Part 7

 Reasoning tasks and their

 Reasoning tasks and their reducibility

Jostein Solaas Håkon Dissen

November 4, 2015

- Queries and reasoning on DLs
- Will look at a few problems
- Some can be reduced to each other

Knowledge Base Satisfiability

- KB is satisfiable iff there exists an I such that $I \models K B$
- Otherwise contradictory (unsatisfiable)
- Principle of explosion

Axiom Entailment

- We want to check if a statement α entailed by the KB
- Proof by contradiction
- We have α, β and $K B$
- β is the opposite of α
- Lets use Satisfiability
- Iff the $K B \cup\{\beta\}$ is unsatisfiable KB entails α

Concept Satisfiability

- If C may contain individuals, it is satisfiable
- Could signal modeling errors
- There exists a model for C that makes $C^{I} \neq \emptyset$
- Can be reduced to axiom entailment
- $K B \models C \sqsubseteq \perp$

Instance Retrieval

- The task of retrieving all instances of concept C
- Two problems:
- Many models that can differ on the class of an individual
- Models may vary, and may not even contain the same individuals
- Two solutions:
- Retrieve only if individual belongs to C for each model of KB
- Only retrieve named individuals
- The problem can be formulated as $K B \models C(a)$

Classification

- Seeks to create a hierarchy of subsumption relationships of concepts
- Defines $\sqsubseteq_{K B}$ by $A \sqsubseteq_{K B} B$ iff $K B \models A \sqsubseteq B$
- $\sqsubseteq_{K B}$ is a preorder, which makes it faster to calculate
- Helps in the KB modeling phase
- Preprocessing for subsequent KB work

Conjunctive Query Answering

- Sequence of logical ands
- Query either returns true/false or tuples with individuals
- $\exists y \exists z(\operatorname{childOf}(x, y) \wedge \operatorname{childOf}(x, z) \wedge \operatorname{married}(y, z))$
- $\exists x \exists y \exists z(\operatorname{childOf}(x, y) \wedge \operatorname{childOf}(x, z) \wedge \operatorname{married}(y, z))$
- Not polynomial

Other Reasoning Tasks

- Induction
- Generalize facts
- Abduction
- Given $K B$ and α, guess $K B \cup K B^{\prime} \models \alpha$
- Explanation
- Given $K B \models \alpha$ find $K B^{\prime} \subset K B$ such that $K B^{\prime} \models \alpha$ while $K B^{\prime \prime} \subset K B^{\prime}$ and $K B^{\prime \prime} \not \vDash \alpha$
- Module Extraction
- Find smaller KBs in a large KB

