi, midten+1, hoyIndeks);
11 end
12 end

Problem 2b (5%)
What will be returned if myst([1,2,3,5,7,9]) with the code as shown below is run? (3%)
Explain with one sentence what the function myst does? (2 %)
function a = myst(a)
 L = length(a);
 for i=1:floor(L/2)
 t = a(i);
 a(i) = a(L-i+1);
 a(L-i+1) = t;
 end
end

Problem 2c (5%)
What will be returned if you run the function myst2(345) with the code as shown below? (3 %)
Explain with one sentence what the function myst2 does? (2 %)
function b=myst2(a)
 b='';
 while a || length(b)==0
 b=[sprintf('%d',mod(a,2)),b];
 a=floor(a/2);
 end
end

 Page 6 of 17

Problem 2d (5%)
Explain with one sentence what the function myst3([1,2,3,4,5,6,7,8,9,10]) with the
code as shown below does? (5%)
function b = myst3(a)
 b = zeros(1, length(a)) ;
 for c = 1:length(a)
 d = randi(length(a)) ;
 b(c) = a(d) ;
 a(d) = [] ;
 end
end

Problem 3 Programming Average Metering (30%)
You can assume that all the functions receive valid arguments, and that files can always be opened.
You can use functions from other sub-problems even you have not solved these sub-problems.
In this problem you shall help the police with making software for two speed cameras (speed camera
A and B), which among other things are used to measure average speed for cars. Both speed cameras
recognize the license plate, date (year, month, day), and the time (hour, minutes, seconds) for all cars
which are passing in one direction (first speed camera A, then B) and stores this in two text-files
’box_a.txt’ and ’box_b.txt’ (see figure below).

 Page 7 of 17

Problem 3a (6%)
Write the function file_to_table with one parameter filename. This function will read the
text-file filename from a speed camera, which contain date, time and license plate for every
passing car. Every line in the text-file is formatted as shown in the figure above, where the first line
shows a registration of a car with license plate HB69082 which passed by November 17th 2017
6:21:12.

The function shall return a two dimensional table, where every line contains date, time and license
plate. The date shall be given with year, month and day as integer. Time shall be given with hour,
minutes and seconds as integers. The license number should be a string.
Example of running the function with the fila box_a.txt as shown in the figure as input:
>> table = file_to_table('box_a.txt')
table =
 10×7 cell array
 [2017] [11] [17] [6] [21] [12] 'HB69082'
 [2017] [11] [17] [6] [21] [53] 'CV86023'
 [2017] [11] [17] [6] [23] [0] 'HD27560'
 [2017] [11] [17] [6] [23] [2] 'UT29891'
 [2017] [11] [17] [6] [24] [25] 'IS11293'
 [2017] [11] [17] [6] [24] [40] 'EL73840'
 [2017] [11] [17] [6] [24] [41] 'UT55227'
 [2017] [11] [17] [6] [26] [55] 'NB59108'
 [2017] [11] [17] [6] [27] [29] 'UT46408'
 [2017] [11] [17] [6] [28] [19] 'LE68228'

Problem 3b (3%)
Write the function time_diff which has two lists (start and end) as input, where each list
describes a specific point given by date and time. The first list (start) is the point passing speed
camera A, while the second list (end) is the point passing speed camera B (later than point A). The
function shall return the difference between the two points given in seconds. The function shall also
work for different dates so it can work for driving around midnight. The compute number of days
between two dates, you can use the function diff_date(d1,d2) which will return the number of
days between d2 and d1, where d1 and d2 are dates specified as a list formatted as [y,m,d], e.g.
[2017,11,17].

Example on execution of the function to find the difference in seconds for a car passing speed camera
A 6:24:40 November 17th 2017 and speed camera B 6:34:40 same day, and one example on a car
passing speed camera A 23:59:59 November 17th and speed camera B 00:09:12 November 18th 2017:
>> diff = time_diff([2017,11,17,6,24,40],[2017,11,17,6,32,40])
diff =
 480
>> diff = time_diff([2017,11,17,23,59,59],[2017,11,18,0,9,12])
diff =
 553

 Page 8 of 17

Problem 3c (5%)
Write the function check_min_distance with the parameters car_table and diff. The
parameter car_table is a two dimensional table of passing cars as specified in problem 3a), while
diff is the distance required between cars given in seconds. The function shall return the license
numbers of all cars with less distance in seconds to the car ahead than diff.

