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Title: An Extended Cascading Failure Model for Loading Dependent Systems with Multi-state Components

Motivation:
Cascading failures; overloading components;
O loading dependent systems
|
O
7 —I\
<o

Work:

Extended multi-state CASCADE model;
cascading process; probability distributions;
stop scenarios; numerical examples

Significance:
Expected to provide a reference for reliability analysis of loading dependent systems whose operating
efficiency or maintenance strategy is affected by overloading components

Key words: Multi-state CASCADE Model, loading dependent, multi-component system, cascading failure, Overloading.
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O Introduction

e Research Motivation

Cascading failures

* The chemical explosive accident
in Mexico in 1984

e Blackout in American in 1996
* Blackout in Italy in 2003

e The Fukushima nuclear accident
generated by a tsunami in 2011
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Loading dependent system

* Wind farms

* Energy charging stations
* Piping networks

e Medical devices

* Road systems

Overloading state

* Workload/Capacity
* Degradation
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Representative models of cascading failures
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propagation process
stops, system
unfailed

The cascading process in a loading dependent system was first investigated by the CASCADE model.

CASCADE model focuses on instantaneous failure propagation but ignore the overloading phenomenon.

[1]L. D. Xing, "Cascading failures in Internet of Things review and perspectives on reliability and resilience,” leee Internet Things, vol. 8, no. 1, pp. 44-64, Jan. 2021.
[2]H. Dong and L. R. Cui, "System reliability under cascading failure models," leee T Reliab, vol. 65, no. 2, pp. 929-940, Jun. 2016.
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O Problem description

* Overloading as a cascading mechanism

TABLE DIFFERENCE AND SIMILARITIES BETWEEN DIRECT AND INDIRECT CAFsS.

Category Direct Indirect

Difference Driving force Sudden shock and damage Loading dependence
Effects on components Failures or degradation Failures, degradation or overloading
in sequence components

Similarities  Trigger One failure or failures
Stop condition There are no more new failures

States including Normally Working, Overloading and Failed for each component.

Functioning

Expectation
— Q value
NORMALLY L B 5 =F
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_g — Spare Normally Working Overloading Fail

Fig. 1. State transition of components. load-capacity ratio r=I/c




O Problem description

* Model description and algorithm
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Fig. 2. Cascading process and stop scenarios of multi-state CASCADE Model.

Assumptions:

1) The total number of components n in the system is finite.
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This cascading process may stop when

a) all components fail (system fails); or

b) the performance level of the functioning
component is less than the failure threshold
(cascading process stops, system not failed).

2)  All components in the system are identical, exchangeable and nonrepairable.

3) The capacity of every functioning component degrades naturally as the cascading failure propagate. The value of
capacity decrement in every generation is c.



1 System description and assumptions

* Model description and algorithm

1. All components are normally working initially with capacity ¢, = 1 and random
loads /, uniformly distributed in [0, 1].

2. Aninitial outside disturbance d to all components triggers the initial event
followed by failure propagation. The initial failure is set as a trigger in
generation 0 of a CAF.

3. Check states for each component. The performance level is represented by
ratio of workload to capacity //c. If the ratio of component i r; < r*, then
component i is working well. When the ratio r, of component i exceeds 1, the
workload of the component will be more than its capacity could endure, so the
component fails. Otherwise, the component is overloading. Suppose that there
are n; components failed and n,; components overloading in generation j. If
my; = 0, the cascade model stops.

4. The additional load on the functioning components due to each failure in this
generation in next generation is /.. The additional load on the functioning
components in next generation due to each overloading component in this
generation is /.. It is natural that /, is considered smaller than /.. Additional
loads ns;ls + n,jl, are allocated according to the number of failed and
overloading components and added to each functioning component. The
capacity of every component decreases due to degradation, so we have the
capacity of the component in the jth generation ¢; = ¢, — j - ¢4 and the ratio
of the componentr; = [;;/c;.

5. Goto the next generation and iterate from step 2.

Step 1: All the components are
normally working initially.

v

Step 2: An initial disturbance is
applied.

v

Step 3: Check each working
component for failure and
overloading.

