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1.1 Hydropower in Norway
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Table 1- Developed hydropower system?

l Category Number AUErEE AmLEL

production [TWh]

oil

Under 1 MW 579 0,8
1-10 MW 813 11,4
10-100 MW 43,4
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Figure 1-Total energy supply by source?, Norway 1990-2020

In February 2022, 87.1 % of total electricity generation in Norway comes from
hydropower. Production from large power plants (LHPs) accounts for 59.8 % of
overall hydropower generation.

https://www.iea.org/countries/norway
https://www.nve.no/energi/energisystem/vannkraft/
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1.2 Cascaded power stations
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Figure 2- Topology of hydropower production in SHOP3

3. https://www.sintef.no/en/software/shop/
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1.3 Single hydropower plant
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Figure 4- Vertical Francis turbine (IEEE, 1988)




Objectives and methods
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2.1 Research problem

« How to consider the influence of electricity production in RAMS
condition-based maintenance model?

« How to integrate the new CBM model with generator Sheresioma I
maintenance scheduling? management engineering
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2.1 Review of GMS

Table 2-Review of GMS study in hydropower

Reference Objective function Constraints Approach Time Case study
Lo Maintenance constranits § 75 Spanish power
; Minimize - Bender's
Canto (2008) . Economic and L. One year plants(50 thermal,
the sum of cost . . decomposition .
unit commitment 20 hyroelectric
Power generation and 5 nuclear)
Maintenance windows
L. Load constraints 5-station
. Maximize the sum of - Ant colony .
Foong et al. (2008) . Resource constraints PP One year Tasmania hydro plant.
squares of reserve capacity - optimization .
Precedence constraints 14 maintenance tasks
Reliability constraints
- . Bender's .
. Maximize Hydro constraints . A Norwegian watercourse
Helseth et al. (2018) decomposition | Two years . .
the expected revenue - - with 7 reservoirs
) ) C++ with Gurobi
Maintenance window .
7.5 library
Maximize Power generation A Canadian
Rodriguez et al. (2018) the net benefit Maintenance activity MILP One month | cascaded power plants.
Hydro constraints 18 maintenance tasks
Maintenanc activity .
. P Maximize — Bender's A four-plant system.
Rodriguez et al. (2021) Hydro constaints 15 days ! v

the net benefit

Power generation

decomposition

8 maintenance tasks

STHS: short-term hydro scheduling
GMS: generator maintenance scheduling




2.2 CBOM strategy

A Q& Maintenance points m==)  Maintenance scheduling period
—— Failure probability of the system

OM Threshold

CBM Threshold

Figure 5- CBOM strategy
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Opportunistic Maintenance (OM) is to schedule
maintenance based on opportunities in operation
considering dependence among components
(AbSamat and Kamaruddin, 2014).

CBM is to repair components when deterioration
exceeds a certain threshold. Condition-based
opportunistic maintenance (CBOM) combines the
advantages of both CBM and OM. It schedules
maintenance considering both operation and real
condition of components (Zhao et al., 2019;
Zhang et al., 2021).
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2.2 CBOM strategy
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Figure 6- Framework
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Scheduling results
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3.1 Inputs and outputs from SHOP
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Figure 7- Market condition
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Figure 8- Inflow to different researvoirs




3.1 Inputs and outputs from SHOP

Generator discharge without maintenance
(Objective value 108,623,615.38 EUR, Calculation time 647.04 seconds)
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Figure 9- Outputs from SHOP
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3.2 Structure of Francis unit

Table 3-Function of Francis turbine

Brake
water - Intake water Water intake structure (WIS)
WIS WG SBox Shaft Control water flow Wicket gate (WG)
Cool water Cooling Structure (Cooling)
Generate electricity Generator (GEN)
Mechanical Transmit mechanical energy | Runner, gear bearing (GB1, GB2, GB3)
@ner energy Circuit breaker (CIB1,CIB2)
. Gen . R Main transformer (MTrans)
EleCtrIC'ty Transmit electrical energy Excitation transformer (EXTrans)
] Switch board (SB)
Cooling Keeps the axle firmly Carrier bearing (CB1, CB2)
Connect components Shaft
MTrans CIB1 Reduce wearing Stuffing box (SBox)
—Mechanical energy flow v SB Monitor speed Speed regulator (SpeedS)
—Water flow Send signals Brake
—Electricity currrent flow l EXTrans CIB2 SpeEdS

