Collaborative Filtering

Patrick Heia Romstad

Dag Einar Monsen

Collaborative filtering

Research questions

 What are the *relevant* collaborative filtering techniques for *news* recommendation?

 How do model-based and memory-based filtering techniques compare for the domain of news recommendation?

Approach

- 1. Survey of collaborative filtering literature
- 2. Implement memory- and model-based collaborative filtering algorithms
- 3. Compare and evaluate

Memory based approach

- Neighborhoods of users
- KNN, Threshold

	Article 1	Article 2	Article 3	Article 4
Dag	1	1	1	
Patrick			1	1
Edvard		1	1	1

Experiment with different values for K and different thresholds

Model-based approach

- Cluster users into K clusters
- What value for K?
 - Experiment!
 - Threshold of >=100 users per cluster
- Evaluate neighborhood methods on each cluster

Challenges

- Performance and scale
- Data sparsity
- Evaluation
- High churn in news domain

Data set

 Click stream from Arena Partners operated news site in Finland between 15.06 - 15.07 this year

Users	Items	Ratings	Density
2123	2438	35 890	0.69%

Evaluation

Top N recommendation task

Arbitrary with boolean data set, but we assume the extracted items are relevant

- 1. Extract the top N ratings for a user
- 2. Recommend N items to the user
- See how many of the items extracted in step 1 that are returned

Precision / Recall

Precision = $\frac{\text{number of } relevant \text{ items retrieved}}{\text{total number of items retrieved}}$

Recall = $\frac{\text{number of } relevant \text{ items retrieved}}{\text{number of } relevant \text{ items in}}$ collection

Results

Main findings

- Trade off between precision and recall
- Optimal threshold values changes on different clusters
- KNN algorithms scales well with clusters
- Small neighborhoods are preferred
- Tanimoto coefficient is the preferred similarity metric

Future plans

- Explore Latent Factor Models
- Mitigate challenges with item churn

Questions?