Syntax

Nı : Individual names Singular entities: Sun, Torleif, Excalibur

Nc : Consept names Types, categories, or classes of entities: Mammal, Country, Organization, Yellow, English

NR : Role names Binary relationships: marriedWith, fatherOf, likes, locatedIn

Universal role *u* or for **r** or **r**⁻ Invert roles: *Inv(r) := r and Inv(r⁻) := r*

RIA: Role inclusion axiom

 $\mathbf{r}_1 \circ \ldots \circ \mathbf{r}_n \subseteq \mathbf{r}$

Simple role inclusions: n=1FatherOf \subseteq ChildOf S1: Every role r occurring in a RIA $r_1 \circ \ldots \circ r_n \subseteq r$ where n > 1 is non-simple

S2: Every role r occurring in a simple role inclusion $s \subseteq r$ with a nonsimple *s* is itself non-simple.

 S_3 : If r is non-simple then so is Inv(r).

S4: No other role is non-simple.

Restrict to the ones being **regular**.

 $S \prec R$ iff $Inv(S) \prec R$, and

Every RIA is of one of the forms R1 $r \circ r \subseteq r$, R2 $Inv(r) \subseteq r$, R3 $s1 \circ \ldots \circ sn \subseteq r$, R4 $r \circ s1 \circ \ldots \circ sn \subseteq r$, R5 $s1 \circ \ldots \circ sn \circ r \subseteq r$, such that $r \in NR$ is a (noninverse) role name r, and $si \prec r$ for $i = 1, \ldots, n$ whenever si is non-simple.

Rbox is regular if its role hierarchy is regular.

Define concept expressions

GCI: General concept axiom $C \subseteq D$ «a cat is a mammal» Cat \subseteq Mammal

Tbox is a finite set of GCIs

Every concept name $C \in N_c$ is a concept expression

 \perp (Rot 90deg) and \perp are concept expressions, called top concept and bottom concept, respectively

 $\{a1, \ldots, an\}$ is a concept expression for every finite set $\{a1, \ldots, an\} \subseteq NI$ of individual names; concepts of this type are called nominal concepts

if C and D are concept expressions then so are \neg C (negation), C u D (intersection), C t D (union),

if r is a role and C is a concept expression, then
∃r.C (existential quantification) and ∀r.C
(universal quantification) are also concept
expressions

if r is a simple role, n is a natural number and C is a concept expression, then $\exists r.Self$ (self restriction), >nr.C (at-least restriction), and 6nr.C (at-most restriction) are also concept expressions. The latter two are also jointly referred to as qualified number restrictions or cardinality constraints

Information that applies to single individuals

- C(a), called concept assertion,
- r(a, b), called role assertion,
- ¬r(a, b), called negated role assertion,
- a ≈ b, called equality statement, or
- a ≉ b, called inequality statement,

A STOIQ KB is the union of a regular Rbox, a Tbox, and an Abox. Given a KB with individual names, concept names and role names.