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• General introduction to PDMP

• PDMP in dynamic reliability

• PDMP for CBM – unit level

• Summary

Outline
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• M.H.A. Davis, 1984, “Piecewise-Deterministic Markov Processes: A General Class of Non-Diffusion 
Stochastic Models”

– “Almost all continuous-time stochastic process models of applied probability consist of some 
combination of the following”:

a) Diffusion

b) Deterministic motion

c) Random jumps  

PDMP - Intro

Techniques

a) Diffusion b) Deterministic motion

c) Random jumps

• Unified, highly developed theory.

• Ito Calculus, Stochastic differential 

equations

• Heterogeneous

• Special models and methodologies 

appropriate to specific problems
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M.H.A. Davis, 1984

“It can be argued that”:

1. The class of “piecewise-deterministic” Markov process, provides a general family of stochastic models covering 

virtually all non-diffusion applications

2. These process can be analyzed by methods which are directly analogous to those of diffusion theory.

Objective. To place non-diffusion models on the same footing as diffusion theory, with availability of:

• A “canonical model” including a variety of applications as special cases,

• General methods based on stochastic calculus for analyzing the canonical model

PDMP - Intro

It is not implied that methods for studying non-diffusion models are obsolete. In many fields, efficient 

techniques for calculations have been built up, making use of the special structure of specific models.  
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• Markov process consisting of a mixture of deterministic motion and random jumps

• Hybrid stochastic process 𝐼𝑡, 𝑋𝑡 , 𝑡 ≥ 0 with values in a discrete-continuous space 𝐸 × 𝑅

PDMP - formalism

𝐼𝑡, 𝑋𝑡

Discrete component Continuous component

Law

Determined by three local characteristics:

• Jump rate z 𝑖, 𝑥
• Flow 𝜙 𝑖, 𝑥
• Transition measure 𝑄
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PDMP - motion

The process starts at 𝑖, 𝑥 :

1. Follows the flow 𝜙 𝑖, 𝑥 until a first jump occurs at 𝑇1
A jump can occur:

• Randomly, with rate 𝑧 𝑖, 𝑥
• When the flow hits a boundary in the continuous-state space 𝑅

2. The post jump location is selected from the transition measure 𝑄 𝑖, 𝑥 , 𝑗, 𝑦

3. The motion restarts from this point.  

𝑖, 𝑥

𝑇1 𝑇2𝜙 𝑖, 𝑥 𝜙 𝑗, 𝑦

𝑗, 𝑦 ∙,∙ 𝑡The flow is deterministic and generally described by 

differential equation
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• Reliability

“the ability of an item to perform a required function, under given environmental and operational conditions and 

for a stated period of time” (Rausand M.)

• Dynamic reliability

Extension of traditional reliability models and methods, with ones that are capable of capturing the dynamics of 

the operational and environmental conditions in which systems evolve.

Dynamic reliability

Example

Case-study from

In the paper:

PDMP mentioned as framework for 

dynamic reliability (deterministic 

motion + random jumps)

However, the authors propose a 

modeling formalism based on 

Stochastic activity networks with 

flowsheet models, and a Discrete 

Event simulation algorithm 
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Dynamic reliability 

• Problem

"Server room with grass!" by Tom Raftery is licensed under CC BY-NC-SA 2.0

Air cooling system

Server room • The air cooling system has an on-off control

• Works at a fixed working point 𝑇𝑐𝑜𝑜𝑙

𝜕𝑇𝑟𝑜𝑜𝑚
𝜕𝑡

= (𝑄𝑖𝑛)−(𝑄𝑜𝑢𝑡∙1𝑜𝑛)+(𝑄𝐶𝑃𝑈)

𝑄𝐶𝑃𝑈

𝑄𝑖𝑛

𝑄𝑜𝑢𝑡

Change in room temperature

𝜕𝑇𝑟𝑜𝑜𝑚
𝜕𝑡

= 𝐾
𝐽
𝑇𝑒𝑥𝑡−𝑇𝑟𝑜𝑜𝑚 −

𝑃
𝐽
𝑇𝑟𝑜𝑜𝑚−𝑇𝑐𝑜𝑜𝑙 1𝑜𝑛 +𝑄𝐶𝑃𝑈

• 𝑇𝑒𝑥𝑡 – External temp
• 𝑇𝑟𝑜𝑜𝑚– Room temp
• 𝑇𝑐𝑜𝑜𝑙 – Cooling temp (fixed working point)
• 1𝑜𝑛 – indicator function of the operative state of the cooling 

system (1–on, 0–off(standby) 
• K, P, J – Physical coefficients (heat transfer coefficients, heat 

capacity)

https://www.flickr.com/photos/67945918@N00/4773457853
https://www.flickr.com/photos/67945918@N00
https://creativecommons.org/licenses/by-nc-sa/2.0/?ref=ccsearch&atype=rich
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Dynamic reliability 

