Chapter 9: Description Logics and OWL

In fact, in terms of syntax, OWL Just tends to be a bulky fowl, However, if it mates with Turtle This union turns out rather fertile; I deem the offspring of this love As graceful as a turtledove.

Introduction

- OWL is based on Description Logics with additional features
 - o e.g., ontology versioning information and annotations.
- OWL supports modeling and reasoning with datatypes

 OWL DL compliant reasoning tool can be used to decide <u>SROIQ</u> knowledge base satisfiability as well as any other reasoning task which can be reduced to it.

Terms

OWL	DL	FOL
class name	concept name	unary predicate
class	concept	formula with one free variable
object property name	role name	binary predicate
object property	role	formula with two free variables
ontology	knowledge base	theory
axiom	axiom	sentence
vocabulary	vocabulary / signature	signature

Table: Synopsis of the corresponding terms used in the OWL vs. the DL vs first-order logic.

Translating DL KBs into OWL

- Translating <u>SROIQ</u> knowledge OWL 2 DL ontology
 - Satisfiability and entailment checks can be performed by OWL reasoning engines.

Technical Issue Considerations

- Both the used vocabulary as well as the constructors have to be URIs
 - The URIs for the used individual, concept, and role names can be chosen rather arbitrarily,
 - while the URIs for constructors etc. are prescribed and associated to specific namespaces usually associated to the prefixes owl:, rdfs:, rdf:, and xsd:.

Technical Issue Considerations ...

- The mainly used encoding of OWL is as an RDF document
 - a. advantageous from a downward compatibility and tool interoperability point of view;

The translation of a SROIQ knowledge base KB contains three parts:

- b. a preamble containing the definition of namespaces,
- c. declarations of the used concept (resp. class) and role (resp. object property) names,
- d. and finally a part containing the OWL counterparts of the axioms from KB

$$\llbracket \mathcal{KB} \rrbracket = \operatorname{Pre} + \operatorname{Dec}(\mathcal{KB}) + \sum_{\alpha \in \mathcal{KB}} \llbracket \alpha \rrbracket$$

where + denotes concatenation of strings.

 $\begin{array}{lll} \mathrm{Dec}(\mathcal{KB}) = & \sum_{A \in \mathsf{N}_C(\mathcal{KB})} A & \mathrm{rdf:type \ owl:Class} \; . \\ & + \sum_{r \in \mathsf{N}_R(\mathcal{KB})} r & \mathrm{rdf:type \ owl:ObjectProperty} \; . \end{array}$

Fig: Declarations are expressed by according typing statements:

Example

```
RBox R
            owns \subsection caresFor
                       "If somebody owns something, they care for it."
TBox T
        Healthy □ ¬Dead
                       "Healthy beings are not dead."
             Cat ☐ Dead ☐ Alive
                       "Every cat is dead or alive."
 HappyCatOwner \sqsubseteq \exists owns.Cat \sqcap \forall caresFor.Healthy
                       "A happy cat owner owns a cat and all beings
                       he cares for are healthy."
ABox A
 HappyCatOwner (schrödinger)
                       "Schrödinger is a happy cat owner."
```

```
Oprefix :
                                                                 <a href="http://www.example.org/#">http://www.example.org/#>.
                                                 Oprefix owl:
                                                                 <http://www.w3.org/2002/07/owl#> .
RBox R.
                                                 @prefix rdfs: <a href="http://www.w3.org/2000/01/rdf-schema#">http://www.w3.org/2000/01/rdf-schema#>.
           owns □ caresFor
                                                 Oprefix rdf:
                                                                 <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
                     "If somebody owns someth Oprefix xsd:
                                                                 <a href="http://www.w3.org/2001/XMLSchema#">http://www.w3.org/2001/XMLSchema#>.</a>
TBox T
                                                                  rdf:type owl:ObjectProperty .
                                                 : owns
        Healthy □ ¬Dead
                                                 caresFor
                                                                  rdf:type owl:ObjectProperty .
                                                 :Cat
                                                                  rdf:type owl:Class .
                     "Healthy beings are not de
                                                 :Dead
                                                                  rdf:type owl:Class .
            Cat □ Dead □ Alive
                                                 :Alive
                                                                  rdf:type owl:Class .
                     "Every cat is dead or alive
                                                 :Healthy
                                                                  rdf:type owl:Class .
                                                 :HappyCatOwner rdf:type owl:Class .
 HappyCatOwner 

∃owns.Cat 

∀caresFor.Heal:
                     "A happy cat owner owns
                                                                  rdfs:subPropertyOf :caresFor .
                                                 : owns
                      he cares for are healthy."
                                                 :Healthy
                                                                  rdfs:subClassOf [ owl:complementOf :Dead ] .
ABox A
                                                                  rdfs:subClassOf [ owl:unionOf (:Dead :Alive) ] .
                                                 : Cat
 HappyCatOwner (schrödinger)
                                                 :HappyCatOwner rdfs:subClassOf
                      "Schrödinger is a happy ca
                                                         [ owl:intersectionOf
                                                            ( [ rdf:type owl:Restriction ;
                                                                owl:onProperty :owns ; owl:someValuesFrom :Cat ]
                                                              [ rdf:type owl:Restriction ;
                                                                owl:onProperty :caresFor ; owl:allValuesFrom :Healthy] )
                                                 :schrödinger
                                                                  rdf:type :HappyCatOwner .
```

Expressing OWL Axioms in SROIQ

 OWL specification features much more axiom types than the ones used above to translate SROIQ knowledge bases.

Axiom type	Turtle notation	DL paraphrase
Class Equivalence	$[\![C]\!]_{\mathbf{C}}$ owl:equivalentClass $[\![D]\!]_{\mathbf{C}}$.	$C \sqsubseteq D, \ D \sqsubseteq C$
Class Disjointness	$\llbracket C rbracket_{\mathbf{C}}$ owl:disjointWith $\llbracket D rbracket_{\mathbf{C}}$.	$C\sqcap D\sqsubseteq \bot$
Disjoint Classes	[] rdf:type owl:AllDisjointClasses; owl:members ($[C_1]_{\mathbb{C}}$ $[C_n]_{\mathbb{C}}$).	$C_i \sqcap C_j \sqsubseteq \bot$ for all $1 \le i < j \le n$
Disjoint Union	$[\![C]\!]_{\mathbf{C}}$ owl:disjointUnionOf $([\![C_1]\!]_{\mathbf{C}}$ $[\![C_n]\!]_{\mathbf{C}})$	$ \bigsqcup_{i < j} C_i \sqsubseteq C C_i \sqcap C_j \sqsubseteq \bot \text{for all } 1 \le i < j \le n $
Property Equivalence	$\llbracket r rbracket_{\mathbf{R}}$ owl:equivalentProperty $\llbracket s rbracket_{\mathbf{R}}$.	$r \sqsubseteq s, \ s \sqsubseteq r$