

MR 8406 Operational risk analysis

Modelling hazardous events for decision support

S. Lee, Y. Liu & N. Paltrinieri

Shenae Lee 10 March 2017 (To be presented in ESREL)

Thank you to S.Haugen and X.Yang for valuable comments

The presentation is about

- A brief introduction to operational risk analysis
- Case study: modelling event scenario (storage tank overfill)
- Summary
- Q & A

Point of departure

Operational risk analyses (Vatn & Haugen, 2013)

- Different from strategic risks analysis for strategic decisions
- An example of strategic risks analysis : Quantitative Risk Analysis (QRA) for safe design and procedure (risk level for the entire installation)
- QRA is not effective for operational decisions (more specific)
- An operational risk analysis is performed in limited problem area, typically decisions during planning (e.g. replace a detector)

Point of departure

Objectives

One way to improve

• Detailed scenario analysis, make use of available information

• The need for sufficient focus on assumptions of an event scenario and a model that describes sequences of events (Aven, 2016)

Main interests

• Visualize detail event scenarios (sequence) that might be missed in quantitative risk anlysis

- Dependencies between decisions/activities and barrier failures
- Address potentials of such approach to support operational decisions

Case study

Tank overfill accidents

• Tank operations are similar around the world, and accidents are reoccurring (Myers & Roos, 2015).

• The overfill of atmospheric storage tanks is a common event, even with the systems for overfill prevention (Casey, 2016).

• After the Buncefield (2005), emphasis put on the use of risk analysis in design and operation

Safety Barriers

Bow-tie Hazardous event :major spill from overfill

Left-hand side of bowtie of Buncefield case (Paltrinet al. ,2012)

Layers of protection analysis (LOPA)

IEC 61511 (2012)

Safety instrumented system

Myers & Roos (2015)

"Many tank overfill incidents resulted from faulty instrumentation. In addition, it is common that operators did not believe the correct alarms because of past experience"

Safety instrumented system

Automatic gauging system (ATG)

• Tank levels may be read using ATG with ability to transmit

a signal and/or trigger H alarm

- ATG failure loss of information on the levels
- \rightarrow H alarm is dependent on ATG

Level switch

- Independent from ATG
- Triggers H-H alarm or close the shutdown valve

Shutdown valve

• Manual intervention by local and/ or remote operator or automated shutdown

Case study

Buncefield (2005)

Technical barriers

- The level gauge remained the same position → no alarms
- High-level switch did not close the shutdown valve

Operational barriers

- No actions to repair the level gauge: The same problem occured 14 times in 4 months.
- The maintenance crews did not fit the padlock after testing.
- Poor communication between two companies (Designer / maintenance)

Modelling

Petri nets

- Dynamic behavior of the system in a particular state (Not limited to binary events)
- Express dependencies : support fault tree or event tree analysis
- Compact, flexible and easy to use
- Monte Carlo Simulations gives
 approximate value

Petri Net with marking

Modelling

Event/activity influence barriers

Modelling

States of the storage tank

Simulation result

What and when are the events triggered during 3 months?

What are probabilities of each state?

Continue computation ...

Examples (all transitions)			
Frequency (all transitions)			
Ivallie Desision 4	10-	4.000450	Number of alggers during pe
Deusion. I		1.093 TEZ	
Filling_End: 2	2	4.045/E1	
Operational error: 3	3	3.65/9	
Operator intervenes 1:4	4	2.6768	
Fail to control 1 : 5	5	0.9803	
H alarm response : 6	6	0.5609	
inspection : 7	7	1.019	
Gauge fail : 8	8	6.8824E1	
Operater intervenes 2 : 9	9	6.864E1	
Not detect HH : 11	11	4E-3	
HH alarm response : 13	13	0.4582	
Recovery : 14	14	3.8E-3	
Check every 2 hour : 16	16	4.3656E2	
OK : 17	17	4.3566E2	
ATG Failure : 19	19	0.8911	
ATG repair : 20	20	3.8E-3	
switch fail : 21	21	1.36E-2	
Tr22 : 22	22	3.2E-3	
DU Test: 25	25	1	
DU Repair : 26	26	0	
No H alarm or fail to response : 28	28	0.4192	
P10 1.1 AA		0.070.0	

