

Rotary Machine Prognostic Based on Gamma Process

Project Introduction, Current Status and Future Plan

Date: May 5, 2017

Ariful Islam M.Sc candidate Reliability, Availability, Maintenability and Safety (RAMS) Dept. of Mechanical and Industrial Engineering, NTNU

Table of Content

- Problem Statement
- Overview of Prognosis
- Condition Indicator
- Approach & Methods
- Some Illustrations
- Conclusion

Problem Statement

NTNU Norwegian University of Science and Technology

Problem Statement

Problem Statement

- Critical Component
 - Motor (Ageing of stator winding insulation)
- Requirements
 - Summer (3 units)
 - Winter (6 units)
- Current Status
 - 5 commissioned in 1996
 - 1 new (2006)

Machinery Prognostics

- Traditional reliability approaches
 - Event data based
 - Replacement/failure times of historical units
- Prognostic approaches
 - Condition data based
- Integrated
 - Both on event and condition data
 - Depends on the availability

Reference: Aiwina (2009)

NTNU Norwegian University of Science and Technology

Prognosis

 $RUL(t) = \inf \{h: X(t+h) \in S_L | X(t) \notin S_L \}$

X(t) = Random Variable (Condition) at time t $S_L = Set of failed states$

Reference: Xiongzi (2011)

Norwegian University of Science and Technology

Machinery Prognostics

Reference: Based on Vachtsevanos (2006) and Si (2011)

Norwegian University of Science and Technology

Condition Indicator

• Diagnostic Vs. Prognostic

- Diagnosis- identify failure mode (cause of malfunction)
- Prognosis- generate rational estimation of RUL with available data (medical history)

Reference: Lee (2014)

I NTNU Norwegian University of Science and Technology

Condition Indicator

- Available Test Procedures
 (Insulation Quality)
 - Insulation Resistance
 - Polarization Index
 - Hi-Pot Test
 - Partial Discharge
 - Etc.
- Partial Discharge (PD)
 - Dielectric breakdown of electric insulation under high voltage
 - Creates small sparks in holes and bombard them

Reference: Paoletti (1999)

Online PD Monitoring

- OLPD measures-
 - Number of PD pulses
 - PD Magnitude (Qm)
 - Phase position
- PD Magnitude
 - Highest PD pulses with minimum repetition rate of 10 pulses/sec
 - Higher value indicates more deteriorated winding (Stone, 2006)

Typical trend in PD magnitude of stator windings (Stone (2012))

Preliminary Approach

- Choice of statistical model
 - Gamma process
- Reasons-
 - Strictly monotonic increasing degradation
 - Useful for optimal inspection and maintenance decisions making
- Limitations
 - Linear expected degradation

Image reference: Lim H (2015)

Gamma Process

• PDF of Gamma distribution-

$$f_{A(t),b}(x) = \frac{1}{\Gamma(A(t))} b^{A(t)} x^{A(t)-1} e^{-bx}$$

A(t) = Shape functionb = Scalar parameter

$$E(X_t) = \frac{A(t)}{b}$$
$$Var(X_t) = \frac{A(t)}{b^2}$$

Non-Homogeneous Gamma Process

- Non-homogeneous Gamma Process modeling
 - How deterioration increases over time? (Assuming temporal variability)
 - Shape function, $A(t) = c.t^u$ (Empirical studies)

Reference: Mahmoodian (2013), Van Noortwijk, J. M. (2009)

NTNU Norwegian University of Science and Technology

Simulation Process

- Available Methods
 - Gamma increment sampling
 - Simulate independent increments w.r.t. tiny amount of time

$$Ga(\delta|A(t_i) - A(t_{i-1}), b) = \frac{b^{A(t_i) - A(t_{i-1})}}{\Gamma(A(t) - A(t_{i-1}))} \delta^{[A(t) - A(t_{i-1})] - 1} e^{-b\delta}$$

A.K.A – Gamma Sequential Sampling (GSS)

- Gamma bridge sampling
 - Draw samples from CDF of deterioration

Reference: Van Noortwijk, J. M. (2009), A. N. Avramidis (2003)

Simulated NHGP Paths

Changes in Shape

NTNU

Norwegian University of Science and Technology

Changes in Scaler Parameter

c= 2, b= 3, u= 2

NTNU Norwegian University of Science and Technology

Parameter Estimation

Maximum Likelihood Estimation

$$\mathcal{L}(\delta_{i}|c,b) = \prod_{i=1}^{n} f_{X(t_{i})-X(t_{i-1})}(\delta_{i})$$

$$= \prod_{i=1}^{n} \frac{b^{c(t_{i}^{u}-t_{i-1}^{u})}}{\Gamma[c(t_{i}^{u}-t_{i-1}^{u})]} \delta_{i}^{c[t_{i}^{u}-t_{i-1}^{u}]-1} e^{-b\delta_{i}}$$

$$\psi(x) = \frac{d}{dx} ln\Gamma(x)$$

$$= \frac{\Gamma'(x)}{\Gamma(x)}$$

$$\hat{b} = \frac{m\hat{c}t_{n}^{u}}{\sum_{j=1}^{m} x_{n,j}}$$

$$\hat{b} = \frac{m\hat{c}t_{n}^{u}}{\sum_{j=1}^{m} x_{n,j}}$$

$$\sum_{i=1}^{n} [t_{i}^{u}-t_{i-1}^{u}]\psi(\hat{c}[t_{i}^{u}-t_{i-1}^{u}]) - \frac{\sum_{j=1}^{m} \sum_{i=1}^{n} [t_{i}^{u}-t_{i-1}^{u}]ln(\delta_{i,j})}{m} = t_{n}^{u}ln(\frac{m\hat{c}t_{n}^{u}}{\sum_{j=1}^{m} x_{n,j}})$$