Figure 10-Structure of Francis turbine
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3.2 Failure simulation of Francis unit
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Figure 11-CDF of components in 8760h (BULUT and OZCAN, 2021)
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Figure 12- Reliability block diagram




3.2 Failure simulation of Francis unit

—e— Failure Probability of the Francis unit
—eo— Reliability of the Francis unit
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Figure 13- Failure simulation in 8760h
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3.2 Failure simulation of Francis unit

Initialization:
PM1

Aprofit(PM1) = z Tprofit(t) — penalty = timelength
P

p+gap-1
+ 2 Electricity(t) * Price(t) * R(t — PM1 — timelength)
PM+1

Accumulated profits:
PM?2

Aprofit(PM2) = 2 Electricity(t) * Price(t) * R(t — PM1 — timelength)
P

p+gap-1
—penalty * timelengt + z Electricity(t) = Price(t) * R(t — PM2 — timelength)
PM2+timelength
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3.2 Failure simulation of Francis unit

Table 4-Parameter setting

Parameter Value Explanation
t Oh Initial time point
time 1447 h The length of one period
gap 710 h The minimal gap between two maintenance actions
penalty -1000 EUR The cost of performing maintenance
loopend 8660 h The end time of loop, smaller than 8760h
alert level 0.95 The minimum tolerable failure probability
upper limit 0.99 The maximum tolerable failure probability
the length of dataset 8760 h The target period
time length 1h The duration of maintenance activities
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3.3 Plant004G1 scheduling results
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Figure 14- Maintenance scheduling for Plant004 G1
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Sensitivity analysis
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4.1 Important parameters

Parameters: alert level , upper limit, penalty and time length

« alert level: minimal acceptance limit of failure probability, decided by gap
« upper limit: maximum acceptable limit of failure probability, decided by time

8760 8760

, < #of maintenance activities <
time gap

S Failure probability <

Alert level Upper limit
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4.2 Alert level

10 upperlimut
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Figure 15- different alert levels
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The number of maintenance activities
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Figure 16- influence of alert levels
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4.4 Penalty, time length

The movement of maintenance dates
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Figure 19- influence of maintenance duration
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Limitations and conclusions
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5.1 Limitations

« Data collection
In this research, failure data and operation data are generated by simulation. It depends on the failure distribution of
components and the structure of the generator. However, this kind of data is not real and has the discrepancy with
true failure data.

*  Profit calculation
There are two types of profit concept in this research. Hourly profit is the product of hourly production, market
price and reliability. accumulated profit is the accumulation of hourly profits during one specific period. The
improvement on the actual monetary income may not appear unless the value of reliability can be quantified by
money.

« Maintenance parameters
Parameters include maintenance cost, maintenance duration, alert level and upper limit. All these parameters follow
the assumption that any maintenance activity can be completed in one hour and the heterogeneous maintenance
workload is ignored. CBOM model assumes that each maintenance activity has the same property. In the reality, the
cost, duration, workload for each maintenance activity can be different.
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5.2 Conclusions

How to consider the influence of
electricity production in condition-
based maintenance model?

How to integrate the new CBM
model with generator
maintenance scheduling?

This paper presents CBOM model for a cascaded
hydro system. It succeeds to fit into STHS model.
Case study of PLANT004 G1 shows that trade-

off between production and maintenance is made
by optimizing the accumulated profits between two
maintenance thresholds. Sensitivity analysis
reflects that accident penalty cost and maintenance
duration do not influence the final results, but
increasing thresholds can decrease the number of
maintenance activities. Compared with ABM and
corrective maintenance, CBOM model reduces
and postpones unnecessary maintenance activities
that will bring the huge profit loss.
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Thanks for listening!
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