Save as

Name	Number	Sojourn Time	σ (Sojourn Time)	Average token nu
Ready to fill : 1	1	3.4575E3	1.6176E2	0.7894
illing start : 2	2	4.8746E2	3.8685E2	0.1113
bnormal : 3	3	4.8395	2.9683	1.1049E-3
bnormal 2 : 4	4	4.1242E2	2.2428E2	9.416E-2
top:5	5	1.6047E1	1.011E1	3.6638E-3
ligh Level_Ope : 6	6	0.2097	0.3446	4.7866E-5
.evel_HH:7	7	2E-3	3.1561E-2	4.5662E-7
topped : 8	8	1.019	1.0429	2.3265E-4
Overfill level(LOC	9	0.4673	1.0988E1	1.0668E-4
Ready_Check: 10	10	1.7352E3	1.3808E3	0.3962
inish_Check: 11	11	2.6448E3	1.3808E3	0.6038
ully functioning :	12	1.7924E3	1.4101E3	0.4092
TG failed : 13	13	2.5876E3	1.4101E3	0.5908
Ready_Operatio	14	4.38E3	0	1
'est done : 15	15	0	0	0
witch functionin	16	4.3522E3	2.7575E2	0.9937
Switch failed: 17	17	2.7755E1	2.7575E2	6.3368E-3
witch functionin	18	4.3711E3	1.7163E1	0.998
witch failed_2 :	19	8.926	1.7163E1	2.0379E-3

Places Transitions Results Standard output Errors Info

Sojourn Time (all places)

torsdag, 19 januar 2017 09:02:43 CET Figure 2

Provide a piece of information for decision support

Data

Operat	ional barrier	Technical barrier		
Generic values Operator error Response tim	probability e	•Tank filling frequency •Failure rate of components •Demand rate		
Table F.4 – Typical protection laye	er (prevention and mitigation) PFDs	Health and Briefs		
Protection layer	PFD	A review of Lavers of Protection		
Control loop	1,0 × 10 ⁻¹	Analysis (LOPA) analyses of overfill		
Human performance (trained, no stress)	1,0 × 10 ⁻² to 1,0 × 10 ⁻⁴	of fuel storage tanks		
Human performance (under stress)	0,5 to 1,0	or fuor otorago tanto		
Operator response to alarms	1,0 × 10 ⁻¹	Prepared by Health and Safety Laboratory for the Health and Safety Executive 2009		
Vessel pressure rating above maximum challenge from internal and external pressure sources	10 ⁻⁴ or better, if vessel integrity is maintained (that is, corrosion is understood, inspections and maintenance is performed on schedule)			
IEC 6151	1 (2012)	Chambers et al., (2009), COMAH (2011)		

Summary

- The purpose of a risk analysis is not to address each and every possible chain of events. (Factors that influence are more focused)
- However, we try to pay attention to sequence of events sets that are considered to be safetycritical
- Select a specific path in a bow tie
- Illustrate how to use Petri nets to model the states of components or operators
- Visualize assumptions behind the events

Summary and conclusion

Decision support

- Support understanding of operational situations
- Modify the elements of Petri net based on work orders, maintenance activities, work permits
- Practical value : when we have identified possible event sets, the model gives a realistic probability value to avoid unnecessary precaution measures

Summary and conclusion

Modelling

Limitations and potential improvements

Limitations	Improvements
 Requires good understanding of both technical systems and operational situations Weak links to the severe accident Does not embrace risk influencing factors Big Petri nets are not good in communication 	Include risk influencing factors by using Bayes rule to update the parameter in a stochastic distribution (e.g. failure rates) tion