Step 5: Go to next
generation j+1.

A

Step 4: Capacity decrement
and allocate additional load to
the functioning components.

Cascading
process stop?

A
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O Quantitative analysis with multi-state CASCADE model

e Distribution of the total number of components in different states

The state of the component follows a multinomial distribution X~PN(N: Dr.Po,Pw)» In each generation, the probability that
there are ng; components failed, n,; components overloading and n,,; components normally working is

n n
P[Xl = nf’XZ = nO’X3 = nW] = Cnfcggnf]pffpgop\";w (1)

where pr = 0,p, = 0,p, =0,pr +po +pyw = 1.

After the initial disturbance d is applied, the load of each component is [; + d and the capacity of each component is c,
o If the load/capacity ratio of a component exceeds 1, the component fails. 1 ] ]  4d=03

L 0 07 1

o According to our definition, if the load/capacity ratio of a component lies in [r*, 1], this component is overloading.

li+d

OSliS1andr*<C—0<1 ﬁ pOZCO(l—T*)
o When the load/capacity ratio of a component is smaller than r*, the component works normally.

OSliS1andliCLd<r* q Pw =cor*—d
0

The three probabilities are respectively ps = d,p, = 1 —r*,p,, = r* — d in generation O.



O Quantitative analysis with multi-state CASCADE model

e Distribution of the total number of components in different states

The total number of failed components and the total number of overloading components have different meanings in our case.
Let s; = (ns), nojo ), for j = 0,1, ... and write
Ui =Npg +npp + -+ npjand vp = 2
forj=10,1,...

An extended quasi-multinomial distribution is applied in

urv u-1 v n-u-v _ _
PIU =V = v] = |G CR-ue (@D (pr) _lw(po) o), u=01,..,n—1 @)
1-Y¥'PU=uV=v), u=n

where ¢ (x) is a saturation function representing the probability

x<0

0:
p=¢pkx)=<x, 0<x<1 4)
1, x>1

After cascading process going through some generations, we have (5) to calculate the distributions of the total number of
components in different states.

— v n—-u—-v
CECY_yp((1— ¢+ d +ulp + vlo)u 1<p (Cj(l - T*)) @ (er* —(d+ul + Vlo)) ,2u=01,..,n-1
1-Yu=-lpU=u,V=v),u=n

PlU=uV=v]= Q)



@ O Quantitative analysis with multi-state CASCADE model

e Distribution for three stop scenarios

The probability that there are n; components failed, n,; components overloading and n,,; components normally working in the jth

generation is
cMichoi i Moj ) (©)

P[X1j =npjXpj = o X3j = mus| = G2 00, "y

Let
@ =o(pri), B = o(poj), ¥i = o(pwj)

In generation 0, a; = 0,8, = 0,y, = 1 for j = 0.

The probability that there are ns, failed components and n,, overloading components is

n m (n—ngy—npo)
P(So = sp) = P[X1 = Ngo, X2 = Ngo, X3 = nwO] = Cnfocsf%foao 1o (T)nooyo sorTe ™

In first generation, for a loading dependent system considering decreasing capacity, the probability that the initial disturbance
triggers one component failed or overloads is

ar =91 —co+d), B = plco(1—717)), y1 = @(cor* — d)
and could be written as a; = ¢(d), 1 = (1 —1*), ¥, = @(r* — d) since ¢, = 1.