Example of running the function check_min_distance with data from speed camera A and for
distance between cars less than 3 seconds:
>> car_table=file_to_table('box_a.txt') ;
>> crazy_drivers=check_min_distance(car_table,3)
crazy_drivers =
 1×2 cell array
 'UT29891' 'UT55227'

Problem 3d (4%)
Write the function list_el_cars with one parameter car_table which is a two dimensional
table of passing cars as specified in problem 3a). The function shall return number of electrical cars
that have passed the camera. Electrical cars have license plates starting with EK, EL or EV.
Example of running the function list_el_cars with data from speed camera A:
>> car_table=file_to_table('box_a.txt') ;
>> el_cars=list_el_cars(car_table)
el_cars =
 1

Problem 3e (5%)
Write the function generate_license_numbers with one parameter amount. This function
shall return a list of amount number of unique random license plates that can be used for testing the
system. The letters in the license plate can be one of the following: BS, CV, EL, FY, KU, LE, NB,
PC, SY, and WC. The number in the license plate can be between 10000 and 99999.
Example of running the function generate_license_numbers:
>> cars=generate_license_numbers(10)
cars =
 1×10 cell array
 Columns 1 through 5
 'LE68212' 'FY22485' 'KU42621' 'PC80226' 'NB22015'
 Columns 6 through 10
 'BS60385' 'FY94546' 'WC35795' 'SY90650' 'LE89561'

 Page 9 of 17

Problem 3f (7%)
Write the function list_speeders with four parameters filename_a, filename_b,
speed_limit and distance. The two first parameters are fil names of files from speed camera
A and B with data (date, time, license plate) from passing cars as given in problem 3a). The
parameter speed_limit is the speed limit for the driving distance given in km/h, while the
parameter distance is the distance between the speed cameras given in km. The function shall
return a list of license plates to all cars who has been driving faster than the speed limit
(speed_limit) for the given distance (distance). This means that the function will list all
license plates to all cars that have used too short time between the speed cameras.

Example on running the function list_speeders with the files as described in problem 3a), with
speed limit 60km/h and distance of 10km:
>> speeders = list_speeders('box_a.txt','box_b.txt',60,10)
speeders =
 1×3 cell array
 'UT29891' 'EL73840' 'LE68228'

Problem 4 Programming Tide (25%)
In this problem we will look at times for tides in Trondheim. The tide is a variation in sea level
caused by the sun and the moons impact on the Earth. It is high tide when the sea level is at a
maximum, and low tide when the sea level is at a minimum. It takes 12 hours, 25 minutes and12
seconds between two high tides. The low tide is just in the middle between two high tides.
As an example, if it is high tide at 00:00:00, it is also high tide at 12:25:12, and low tide at 06:12:36
and at 18:37:48.
In this problem we will only focus on tide in Trondheim in December 2018. The first tide in this city
this month is December 1st 2018 at 03:18, and then it is low tide.

Problem 4a (3%)
Write the function formatTime with one parameter seconds which is number of seconds that has
passed since midnight. The function shall return a string containing the time formatted as
hh:mm:ss. All hours, minutes and seconds shall be written with two digits, and you introduce a 0
(zero) whenever necessary. The function does not need to tackle values over 86400 seconds (meaning
more than one day).

Example of calling the function formatTime:

>> time = formatTime(12305)
time =
 '03:25:05'

 Page 10 of 17

Problem 4b (2%)
Write the function valuesDecember with zero parameters, that shall return two constants first
and period. The first return value (first) is the time for first low tide which will be number of
seconds the time 03:18 is since midnight to December 1st. The second return value (period) is the
time in number of seconds between two high tides (or two low tides) for the month of December
which is 12 hours, 25 minutes and 12 seconds.

Example of calling the function valuesDecember:
>> [first,period] = valuesDecember()
first =
 11880
period =
 44712

Problem 4c (5%)
Write the function genTides with no parameters, but it shall utilize the function in 4b) to find
values for the month of December. The function genTides shall return two different return values.
The first is a list of times for all low tides in December, where the times are given as number of
seconds since midnight to December 1st. The second return value is a similar list of times for all high
tides for same month in the same format. It is 31 days in December.

Example of calling the function genTides and print of first eight elements in the results:
>> [lows, highs] = genTides();
>> display(lows(1:8))
 Columns 1 through 6
 11880 56592 101304 146016 190728 235440
 Columns 7 through 8
 280152 324864
>> display(highs(1:8))
 Columns 1 through 6
 34236 78948 123660 168372 213084 257796
 Columns 7 through 8
 302508 347220

 Page 11 of 17

Problem 4d (3%)
Write the function genTidesStr with the parameter tideList, which is a list of times given in
number of seconds since the start of the month on the same format with what was retuned in problem
4c). The function shall return a list of strings, where each string contains first the number for the
month, then the day, and then the time given by hour, minutes and seconds.

