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QOutline

Part I: Working principle, function, and erosion of choke valve

« Part ll: Flow coefficient as a degradation indicator: pitfalls and 3D
representation

« Part lll: Static model and Cv surface estimation: effective pass area,
eigen-increment and erosion conversion

« Part IV: Dynamic model: randomization and dynamic system
representation
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Part I. Working principle, function, and
erosion of choke valve
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Choke valve: overview

Function: reduce pressure and control flow rate
Application: production, injection, artificial lift, storage...
Installation: Xmas tree, manifold, line heater, FPSO...
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Choke valve composition

Throttling mechanism

Inlet »

Outlet
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Erosion

* Erosive agents:
— Sand
— Barite/Calcite
— Proppants
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Needle & Seat choke valve

— Metal Bonnet Seal Ring

Bonnet Packing

Bleed Vent Port

Seat
Seat Gasket
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Needle & Seat choke valve: erosion
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Multi-Orifice valves (disc-style)

0-Degrees Rotation 20-Degrees Rotation 40-Degrees Rotation 60-Degrees Rotation
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Multi-Orifice valve: erosion
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Plug & Cage choke valve
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Plug & Cage choke valve: erosion

OUTLET

Internal Plug
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Part Il: Flow coefficient as a degradation
indicator: pitfalls and 3D representation
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Flow coefficient (Cv): definition and calculation

The volume of water at 60°F that will flow through a valve, per minute, with a pressure drop of 1 psi across the ‘E
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Cv curve
Flow Coefficient (Cv) at Stem Travel (% Open)
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Cv deviation as erosion occurs
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Pitfall

« The Cv is a function of both time and opening
* Non-monotonic Cv deviation growth
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Case study

Horizon 17 Sep to 31 Dec

Working starts at Unknown

Number of data points 46

Available data types Timestamp, Calculated Cv, choke

travel, pressure drop




Theoretical Cv as a function of opening

Choke Choke travel

Cv
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140
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14
7

(% or °)

100
90
80
74
68
60
52
45
38
33
28
18

250 1

Theoretical Cv
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Interpolation/regression

« During operation, the actual valve travel are not always integer
* Regression: Cv as a polynomial function of opening
« Cv=16.64-1.18x+0.038x?

Choke Travel Calclnpui

32.88107147
32.88134081 250 1
32.88371517
32.88327449
32.87886203
328777763
32.88026454
32.88148215
32.88160827 50
32.88171191

32.88128229 Ly S . : : :
20 a0 &0 a0 100

31.38321662 Choke travel %

Polynomial fit

« Data from the table
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Overall degradation

« From 17 Sep to 31 Dec, the valve has been operated at moderate
openings: <=35%

« If we ignore the time dimension, then the erosion is captured in the
following snapshot.
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Cv deviation vs relative time

 Correlation between the Cv difference and the valve travel
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Observed Cv in 3D
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Observed Cv projected into x-z and y-z plane
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Challenge: Cv surface estimation
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Faillure threshold: a vector, not a scalar

* When defining the failure threshold, the opening should be specified

» A set of constraints:
— For opening=0%, ACv <5
— For opening = 50%, ACv < 20
— For opening = 100% ACv < 50
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Part Ill: Static model and Cv surface
estimation: effective pass area, eigen-
Increment and erosion conversion
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Hidden erosion state: Effective Pass Area

* In normal operation, EPA is controlled by changing the valve
opening (changing the position of internal plug/external
sleeve/rotation angle/needle lift)

« EPA could be, for different types of choke valve:
— Unblocked cage port area
— Orifice area
— Area between needle and seat

* When the valve is good as new, EPA is known or can be measured

« [For a given opening, EPA increases monotonically as the valve
degrades

« EPA can temporarily decrease due to plugging
« For most valves, EPA is directly proportional to Cv
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Effective pass area: needle & seat

Needle

Effective pass area

—
| I

Seat
! |
' | | | Seat and needle erosion:
| | enlarged effective pass
| I area
EPA in blue

Impassable area
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Cage & plug
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Cage & plug choke valve: enlarged EPA

Oo—0O

Enlarged cage ports

Cage port erosion

QOO0
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00000
OOOO0

Plug head erosion More cage ports are unblocked
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Eigen-increment AA(hy, k)

T the operation horizon

k:dayindex, k =0,1,2..T

* h;:the valve opening at day k, in [0%, 100%)]
* h: an arbitrary opening in [0%, 100%]

« A(h,k): EPA at the end of day k at opening h
« Eigen-increment:

AA(hy, k) = AChy, k) — A(Chg, k — 1)

« AA(h, k), A(h, k) and Cv surface are computed based on eigen-
Increments
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Inherent flow characteristics: f(h)

« Defines the relationship between valve opening and flowrate under
constant pressure conditions

« Defines the relationship between opening and “vulnerable area”
« Linear: f(h) = h Valve Characteristic Curve

. Equal percentage: f(h) = R*1,
* R:rangeability -

70

« Fast opening: f(h) = hi ”
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Erosion conversion
. (S
AA(h, k) = min ( s ) AA(hy, k)

« For an arbitrary opening h and an operational opening hy, if h > h;,
the increment is preserved; if h < h;, the increment is proportional to

AA(hy, k)
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Erosion conversion: cage & plug

OOOOOO
000000
000000
000000
000000
000000

Switch the opening to 50%

OOOOOO
000000
000000

h, = 25% \

These ports are not subject
to erosion during the day,
and do not contribute to
EPA growth

Vulnerable area (enlarged ports) that
contributes to EPA growth AA(hy, k)

35

/

AA(50%, k) = AA(25%, k)
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Erosion conversion: cage & plug

000000 000000
000000 000000
000000 000000
OOOOO@ Switch the opening to 12% : OOQQQO
000000 000000
000000 000000
000000 000000
9804¢ . 00006080
hy, = 25%\ h=12%
Vulnerable area (enlarged holes) that f(12%)

AA(12.5%,k) = * AA(25%, k)

contributes to EPA growth AA(hy, k)

£(25%)
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Erosion conversion: EPA deviation

+ A(h k) = A(h) + ¥_, min (% 1) AA(Ry, )
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EPA deviation: surface estimation

 Initial EPA + daily openings + flow characteristics +Eigen-increment
= EPA surface/ EPA deviation surface

 How to infer eigen-increments?

