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Collaborative filtering
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Research questions

e \What are the relevant collaborative filtering
techniques for news recommendation?

e How do model-based and memory-based
filtering techniques compare for the domain
of news recommendation?



Approach

1. Survey of collaborative filtering literature
2. Implement memory- and model-based
collaborative filtering algorithms

3. Compare and evaluate



Memory based approach

e Neighborhoods of users
e KNN, Threshold
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Model-based approach

e Cluster users into K clusters

e \What value for K?

o Experiment!
o Threshold of >=100 users per cluster

e Evaluate neighborhood methods on each
cluster



Challenges

e Performance and scale
e Data sparsity

e Evaluation



Data set

e Click stream from Arena Partners operated
news site in Finland between 15.06 - 15.07
this year

Users ltems Ratings Density
2123 2438 35 890 0.69%



Evaluation

W N

Top N recommendation task

. Extract the ratings for a user

Recommend N items to the user

See how many of the items extracted in step
1 that are returned



Precision / Recall

number of relevant items retrieved

Precision = total number of items retrieved

number of relevant items retrieved

Recall = : :
number of relevant items in

collection



Results
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Main findings

e Trade off between precision and recall

e Optimal threshold values changes on
different clusters

e KNN algorithms scales well with clusters

e Small neighborhoods are preferred

e Tanimoto coefficient is the preferred
similarity metric



Future plans

e EXxplore Latent Factor Models
e Mitigate challenges with item churn



Questions?