Example of calling the function genTidesStr and print of first five elements from the results:
>> [lows, highs] = genTides();
>> lowStrings = genTidesStr(lows);
>> display(lowStrings(1:5))
 1×5 cell array
 Columns 1 through 4
 '1 03:18:00' '1 15:43:12' '2 04:08:24' '2 16:33:36'
 Column 5
 '3 04:58:48'

Problem 4e (7%)
Write the function checkTides with the parameter dayInMonth which is an integer. The
function checks if it is high tide or low tide in the time for exam on this day in the month, meaning
between 09:00 and 13:00. The function will print a string of one of the following formats: ’no
tides’, ’high tide at 09:10:11’ or ’low tide at 12:13:14’. The actual times must be according to the data
the function genTides returns.

Example of calling the function checkTides for December 12th, 18th and 24th:
>> checkTides(12)
no tides
>> checkTides(18)
high tide at 12:12:36
>> checkTides(24)
low tide at 11:02:24

 Page 12 of 17

Problem 4f (5%)
Write the function listTides with no parameters, which shall not return anything. The function
shall print all the low tides for the month December 2018 such that all the low tides for the same date
will be listed on the same line in the sequence they come. The function shall get data from the
function genTides. The print shall be in three columns: First column is the day in the month, the
second column is the time for the first low tide of the day, and the third column is the time for the
potential second low tide of the day. All the data must be aligned as shown in the example of
execution below.

Example of calling the function listTides for December 2018:
>> listTides()
day first second
 1 03:18:00 15:43:12
 2 04:08:24 16:33:36
 3 04:58:48 17:24:00
 4 05:49:12 18:14:24
 5 06:39:36 19:04:48
 6 07:30:00 19:55:12
 7 08:20:24 20:45:36
 8 09:10:48 21:36:00
 9 10:01:12 22:26:24
 10 10:51:36 23:16:48
 11 11:42:00
 12 00:07:12 12:32:24
 13 00:57:36 13:22:48
 14 01:48:00 14:13:12
 15 02:38:24 15:03:36
 16 03:28:48 15:54:00
 17 04:19:12 16:44:24
 18 05:09:36 17:34:48
 19 06:00:00 18:25:12
 20 06:50:24 19:15:36
 21 07:40:48 20:06:00
 22 08:31:12 20:56:24
 23 09:21:36 21:46:48
 24 10:12:00 22:37:12
 25 11:02:24 23:27:36
 26 11:52:48
 27 00:18:00 12:43:12
 28 01:08:24 13:33:36
 29 01:58:48 14:24:00
 30 02:49:12 15:14:24
 31 03:39:36 16:04:48

 Page 13 of 17

Appendix: Possibly useful functions
blanks

String of blanks. BLANKS(n) is a string of n blanks.
Use with DISP, e.g. DISP(['xxx' blanks(20) 'yyy']).

cell2mat
Converts a cell array into an ordinary array. The elements of the cell array must all contain the
same data type, and the resulting array is of that data type.

fix
Round towards zero. FIX(X) rounds the elements of X to the nearest integers towards zero.

fclose
Close file. ST = FCLOSE(FID) closes the file associated with file identifier FID, which is an integer value
obtained from an earlier call to FOPEN. FCLOSE returns 0 if successful or -1 if not.

feof
Test for end-of-file. ST = FEOF(FID) returns 1 if the end-of-file indicator for the file with file identifier FID has
been set, and 0 otherwise.
The end-of-file indicator is set when a read operation on the file associated with the FID attempts to read past the
end of the file.

fgetl
read line from file, discard newline character. TLINE = FGETL(FID) returns the next line of a file associated with
file identifier FID as a MATLAB string. The line terminator is NOT included. Use FGETS to get the next line with
the line terminator INCLUDED. If just an end-of-file is encountered, -1 is returned.

find
Returns the linear indexes of non-zero elements in a matrix. FIND([0 1 0 1 0]) returns [2 4]. If the first parameter
has more than one row, a column vector containing the linear indexes of non-zero elements are returned. An
optional second parameter set the maximum number of indexes to return.

