Self-introduction

XIAOPENG LI
PHD CANDIDATE
19.01.2018
XIAOPENG.LI@NTNU.NO

Self-introduction

- ▶ 1. About Me
- ▶ 2. About My University
- ▶ 3. About My Lab
- ▶ 4. Master Project
- ▶ 5. PhD Project
- ▶ 6. Research Plan

1. About Me

Name: Xiaopeng Li

SC version: 李晓鹏

Hometown: Changsha, Hunan

Proveince

Zedong Mao

Xiang Cuisine

Wulingyuan Scenic Area, Zhangjiajie

2. About my university

Tianjin University, 1895 -- present

> Photographed by ...

3. About my lab

Quality, WarrantyManagment

4. Master Project

Warranty policy design and service operations optimization in automobile industry, a project supported by National Natural Science of Foundation of China (No. 71171142).

4. Master Project

$$P_{1} : \min \sum_{i \in I} \sum_{j \in J} \sum_{m_{D} \in M_{D}} \sum_{m_{C} \in M_{C}} \sum_{o \in O} w_{ij} [C_{ijm_{D}o}y_{ijm_{D}} + (1 - z_{im_{D}})C_{ijm_{D}m_{C}o}y_{ijm_{C}}] x_{m_{D}} x_{m_{C}} + \sum_{m_{D} \in M_{D}} x_{m_{D}} F_{m_{D}} + \sum_{m_{C} \in M_{C}} x_{m_{C}} F_{m_{C}}$$

$$s.t. \qquad \sum_{m_{D} \in M_{D}} y_{ijm_{D}} = 1, \forall i \in I, \forall j \in J \quad (1)$$

$$\sum_{m_{C} \in M_{C}} y_{ijm_{C}} = 1, \forall i \in I, \forall j \in J \quad (2)$$

$$x_{m_{D}} - y_{ijm_{D}} \geq 0, \forall m_{D} \in M_{D}, \forall i \in I, \forall j \in J \quad (3)$$

$$x_{m_{C}} - y_{ijm_{C}} \geq 0, \forall m_{C} \in M_{C}, \forall i \in I, \forall j \in J \quad (4)$$

$$x_{m_{D}} - z_{im_{D}} \geq 0, \forall m_{D} \in M, \forall i \in I \quad (5)$$

$$\sum_{m_{D} \in M_{D}} x_{m_{D}} = n_{D} \quad (6)$$

$$F_{m_{D}} = \sum_{i \in I} f_{i} z_{im_{D}}, \forall m_{D} \in M_{D} \quad (8)$$

$$F_{m_C} = \sum_{i \in I} f_i \quad (9)$$

$$z_{im_D} = \{0,1\}, y_{ijm_D} = \{0,1\}, y_{ijm_C} = \{0,1\}, x_{m_D}$$

$$= \{0,1\}, x_{m_C} = \{0,1\} \quad (10)$$

QUEUTIO TIME			
C_{ijm_Do}	o_1 :Repair	$=c_{jm_D}+cs_i$	(11)
	o_2 :Transship	$=c_{jm_D}$	(12)
$C_{ijm_Dm_Co}$	o ₁ :Repair	$= c_{m_D m_C} + c s_i$	(13)

$$T_{ijm_Do}$$
 o_1 :Repair $=t_{jm_D}+rt_{im_D}$ (14)
 o_2 :Transship $=t_{jm_D}$ (15)
 $T_{ijm_Dm_Co}$ o_1 :Repair $=t_{m_Dm_C}$ (16)

••••

4. Master Project

5. PHD PROJECT

Study on warranty policy and warranty service operations, a key project supported by National Natural Science of Foundation of China (No. 71532008)

For many durable products, burn-in is an important production process in which products are operated under certain actual working stress for a period of time, so as to deal with those particular components that would fail in the stage of initial, high-failure rate portion of the bathtub curve of component reliability.

5. PHD PROJECT

5. PHD PROJECT

Optimal burn-in usage rate under different maintenance degree (Optimal burn-in duration is upper bound)

Optimal burn-in usage rate under different purchasing rate of EW (Optimal burn-in duration is upper bound)

6. Research plan

- ► Keywords:
 - ► Resilience-Driven
 - Availability-based
 - ▶ Warranty

THANKS!