𝑇𝑒𝑥𝑡 𝑡 = 20 + 15 ∙ sin 7.17 × 10−4 + 5 ∙ sin 0.2618 ∙ 𝑡
𝑇𝑟𝑜𝑜𝑚(0) = 20 c
𝑇𝑐𝑜𝑜𝑙 = 5  c
𝑄𝑐𝑝𝑢 = 0

K = 0.1 W/C
J = 1 W/C
P = 0.5 W/C

Threshold_off = 10 c
Threshold_on = 15 c

𝜕𝑇𝑟𝑜𝑜𝑚
𝜕𝑡

= 𝐾
𝐽
𝑇𝑒𝑥𝑡−𝑇𝑟𝑜𝑜𝑚 −

𝑃
𝐽
𝑇𝑟𝑜𝑜𝑚−𝑇𝑐𝑜𝑜𝑙 1𝑜𝑛 +𝑄𝐶𝑃𝑈

“Failure free”
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• Weibull distributed lifetime

Failure rate, scale 𝛼, shape 𝛽

– z 𝑡 = 𝛽

𝛼
∙ 𝑡

𝛼

𝛽−1

• Non-linear aging

– z 𝑙 = 𝛽

𝛼
∙ 𝑙

𝛼

𝛽−1

– 𝐿 denotes actual time in operation (air cooling system in “on” position, governed by 

deterministic dynamics) 

Dynamic reliability – random jumps
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Jump rate

𝑧 1, (𝑡𝑟𝑜𝑜𝑚, 𝑙) = 𝛽

𝛼
∙ 𝑙

𝛼

𝛽−1

𝑧 2, (𝑡𝑟𝑜𝑜𝑚, 𝑙) = 𝛽

𝛼
∙ 𝑙

𝛼

𝛽−1

Flow

𝜙 1, (𝑡𝑟𝑜𝑜𝑚, 𝑙) =
𝐾

𝐽
𝑇𝑒𝑥𝑡 − 𝑇𝑟𝑜𝑜𝑚 − 𝑃

𝐽
𝑇𝑟𝑜𝑜𝑚−𝑇𝑐𝑜𝑜𝑙 , 1

𝜙 2, (𝑡𝑟𝑜𝑜𝑚, 𝑙) =
𝐾

𝐽
𝑇𝑒𝑥𝑡 − 𝑇𝑟𝑜𝑜𝑚 , 0

Transition measure

• Random jumps (not boundary hit)

𝑄 1, 𝑥 , 3, 𝑥 = 1

𝑄 2, 𝑥 , 3, 𝑥 = 1

• Boundary hit  

𝑞 1, 10, 𝑙 , 2, 10, 𝑙 = 1

𝑞 2, 15, 𝑙 , 1, 15, 𝑙 = 1

Dynamic reliability - PDMP

Won

F

Wsb

Z 𝐿 Z 𝐿

1 2

3

𝑇𝑟𝑜𝑜𝑚= 10

𝑇𝑟𝑜𝑜𝑚= 15

𝐼𝑡, 𝑋𝑡

𝑖 = 1,2,3
𝒙 = 𝑡𝑟𝑜𝑜𝑚, 𝑙

𝑖 , 𝑡𝑟𝑜𝑜𝑚, 𝑙

Model state:
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• Quantification

– Simulations
• Random jumps + deterministic motion (flow)

(Matlab + Simulink)

– Numerical approach 
• Based on discretization of the continuous state space and time

• Probability mass balance

Dynamic reliability - PDMP
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PDMP - numerical approach

Renny Arismendi, Anne Barros, Antoine Grall,

Piecewise deterministic Markov process for condition-based maintenance models — Application to critical infrastructures with discrete-state 

deterioration,

Reliability Engineering & System Safety, Volume 212, 2021, 107540, ISSN 0951-8320,

Numerical approach: (Prob. mass balance: Markov property + total probability)

Approximation of the Chapman-Kolmogorov equation (backward)
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• Simulations

– Computational cost, dynamics

Interesting remarks

• Numerical approach

– Discretization: fixed vs variable-step

variable (auto-

selected Simulink)

fixed

100 hours
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3 cases

• ‘Hot’ model

– Same failure rate 

when on or 

standby

• ‘Warm’ model

– The failure rate 

when in standby is 

80% of the failure 

rate when on

• ‘Cold’ model

– No failure while on 

standby

Dynamic reliability - PDMP

Won

F

Wsb

Z 𝐿 Z 𝐿 (Hot)

1 2

3

𝑇𝑟𝑜𝑜𝑚= 10

𝑇𝑟𝑜𝑜𝑚= 15

0.8 Z 𝐿 (Warm)

0 (Cold)
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PDMP for CBM

Interventions:

• Deterministic durations

• Non-continuous monitoring (the state of 

the item is only revealed by the operator 

at inspections)

• Delay before maintenance task

Deterioration:

• Time-dependent transition rates

In our case: not modelling a physical 

law with a differential equation, then 

why PDMP?
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• Discrete-state deterioration

• Continuous component

– not related to any physical phenomena, but used as an artifact to track time, either for:

• Not constant random jump rate.