O Quantitative analysis with multi-state CASCADE model

e Distribution for three stop scenarios

In generation j+1, the additional loads from failed and overloading components could be assigned to the functioning components

b =G0l + og-nlo
For loading dependent system considering capacity decrement of the components, we have

@ =0 (1 —d-ugal —vg-pla =G lj)
! 1—d-ugpl — vzl

c;i(l—r")
ﬁj:q)(l—d—] I — z)
UGj-2)f — V(j-2)ta

cr* —1;
Y= (p( J J > fij =2,3,...,and U_q = 0, v_1 = 0.
1—d—ug-pl = vG-2)la

For u; + v; < n, the probability distribution for propagation in the jth generation

_ _ o1 n! Nf0 oMo, Mwo _ (M=U)! M1 ongr myr | (M-UG-D)! Mg onoj Mwj
P[S] - Sj: -;SO - So] = cee a. ﬂ] y

a
Npolngolnwe! 0 70 10 ngmgmy, 1 P10 ngjingjiny; J

®)

(9)
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Stop scenario 1: all components must fail in generation j. In this case
P[Sj+1 = Sj411S; =55, .., S0 = so] =1 for ngjy =0 (10)

Stop scenarios 2 or 3: cascading process stops in generation j, and the loads of functioning components are uniformly distributed

in[d + u¢—1lf + v¢j-1yla, ¢j] conditioned on n — u; components not fail in generation j+1, then

m m My
P[Sj+1 = Sj+1|5j =Sj,..,Sp = So] =C, 01511+1)ﬂ Uty J+1U+1) (12)
Multiplying (9) and (11) we could obtain the distribution
! m 0 w (n—up)! m ° w (n-u ! m Mmoj mw m mg my,
P[Sj+1 = Sj+1» "'!SO = So] = m 0 fo m Oygn o__ M7Uo) f1 m 1)/17n 1... ¢ fjﬁ ] J Cn d‘lg"’l)ﬁ (1+1) ]+1 U+1) (12)

Mmpqlmeoylmy,! 1 mpjlimgjlmy, ;! ]
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O Numerical examples +=0.8
I, = 0.005, I, = 0.001

e d =0.001, 0.01, 0.05, 0.1
e Effect of initial disturbance
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Fig. 3 Total number of failed and overloading components with different d. (a) d =0.001. (b) d =0.01. (c) d =0.05. (d) d =0.
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Fig. 4 Integration of probability distributions with different d. (a) Three-dimensional integration. (b) Integration of p-u. (c) Integration of p-v



n =100

[ Numerical examples 4005

|, = 0.0001, 0.0005, 0.001, 0.005 when I, = 0.0001
* Effect of loading increments from failed components
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Fig. 5 Total number of failed and overloading components with different ;. (a) I; =0.0001. (b) I; =0.0005. (c) I =0.001. (d) I; =0.005
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Fig. 6 Integration of probability distributions with different I;. (a) Three-dimensional integration. (b) Integration of p-u. (c) Integration of p-v
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O Numerical examples =08
I, =0.0001, 0.0005, 0.001, 0.005 when I; = 0.005

* Effect of loading increments from overloading components
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Fig. 7 Total number of failed and overloading components with different I,. (a) 1, =0.0001. (b) I, =0.0005. (c) I, =0.001. (d) I, =0.005
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Fig. 8 Integration of probability distributions with different |, (a) Three-dimensional integration. (b) Integration of p-u. (c) Integration of p-v
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O Numerical examples d =0.05
l; = 0.005, I, = 0.001
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* Effect of overloading threshold
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Fig. 10 Integration of probability distributions with different g* (a) Three-dimensional integration. (b) Integration of p-u. (c) Integration of p-v




O Numerical examples

e Stop conditions and probability
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Fig. 2. Cascading process and stop scenarios of multi-state CASCADE Model.
Fig. 11. Occurrences of three stop conditions

n =100
d =0.05
g*=0.8
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B [ Conclusions

* Developed a novel probabilistic model, multi-state CASCADE model, by extended quasi-
multinomial distribution for loading dependent system with CAFs where overloading
components affects the cascading process.

*  Numerical examples are given to illustrate influencing factors on the probability distribution
and occurrence possibilities of three stop scenarios.

* Some considerations also need to be explored. Since our proposed model is still limited in
the multi-component system in simple configuration, further investigations on multi-state
CASCADE Model for k-out-of-n system and engineering application are stimulated.




Thanks for listening!

Yixin Zhao

Department of Mechanical and Industrial Engineering
Norwegian University of Science and Technology
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