Chapter 6

Tan & Patrick

Modeling with Description Logic

- Discusses the added value brought about by "certain DL modeling features"
- Syntactic sugar
 - "Features expressible with stuff you already have"
- Provide insight about model-theoretic consequences that arise from using or not using certain constructs
- ... basically a bunch of recipes for basic logical constructs

A lot can be done in ALC

- ALC Attributive Concept Language with Complements
 - "The prototypical DL"
- Features of ALC

-	Atomic concepts	A, B
	Not	$\neg C$
	And	$C \cap D$
	Or	$C \cup D$
	Exists	$\exists r. C$
	For all	$\forall r. C$

Concept Disjointness

- "Two concepts C and D are disjoint with respect to an interpretation I, if their extensions do not overlap"
 - Basically means: They have nothing in common
- Formal definitions

$$C^{\mathcal{I}} \cap D^{\mathcal{I}} = \emptyset$$
 General Concept Inclusion $C \cap D \sqsubseteq \bot$ $C \sqsubseteq \neg D$

- Use case → Guarantee that some individual is *not* an instance of a concept

Domain and Range of Roles

- Given a **role**, we want **statements** about the **source** and **target** for the respective relation
- Domain
 - Role, **r** has *domain* **C** in an interpretation **I**, if any source individual of the relation associated with **r**, is
 - an instance of CDefinition: $\exists r. \top \sqsubseteq C \longrightarrow \exists author Of. \top \sqsubseteq Person$
- Range
 - No intuitive evaluation
 - $\forall r.D \longrightarrow \top \sqsubseteq \forall \text{authorOf.Publication}$

The Empty Role and Inverses

- The empty role
 - SROIQ has universal and empty concept definitions (⊤ and ⊥), but only universal role, u
 - Empty role missing!
 - New definition: $\top \sqsubseteq \forall \texttt{emptyRole}. \bot$
- Inverses
 - Inverses allow for traversing roles in reverse direction
 - Can describe individuals with "incoming" roles, as well as "outgoing"
 - Use case → Symmetricity
 - $r^- \sqsubseteq r \longrightarrow marriedWith^- \sqsubseteq marriedWith$

Model Manipulation Part I - Filtration

- "Given a set C of concepts, and an interpretation I, we can obtain the filtration of I with respect to C, by creating an equivalence relation \simeq and letting $\delta \simeq \delta'$ if they coincide in terms of concept memberships"

Basically a super complicated way of saying "grouping by concept"

Model Manipulation Part I - Filtration

Up to Infinity: Cardinality Constraints

- "Create statements about the number of individuals related to a certain individual via a role"
- Should be known from UML and DB-modeling
- 1 to 1, 1 to many, many to many-relationships on roles
- "Value" can also be arbitrary or exact
- Ex: Polygamist $\sqsubseteq \geqslant 2$.Married. \top
- Functional roles
 - Roles with at most 1 individual in the target end
 - i.e. hasFather

Model Manipulation Part II: Unraveling

 Unfold a model such that all the parts of the model not containing named individuals are tree-like.

Example

Far far away: Transitivity

- Examples: ancestorOf, superiorOf, partOf, greaterThan
- Can't precisely talk about the transitive closure of a given role

Model Manipulation Part III: Disjoint Union

$$\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$$
 and $\mathcal{J} = (\Delta^{\mathcal{J}}, \cdot^{\mathcal{J}})$

$$\Delta^{\mathcal{I}+\mathcal{J}} = \Delta^{\mathcal{I}} \cup \Delta^{\mathcal{J}}, \ \mathbf{a}^{\mathcal{I}+\mathcal{J}} = \mathbf{a}^{\mathcal{I}}, \ \mathbf{A}^{\mathcal{I}+\mathcal{J}} = \mathbf{A}^{\mathcal{I}} \cup \mathbf{A}^{\mathcal{J}}$$

$$\mathbf{r}^{\mathcal{I}\!+\!\mathcal{J}}=\mathbf{r}^{\mathcal{I}}\cup\mathbf{r}^{\mathcal{J}}$$

Example

Know your Bounds: Nominal Concept and Universal Role

- The modeling power brought about by nominal concepts and universal roles is quite similar
- Capability to bound or fix the number of individuals in the extension of a class or even in the whole domain.

Selfishness

- The self concept enables to speak about "role loops"
- Allows to define concepts based on such situations

Closed/Open World Assumption

- In the Closed World Assumption everything in the knowledge base is true, everything else is false"
 - The knowledge base may be incomplete. The truth of non-derivable axioms is simply unknown.
- DL does **not** make the Closed World Assumption

Example of how it works in DL

- f1: All *Ducks* have hats
- f2: Bob is a *Duck*
- KB → Bob wears a hat
- But, can Bob fly?
 - We simple do not know!