Ĉ Must be computed iteratively (Newton-Raphson Method)

Test Result (Example)

Shape function, $A(t) = c.t^u$ Scaler parameter = b

Number of components, M = 100Total time, T = 10 unit Time increment = 0.1

Parameter value of generated data, b = c = u = 2

Parameter	Estimate	Confidence Level	Lower Bound	Upper Bound
с	2.0919	95%	2.0146	2.1722
b	2.0441		1.9584	2.1336

Estimation Accuracy- Sample size

Estimation Accuracy- Initial Observation

Opportunistic Observation

Accuracy of c estiamtes removing 95 observations (original estimate = 2.0108)

NTNU Norwegian University of Science and Technology

RUL (Illustration)

RUL Estimation

First Hitting Time, T_L $T_L = \inf(t > 0: X(t) \ge L)$

CDF of FHT,

$$F(t) = \Pr(T_L < t) = \Pr(X(t) \ge L)$$

$$= \int_{x=L}^{\infty} f_{X(t)}(x) dx = \frac{\Gamma(A(t), Lb)}{\Gamma(A(t))}$$

At time t when X(t)=x(t), RUL< h

$$P(RUL \le h) = 1 - P(RUL > h)$$

= 1 - P[X(t + h) < L|X(t) = x(t)]
= 1 -
$$\frac{P[X(t + h) - x(t) < L - x(t)]}{P(X(t) < L)}$$

RUL Results

Norwegian University of Science and Technology

An Insight

Further Workplan

- Compare RUL estimations
 - Inspection intervals
 - Interpretations
- Discuss improvement
 - Adaptive model (update parameter)
 - Stochastic threshold
- Discuss System level RUL
 - Implementations
 - Challenges
- Data collection
 - Requirements
 - Conditions
 - PD? Misinterpretation?

References

- A. N. Avramidis, P. L'ecuyer and P. A. Tremblay, "Efficient simulation of gamma and variance-gamma processes," *Proceedings of the 2003 Winter Simulation Conference, 2003.*, 2003, pp. 319-326 Vol.1.
- IEEE Guide to the Measurement of Partial Discharges in Rotating Machinery," in *IEEE Std 1434-2000*, vol., no., pp.1-64, Aug. 15 2000
- Stone, G. C., & Warren, V. (2006). Objective methods to interpret partial-discharge data on rotating-machine stator windings. *IEEE Transactions on Industry Applications*, *42*(1), 195-200.
- Stone, G. C. (2012). A perspective on online partial discharge monitoring for assessment of the condition of rotating machine stator winding insulation. *IEEE Electrical Insulation Magazine*, 28(5).
- Paoletti, G., & Golubev, A. (1999, June). Partial discharge theory and applications to electrical systems. In *Pulp and Paper, 1999. Industry Technical Conference Record of 1999 Annual* (pp. 124-138). IEEE.
- Zhu, H., Green, V., Sasic, M., & Jakubik, A. (2001). Partial discharge database: its benefits and limitations on assessment of stator insulation deterioration. In *Electrical Insulation Conference and Electrical Manufacturing & Coil Winding Conference, 2001. Proceedings* (pp. 405-409). IEEE.
- Aiwina Heng, Sheng Zhang, Andy C.C. Tan, Joseph Mathew, Rotating machinery prognostics: State of the art, challenges and opportunities, Mechanical Systems and Signal Processing, Volume 23, Issue 3, April 2009, Pages 724-739, ISSN 0888-3270
- Xiongzi, C., Jinsong, Y., Diyin, T., & Yingxun, W. (2011, August). Remaining useful life prognostic estimation for aircraft subsystems or components: A review. In *Electronic Measurement & Instruments (ICEMI), 2011 10th International Conference on* (Vol. 2, pp. 94-98). IEEE.
- Si, X. S., Wang, W., Hu, C. H., & Zhou, D. H. (2011). Remaining useful life estimation-A review on the statistical data driven approaches. *European journal of operational research*, 213(1), 1-14.
- Mahmoodian, M., & Alani, A. (2013). Modeling deterioration in concrete pipes as a stochastic gamma process for timedependent reliability analysis. *Journal of pipeline systems engineering and practice*, 5(1), 04013008.
- Lim, H. (2015). Optimum Accelerated Degradation Tests for the Gamma Degradation Process Case under the Constraint of Total Cost. *Entropy*, *17*(5), 2556-2572
- Van Noortwijk, J. M. (2009). A survey of the application of gamma processes in maintenance. *Reliability Engineering & System Safety*, *94*(1), 2-21.
- Vachtsevanos, G., Lewis, F., Roemer, M., Hess, A., & Wu, B. (2006). BOOK TOOLS.
- Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., & Siegel, D. (2014). Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications. *Mechanical systems and signal processing*, *42*(1), 314-334.