Chapter 2

GÖDEL: WHAT IS DECIDABLE?

PHILOSOPHICAL AND MATHEMATICAL LOGIC

- If all humans (B's) are mortal (A), and all Greeks (C's) are humans (B's), then all Greeks (C's) are mortal (A).
- Leibniz: Logic and reasoning as a series of mechanical and symbolic tasks.

Deductive and Inductive Reasoning

- Deductive: Spesific conclution from a generalization.
- Inductive: Broad generalization from specific observation.

Paradox

- Contradictions
- Led to significant advances in science, philosophy and mathematics

Formal and Informal Logic

- Formal: Set of descrete symbols, syntax and semantics.
- Hoare triple: {P} C {Q}
 - "Whenever P holds for the state before the execution of C, then Q will hold afterward."
- Informal: Natural language arguments.
 - Complicated

Mathematical Logic

- Apply logic to mathematics: reduce mathematics to tetologies.
 - Russell's paradox: https://www.youtube.com/watch?v=GpVRePLMLbU
- Logic programming: Set of axioms and rules.
 - Proofs by humans can be computer assisted if too lengthy for humans.

Decidability

• Kurt Gödel incompleteness theorem: In certain mathematical domains, there are ploblems that can not be solved or propositions that can not be proven.

Propositional Logic (or calculus)

Symbols	Statement	Connectives
p V q	"either p is true, or q is true, or both"	Disjunction
p·q	"both p and q are true"	Conjunction
$p \supset q$	"if p is true, then q is true"	Implication
p ≡ q	"p and q are either both true or both false"	Equivalence

First-Order Logic

- "there exists an x such that . . . "
- "for any x, it is the case that . . . "
- "x" is values not properties
- Can formulize all of set theory and most of mathematics.
- Model Theory: connections between FO-properties and FO-structures
 - Restrictive thus questions cannot be discussed, but FOL have precise grammer

Automated Inference for FOL

- Gödel's Completeness Theorem says that FOL is only semidecidable.
- If sentence is true given a set of axioms, there is a procedure that will determine this. But is it is false, there is no guarantee that a procedure will determine this.
 - Thus the Truth Table is not complete for FOL, as the size may be infinite.
- Natural deduction is complete in FOL, but not practical.
 - "Branching factor"
- Modus Ponens: Given the statements p and if p then q, infer q.
 - Generalized MP is not complete for FOL
 - GMP is complete for Knowledge Bases containing Horn clauses (chapter 8)
 - $(Ax)(P1(x) \land P2(x) \land ... \land Pn(x)) \Rightarrow Q(x)$

Example from page 30

 KB = All cats like fish, cats eat everything they like, and Molly is a cat. In FOL then,

```
• KB = (Ax) \operatorname{cat}(x) \Rightarrow \operatorname{likes}(x, \operatorname{Fish}) (1)

• (Ax)(Ay) (\operatorname{cat}(x) \wedge \operatorname{likes}(x, y)) \Rightarrow \operatorname{eats}(x, y) (2)
```

- cat(Molly) (3)
- Query: Does Molly eat fish?
- Proof:
 - Use GMP with (1) and (3) to derive: (4) likes(Molly, Fish)
 - Use GMP with (3), (4) and (2) to derive: eats(Molly, Fish)
- Conclusion: Yes, Molly eats fish.

Description Logic

• allow specifying a terminological hierarchy using arestricted set of first-order formulas.

Relating Logic Fragments ->

Higher Order Logic

- Variables can appear in places where predicate or functions sympols appear.
- N order cant takr (N-1) order predicates as arguments.

Recursion Theory

- The Fibonacci numbers
 - 0, 1, 1, 2, 3, 5, 8, 13, . . .

KNOWLEDGE REPRESENTATION

- "Data," "information," "knowledge," and "understanding."
- Logic-based approaches
 - Complex relationships, well defined syntax, semantics and proof theory.
- Rule-based systems
 - IF-THEN
- Frames and semantic networks.
 - Network capturing related object, creating a class hierarchy.
 - Matching and property inheritence

COMPUTATIONAL LOGIC

• Logic + Control = Algorithms

ARTIFICIAL INTELLIGENCE

Strong and weak Al

WEB ARCHITECTURE AND BUSINESS LOGIC

- Front-end is stupid HTML, simple asci text.
- Business logic is deligated to backend scripts.
- Calculations on server is efficient and fast, but must communicate through inefficient XML in ascii.

THE SEMANTIC WEB

- HTML and XML made for humans to read.
- New markup schemas for automatic agents.

Inference Engines for the Semantic Web

 Process the knowledge available in the Semantic Web by deducing new knowledge from already specified knowledge.

Figure 2-3. Markup language pyramid.