Group Recommendation System

Nafiseh Shabib, Norwegian University of science and Technology (NTNU)

2013

Outline

- Introduction
 - Collaborative Filtering
 - Group Recommendation
 - News recommendation
 - Data-plan marketing
 - Evaluating Recommenders
- Conclusion

Nafiseh Shabib, Group Recommendation System

Introduction

- Need For Recommenders
 - Rapid Growth of Information
 - Lots of Options for Users
- Input Data
 - A set of users $U=\{u_1, ..., u_N\}$
 - A set of items $I=\{i_1, ..., i_M\}$
 - The rating matrix $R=[r_{u,i}]_{NxM}$

Nafiseh Shabib, Group Recommendation System

Problem Definitions in RSs

 Predicting the rating on a target item for a given user (i.e. Predicting John's rating on Star Wars

 Recommending a List of items to a given user (i.e. Recommending a list of movies to John for watching).

Outline

- Introduction
 - Collaborative Filtering
 - Group Recommendation
 - News recommendation
 - Data-plan marketing
 - Evaluating Recommenders
- Conclusion

Nafiseh Shabib, Group Recommendation System

Outline

- Introduction
 - Collaborative Filtering
 - Group Recommendation
 - News recommendation
 - Data-plan marketing
 - Evaluating Recommenders
- Conclusion

Nafiseh Shabib, Group Recommendation System

Group Recommendation

Restaurants – for a work group lunch!

Movies - for a family!

Places to visit – using a travel agency!

Solution: Group Recommendation Helps socially acquainted individuals find content of interest to all of them together.

Group Recommendation

An item must be acceptable by all the members of the group

- Use consensus functions to characterize how much the item satisfies the group as a whole
- Existing solutions aggregate ratings (referred to as relevance) among group members
 - Preference Aggregation: aggregates group members' prior ratings into a single virtual user then computes recommendations for that user
 - Rating Aggregation: aggregate individual ratings on the fly using
 - Average
 - Least Misery: computes min rating

Nafiseh Shabib, Group Recommendation System

9

Group Recommendation

An item must be acceptable by all the members of the group

- Use consensus functions to characterize how much the item satisfies the group as a whole
- Existing solutions aggregate ratings (referred to as relevance) among group members
 - Preference Aggregation: aggregates group members' prior ratings into a single virtual user then computes recommendations for that user
 - Rating Aggregation: aggregate individual ratings on the fly using
 - Average
 - Least Misery: computes min rating

Nafiseh Shabib, Group Recommendation System

Group Recommendation

An item must be acceptable by all the members of the group

- Use consensus functions to characterize how much the item satisfies the group as a whole
- Existing solutions aggregate ratings (referred to as relevance) among group members
 - Preference Aggregation: aggregates group members' prior ratings into a single virtual user then computes recommendations for that user
 - Rating Aggregation: aggregate individual ratings on the fly using
 - Average
 - Least Misery: computes min rating

Nafiseh Shabib, Group Recommendation System

11

Group Recommendation

- Least misery: Strong member preferences act as veto
 - e.g., do not recommend steakhouses if a vegetarian is in the group

$$value(\mathcal{G}, i) = \min_{u \in \mathcal{G}}(value_{\mathcal{F}_u}(u, i))$$

- Average: Democracy wins
 - e.g., recommend a holiday destination if on average the group is satisfied

Nafiseh Shabib, Group Recommendation System

Group Recommendation

- <u>Least misery</u>: Strong member preferences act as veto
 - e.g., do not recommend steakhouses if a vegetarian is in the group

$$value(\mathcal{G}, i) = \min_{u \in \mathcal{G}}(value_{\mathcal{F}_u}(u, i))$$

- Average: Democracy wins
 - e.g., recommend a holiday destination if on average the group is satisfied

$$value(\mathcal{G}, i) = \left(\sum_{u \in \mathcal{G}} value_{\mathcal{F}_u}(u, i)\right) / |\mathcal{G}|$$

Nafiseh Shabib, Group Recommendation System

10

Outline

- Introduction
 - Collaborative Filtering
 - Group Recommendation (case research)
 - News recommendation
 - Data-plan marketing
 - Evaluating Recommenders
- Conclusion

Nafiseh Shabib, Group Recommendation System

News Group Recommendation

- There is two approaches that we can use Group Recommendation in news domain
 - Using group recommendation methods for a single user in news domain
 - Recommending news based on targeted Group

Nafiseh Shabib, Group Recommendation System

15

News Group Recommendation

Using Group recommendation methods for a single user in news recommender

Nafiseh Shabib, Group Recommendation System

News Group Recommendation

- Recommending news based on targeted Group
 - Medical researchers
 - Engineers
 - Students

• ..

Nafiseh Shabib, Group Recommendation System

Group Recommendation for Marketing at Telenor

Layer1

Community Detection

- How?
 - Detecting community(Groups) based on their characteristics
 - How to manage borderline customers in the right group

Nafiseh Shabib, Group Recommendation System

21

Group Recommendation for Marketing at Telenor

Layer2

Data-plan assigning

- How?
 - Tailored data-plan to the (Groups)

Nafiseh Shabib, Group Recommendation System

Group Recommendation for Marketing at Telenor

Layer3

Evaluation

- How?
 - Evaluating the customer feedback based on offered data-plan
 - For example, most of the border line customers "moves" to a higher plan (success)

Nafiseh Shabib, Group Recommendation System

23

Outline

- Introduction
 - Collaborative Filtering
 - Group Recommendation
 - News recommendation
 - Data-plan marketing
 - Evaluating Recommenders
- Conclusion

Nafiseh Shabib, Group Recommendation System

Evaluating Recommenders

- Cross Validation
 - K-Fold
 - Leave-one-out
- Root Mean Squared Error (RMSE)

$$RMSE = \sqrt{\frac{\sum_{(u,i)|R_{u,i}} (r_{u,i} - \hat{r}_{u,i})^2}{|\{(u,i)|R_{u,i}\}|}}$$

Mean Absolute Error (MAE)

Nafiseh Shabib, Group Recommendation System

2 5

Outline

- Introduction
 - Collaborative Filtering
 - Group Recommendation
 - News recommendation
 - Data-plan marketing
 - Evaluating Recommenders
- Conclusion

Nafiseh Shabib, Group Recommendation System

Conclusion

 Group recommendation need a bigger picture of group behavioral modeling, and there is still a lot that can be done in this regard.

Nafiseh Shabib, Group Recommendation System

27

Our Work

- Challenge of Group RecSys [recsys 2013]
- Group Recommendations in Information Systems [NOKOBIT 2013]
- Contextual Recommendations for Groups [NoCoDa 2012]

Nafiseh Shabib, Group Recommendation System