fopen
Open file. FID = FOPEN(FILENAME,PERMISSION) opens the file FILENAME in the mode specified by
PERMISSION:
'r' open file for reading
'w' open file for writing; discard existing contents
'a' open or create file for writing; append data to end of file
'r+' open (do not create) file for reading and writing
'w+' open or create file for reading and writing; discard existing contents
'a+' open or create file for reading and writing; append data to end of file

fprintf
Write formatted data to file. COUNT = FPRINTF(FID,FORMAT,A,...) formats the data in the real part of array A
(and in any additional array arguments), under control of the specified FORMAT string, and writes it to the file
associated with file identifier FID. COUNT is the number of bytes successfully written. FID is an integer file
identifier obtained from FOPEN. It can also be 1 for standard output (the screen) or 2 for standard error. If FID is
omitted, output goes to the screen.
FORMAT is a string containing ordinary characters and/or C language conversion specifications. Conversion
specifications involve the character %, optional flags, optional width and precision fields, optional subtype
specifier, and conversion characters d, i, o, u, x, X, f, e, E, g, G, c, and s.
The special formats \n, \r, \t, \b, \f can be used to produce linefeed, carriage return, tab, backspace, and formfeed
characters respectively. Use \\ to produce a backslash character and %% to produce the percent character.

global
Define global variable.
global X Y Z defines X, Y, and Z as global in scope (scope can be functions/programs).

input
Read a value from the keyboard and into a variable.
ANSWER=INPUT(STR) prints STR as a prompt, reads a number and assigns it to ANSWER. If character string is
to be read, use the optional second parameter ‘s’.

isempty
Determine whether array is empty
This MATLAB function returns logical 1 (true) if A is an empty array and logical 0 (false) otherwise.
TF = isempty(A)

 Page 14 of 17

length
The length of vector. LENGTH(X) returns the length of vector X. It is equivalent to MAX(SIZE(X)) for non-
empty arrays and 0 for empty ones.

load
Loads data from filename.
load(filename) loads data from filename. If filename is a MAT-file, then load(filename) loads variables in the
MAT-File into the MATLAB® workspace. If filename is an ASCII file, then load(filename) creates a double-
precision array containing data from the file.

max
finds the highest element in a vector, or the highest element in each column of a matrix.

min
finds the lowest element in a vector, or the lowest element in each column of a matrix.

mod
Modulus after division. MOD(x,y) is x - n.*y where n = floor(x./y) if y ~= 0.

num2str
Convert numbers to a string.

randi
Pseudorandom integers from a uniform discrete distribution.
R = RANDI(IMAX,N) returns an N-by-N matrix containing pseudorandom integer values drawn from the discrete
uniform distribution on 1:IMAX.
RANDI(IMAX,M,N) or RANDI(IMAX,[M,N]) returns an M-by-N matrix.

rem
Remainder after division. REM(x,y) is x - n.*y where n = fix(x./y) if y ~= 0.

round
Rounds to nearest decimal or integer. Y = round(X) rounds each element of X to the nearest integer. If an element
is exactly between two integers, the round function rounds away from zero to the integer with larger magnitude. Y
= round(X,N) rounds to N digits

size
The size of array. D = SIZE(X), for M-by-N matrix X, returns the two-element row vector.
D = [M,N] containing the number of rows and columns in the matrix.

sortrows
Sort array rows. This MATLAB function sorts the rows of A in ascending order, based on column. B =
sortrows(A). B = sortrows(A, column)

sscanf
Extracts values from a string according to a format string. Opposite of FPRINTF.
A=SSCANF(’12/11-2014’,’%d/%d-%d’) returns a column vector containing the values
12, 11, and 2014.

strcmp
Compare strings. TF = strcmp(S1, S2) compares the strings S1 and S2 and returns logical 1 (true) if they are
identical, and returns logical 0 (false) otherwise.

strsplit
Splits the first (string) parameter into a cell array of substrings, according to the delimiter string given as the
second parameter. STRSPLIT ('one, two, three', ', ') results in {'one', 'two', 'three'}. Multiple alternative delimiters
can be specified using a cell array as the second parameter.

strtok
separates the first token of a string from the rest of that string.
[TOKEN, REST] =STRTOK (‘ first second’, DELIM) sets TOKEN to ‘first’ and REST to ‘ second’. The
optional parameter DELIM contains a list of delimiter characters – where the space character is default. Any
delimiter characters before the first token are ignored.

str2num
Convert string matrix to numeric array.
X = STR2NUM(S) converts a character array representation of a matrix of numbers to a numeric matrix. For
example, S=['12'; '34'] str2num(S) => [12; 34].
S=’abc’ str2num(S)=> []

sum
 The sum of elements. S = SUM(X) is the sum of the elements of the vector X. If X is a matrix,
 S is a row vector with the sum over each column.

 Page 15 of 17

Answer Form for Multiple Choice Questions

Candidate number: Program:

Course code: Date:

Total no of pages: Page:

 Problem A B C D
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

 Page 16 of 17

This page is on purpose empty!

 Page 17 of 17

Answer Form for Multiple Choice Questions

Candidate number: Program:

Course code: Date:

Total no of pages: Page:

 Problem A B C D
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