• Introducing jumps at specified times.

PDMP for CBM

𝐼𝑡, 𝑋𝑡
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PDMP for CBM – bridge management

Periodic Inspections:

Laws & rules

Condition is assigned according to the 

damage degree / severity:

1. Small

2. Medium

3. Large

4. Critical 

Maintenance scheduling

Based on the condition assigned at 

inspection, laws and rules dictate 

when to maintain. 

Maintenance action:

1. No action required

2. Action required between 4 to 10 years

3. Action required between 1 to 3 years

4. Action required before 6 months 
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PDMP for CBM

1 2 3 42 3 4
1
1 2 3 4
1
1

1

2 3 4

Process startsInspection

No maintenance

Maintenance in ½ year

Maintenance in 3 years

Maintenance in 8 years 

Assumptions:

• Constant jump rate

• Perfect periodic inspections

• Delay (fixed duration) before maintenance

• Good-as-new repairs 
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PDMP for CBM 

M𝐨𝐝𝐞𝐥 𝐬𝐭𝐚𝐭𝐞 𝑰𝒕, 𝑿𝒕 = 𝒊𝑨, 𝒊𝑩 , (𝒙𝑨, 𝒙𝑩, 𝒕)

• 𝑖𝐴 - deterioration state of the structure

• 𝑖𝐵 - type of maintenance scheduled

• 𝑥𝐴 - date of next inspection

• 𝑥𝐵 - date of next maintenance action

• 𝑡 - time

Jumps at random times

Used to model the deterioration process of the structure

• The deterioration state 𝒊𝑨,  jumps to a more deteriorated state

• The type of maintenance 𝒊𝑩 does not change

Jumps at deterministic times

Used to model the inspection and maintenance of the structure

Inspection, 𝒕 = 𝒙𝑨

Used to model the deterioration process of the structure

• The type of maintenance 𝒊𝑩, is updated

• The date of next inspection 𝒙𝑨,  is updated

• A maintenance action 𝒙𝑩 is scheduled or re-scheduled

Maintenance, 𝒕 = 𝒙𝑩

Used to model the deterioration process of the structure

• The discrete component (𝒊𝑨, 𝒊𝑩) jumps to (1,1)

• The date of next inspection 𝒙𝑨,  does not change

• The date of next maintenance action 𝒙𝑩 is set to 

infinite
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• Simulations

PDMP for CBM

M𝐨𝐝𝐞𝐥 𝐬𝐭𝐚𝐭𝐞 𝑰𝒕, 𝑿𝒕 = 𝒊𝑨, 𝒊𝑩 , (𝒙𝑨, 𝒙𝑩, 𝒕)
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• Expected cost per unit of time

PDMP for CBM

Illustration with symbolic values for 

cost
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• Example:

– Two states

– Weibull dist. Lifetime

– Fixed repair duration (corrective)

PDMP (time-dependent rates)

W F

𝑰𝒕, 𝑿𝒕

𝑖 = 1,0 where: 1-working, 0-failed

𝑥: amount of time spent in the current discrete state 𝑖 a time 𝑡

Flow

𝜙 𝑖, 𝑥 = 1

Jump rate

The failure rate from 𝑖 = 1 to 𝑖 = 0 is: 𝑧 1, 𝑥 =
𝛼

𝜇

𝑥

𝜇

𝛼−1

Continuous variable 

Bounded when i=0 due to repair duration, 

(intervention jump to i=1, x=0)

If age-based PM, then x can be bounded 

when i=1, resetting x to zero.

The challenge:

Numerical approach implementation
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PDMP

• Markov process consisting of a mixture of deterministic motion and random jumps

• Hybrid stochastic process 𝐼𝑡 , 𝑋𝑡 , 𝑡 ≥ 0 with values in a discrete-continuous space 𝐸 × 𝑅. Can be 
considered a canonical model including a variety of applications as special cases.

• A general class of non-diffusion stochastic models that provides a framework for studying 
optimization problems

• It is not implied that methods for studying non-diffusion models are obsolete. In many fields, 
efficient techniques for calculations have been built up, making use of the special structure of 
specific models.

• Two approaches are commonly used in the quantification of such models : Montecarlo simulation 
and Finite-volume scheme

Summary