Choke Travel Calcl
32.88107147
32.88134081
32.88371517
32.88327449

P 5 32.8T7886203

i 32.8777763

Eigen-
increments

Theoretical Cv
E B 8B o
g g8 & 8 B

40 60
Choke travel %
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Estimation of eigen-increments: least squares

* Observations: y;,y, ... yr
» Cv conversion function: Cv(h) = 2(A(h)) = 2A(h)
* Observation model: y, = AA(hy, k) + €

» Loss function: L = Y7_; (v, — AA(hy, k))2 With A(hy, k) = A(hy,) +

k . [ f(hg) :
o ()

 Find AA(hy, k), k = 1...T that minimizes L

—> { Eigen-increments }
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Cv deviation: surface estimation

 Initial Cv + daily openings + flow characteristics +Observed Cv+ Cv
Conversion function = Cv surface/ Cv deviation surface

Choke Travel Calcl
32.88107147
32.88134081
32.88371517
32.88327449
32.878B6203

32.8T7TTTR3

B & g i)
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Theoretical Cv
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Part I-lll: Summary

 Cy, recorded as 1D array, should be perceived and used in
combination with the openings

« Failure threshold should be defined for each opening
« Effective Pass Area is the hidden erosion state

* Using the inherent flow characteristic, we can establish a
“conversion rule” that converts the eigen-increments to increments
at an arbitrary opening

« Least squares method can be used to estimate the eigen-
iIncrements from the observed Cv

« The obtained Cv deviation surface shows the erosion state for any
opening
« Up to now, everything is deterministic, and no process parameters

are taken into account. So the RUL cannot be predicted based on
this model.
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Part IV: Dynamic model: randomization
and dynamic system representation
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Markovian dependencies between states and

observations

Y(k-1) Y(k+1)
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Erosion response model

e F=K+«U"«F(a)*m

. i !
« E: material loss rate (kg/s) ;
m |
« q:impact angle p' U,

« n: velocity exponent o\

e [ ma.terial dUCt|I|ty funCtion Material properties (K’ n, F(a])
U: particle impact velocity (m/s)

m: mass rate of sand (kg/s)
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Eigen-increments, flow rate and sand rate

« Eigen-increments: AA(hy, k) = A(Chy, k) — A(hy, k— 1)

* (Q(k): flow rate of day k

 m(k): sand mass rate of day k in kg

 AA(hg, k) considered as a positive random variable with expectation

e E[MA(h, K] = E[ACh k) — ACh k — 1] = K * (A( fkff_l))n « m(k)

Var[AA(hy,k)]
E[AA(R,K)]
* The eigen-increments are modeled as gamma distributed r.v.

=0

 Variance to mean ratio:

n
 AA(hy, k) ~ Gamma(K *( QCk) ) *m(k),0)




System model and observation model

Evolution of eigen-increment :

o) \"
AA(hy, k) ~ Gamma(K = (A(hk,k_l)) *m(k), 0)

 EPA evaluation:
_ k . f(h) .
A(h, k) = A(h) + X;=; min (Th])’ )AA(hj,])
e« Convert the EPA to Cv with measurement error
v = A(A(hg, k) +€,e ~N(0,0)

* Inference on model parameters (K,n, 8,0 ...):
e expectation-maximization + particle filter
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Prediction of erosion growth and of RUL ™

based on production plan

Cv records, initial Cv, flow Particle filter | [ Model

characteristics, opening, flow EM arameters
rate, sand rate I— P

Model Production pla.n(Openmgs and
corresponding flow rate)

L Prediction of Cv growth and
I estimation of RUL
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Conclusion

 Cv evolves as a surface, and failure threshold is a curve
« Static model: estimate the Cv surface in the past
« Dynamic model: predict the Cv evolution in the future




Erosion state described by a triplet S

 Three elements define the erosion state:
— Eroded component
— Erosion amount (material loss, thickness loss)
— Erosion location

« Obtained by visual inspection and measurements

« Example: plug and cage control choke
— S, ={cage, material loss: 12g, most at the bottom}
— S, ={cage ports, total enlarged area: 5cm?, middle and bottom}
— S; = {plug, material loss: 5g, plug head}
— S, = {seat, material loss: 3g, on top}
— S; = {gallery, thickness loss: 2mm, uniformly distributed}

. S={S, 5,0}
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Triplet S

The triplet S represents the ground truth
S is unobservable during production
S involves descriptive text

S and its evolution do not have a tractable mathematical
representation

Cv is exclusively determined by S and the opening, independent of
process parameters such as flow rate, sand rate, pressure drop

Mathematically
intractable "

Cv

Unknown,
Hard to model




An intermediate state variable: X

« X should satisfy:

Exclusively determined by S

Has a physical interpretation, understandable by domain experts
When S evolves, X should response and trigger changes in Cv
The relation between X and Cv should be knowable or measurable
Mathematically representable
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Cv deviation in 3D

N 22

T 20

T 18

T 16

T 14

T 12

T 10
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Cv deviation
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Cv deviation projected into x-z plane
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Cv deviation projected into y-z plane
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