Challenges and opportunities

Chapter 15

Mateusz Siniarski

Opportunities

- Semantic web enterprise applications
 - Tool of integration of enterprise applications
 - Sharing data with a defined meaning
 - Limit human interaction with and apply automatic reasoning
- Sematic web services
 - Bring data and software together
 - Automate discovery, invocation, composition and monitoring of Web Services through machine processing
- Semantic search
 - More meaningful metadata
 - Form web into semantic network
 - Search through logical connections

Challenges

- 1. Balancing expressive power vs useful reasoning
- 2. Ontology availability, development and evolution
- 3. Scalability of Semantic Web Content
- 4. Multilingual
- 5. Proof and Trust of the Semantic Web Languages
- 6. Semantic Web Services Implementation
- 7. Ease of Development and deployment vs. Payoff
- 8. Balancing proprietary and open standards

Balancing expressive power vs useful reasoning

- RDF(S) provides classes and properties
 - Not enough for reasoning
- OWL Full
 - Union of RDF and OWL
 - Full expressiveness but undecidable
- OWL DL
 - Efficient reasoning
 - Not fully compatible with RDF
 - Better expressiveness with rule logic (SWRL)
- Choice of OWL decides on reasoning

Ontology availability, development and evolution

- Ontology development is essential to the Semantic Web because ontologies, by providing vocabulary and semantics of the annotations, are carriers of the meaning
- Highly skilled developers
- General public cannot participate in development
- High cost and long development time

Scalability of Semantic Web Content

- Need to organize
- Ability to search the represented information
 - Even when rapidly expanding
- Possible representation of ontology based annotated pages whose linking reflect the structure.
 - Does not exploit all semantics
- Indexes to group semantic web content based on topics
 - Easier development but hard task go aggregate on a global scale

Multilingual

- English predominant for Web (55,5%)
- Support for multiple languages needed
- Not only content but also ontologies, annotations, and UI

Proof and Trust of the Semantic Web Languages

- Consumer confidence in the accuracy of information
- Content must be constantly updated to be valid

Semantic Web Services Implementation

- Bring programs and data together using discovery, implementation, and maintenance
- Build on top of SOAP and WSDL technologies
- Dynamically invoked by other services in the network
- OWL-S using WDSL as service grounding
- Challenge: developing a standard that vendors will uniformly accept

Ease of Development and Deployment vs. Payoff

- Difficult to use highly structured layering of many languages to deliver logic and machine-processing
- Example: AOL, Microsoft, CompuServe vs Berners-Lee in 1980'
 - Expensive systems offering duplicated and limited amounts of information
 - Cheap, efficient, easy and simple way for universal access to information for free
- Necessary to find cheap, simple and convenient way to produce ontology and maintain logics for semantic web to succeed
- Cannot succeed if it involves too demanding requirements for ontology, logic processing and content generation

Balancing proprietary and open standards

- 1. Vendor dominates and sets a standard
 - Centralized network
- 2. Vendor and markets collaborate
 - Decentralized network
- 3. Standards established by organizations
 - Distributed network
- Smooth growth with vendor-specific frameworks will remain problematic
- Open standard allow the applications to be more utilized