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PDMP - Intro

* M.H.A. Davis, 1984, “Piecewise-Deterministic Markov Processes: A General Class of Non-Diffusion
Stochastic Models”

— “Almost all continuous-time stochastic process models of applied probability consist of some
combination of the following”:
a) Diffusion
b) Deterministic motion
¢) Random jumps

Techniques

a) Diffusion &= | b) Deterministic motion
¢) Random jumps

 Unified, highly developed theory. * Heterogeneous
+ Ito Calculus, Stochastic differential + Special models and methodologies
equations appropriate to specific problems
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PDMP - Intro

M.H.A. Davis, 1984

“It can be argued that:

1. The class of “piecewise-deterministic’ Markov process, provides a general family of stochastic models covering
virtually all non-diffusion applications

2. These process can be analyzed by methods which are directly analogous to those of diffusion theory.

Objective. To place non-diffusion models on the same footing as diffusion theory, with availability of:

* A“canonical model” including a variety of applications as special cases,
* General methods based on stochastic calculus for analyzing the canonical model

A It is not implied that methods for studying non-diffusion models are obsolete. In many fields, efficient
techniques for calculations have been built up, making use of the special structure of specific models.
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PDMP - formalism

. Markov process consisting of a mixture of deterministic motion and random jumps
. Hybrid stochastic process {I;, X;},t = 0 with values in a discrete-continuous space E X R

{It' Xt}

/\

Discrete component Continuous component

Law

Determined by three local characteristics:
e Jump rate z(i, x)

«  Flow ¢ (i, x)
* Transition measure Q
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PDMP - motion

The process starts at (i, x):
1. Follows the flow ¢ (i, x) until a first jump occurs at T;
A jump can occur:
* Randomly, with rate z(i, x)
* When the flow hits a boundary in the continuous-state space R

2. The post jump location is selected from the transition measure Q[ (i, x), (j, y)]

3. The motion restarts from this point.

: T . T
90 x) oGy 2 ;
The flow is deterministic and generally described by {i ';} {] 1}’} { '.} ]

differential equation
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Dynamic reliability

. Reliability

“the ability of an item to perform a required function, under given environmental and operational conditions and
for a stated period of time” (Rausand M.)

. Dynamic reliability

Extension of traditional reliability models and methods, with ones that are capable of capturing the dynamics of
the operational and environmental conditions in which systems evolve.

In the paper:
Safety, Reliability and Risk Analysis: Beyond the Horizon - Steenbergen et al. (Eds)
© 2014 Taylor & Francis Group, London, ISBN 978-1-138-00123-7

PDMP mentioned as framework for

Dynamic reliability analysis of three nonlinear aging components dynamic reliability (deterministic
Example ::> with different failure modes characteristics motion + random jumps)
G. Manno
CaSG-StUdy from Det Norske Veritas, Research and Innovation, Hovik, Norway HOWeVer, the aUthorS propose a
A. Zymaris & N.M_P. Kakalis modeling formalism based on
Det Norske Veritas, Research and Innovation, Piraeus, Greece Stochastlc aCtIVIty networks W|th
F. Chiacchio, F.E. Cipollone, L. Compagno, D. D’Urso & N. Trapani flowsheet mOdeIS, and a Discrete

Universiry of Catania, Departiment of Industrial and Mechanical Engineering, Carania, Iraly

Event simulation algorithm
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Dynamic reliability

« Problem
Air cooling system

Server room » The air cooling system has an on-off control
* Works at a fixed working point T,,;
Qcpu
Qin Change in room temperature
aTroom
Qout T = (Qin)—(Qout'1lon)+(Qcru)
aTTOOTTL
K P
T = T(Text_Troom) - 7(Troom_Tcool)1on + Qcpu

"Server room with grass!" by Tom Raftery is licensed under CC BY-NC-SA 2.0

* Text — External temp

* Troom— Room temp

* T.001 — Cooling temp (fixed working point)

* 1,, - indicator function of the operative state of the cooling
system (1-on, 0-off(standby)

* K, B, ] - Physical coefficients (heat transfer coefficients, heat
capacity)

B NTNU | scancanatecnoiosy


https://www.flickr.com/photos/67945918@N00/4773457853
https://www.flickr.com/photos/67945918@N00
https://creativecommons.org/licenses/by-nc-sa/2.0/?ref=ccsearch&atype=rich

Dynamic reliability

aTroom
at = ?(Text_Troom) - ?(Troom_Tcool)lon + QCPU

Topt(t) = 20 + 15 - sin(7.17 X 10™*) + 5-5in(0.2618 - t)
Troom(0) =20 c

Teoor =5 ¢

Qcpu =0

K=0.1W/C

J=1W/C

P =0.5W/C

Threshold_off =10 ¢
Threshold_on = 15¢c

“Failure free”
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Dynamic reliability — random jumps

 Weibull distributed lifetime
Failure rate, scale a, shape

- 20=5@"

 Non-linear aging

- 2W=5@
— L denotes actual time in operation (air cooling system in “on” position, governed by
deterministic dynamics)
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Dynamic reliability - PDMP

{ItiXt}
i =1{1,2,3}
X = (troomr l)

Troom= 10

Troom= 15

IS
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Z(L) Z(L)

Model state:

1@, (Eroom, D}

Jump rate
B_
z(1, (troom, D) = g ) (é) '
ﬁ_
2(2, (troom, 1) = § ) (é) '

Flow

K
(,‘b(l, (troom: l)) = (7 (Text - Troom) - ;(Troom_Tcool) ’ 1)

¢(2: (troom l)) = (? (Text - Troom)r 0)

Transition measure
Random jumps (not boundary hit)

Q[(l,x), (3; x)] =1

Q[(er)l (3; x)] =1
Boundary hit

q[(1,10,0),(2,(10,0)] = 1
q[(2,(15,1),(1,(15,1)] = 1
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Dynamic reliability - PDMP

* Quantification

— Simulations

* Random jumps + deterministic motion (flow)
(Matlab + Simulink)

— Numerical approach

+ Based on discretization of the continuous state space and time
* Probability mass balance
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PDMP - numerical approach

Renny Arismendi, Anne Barros, Antoine Grall,
Piecewise deterministic Markov process for condition-based maintenance models — Application to critical infrastructures with discrete-state

deterioration,

Reliability Engineering & System Safety, Volume 212, 2021, 107540, ISSN 0951-8320,

Numerical approach: (Prob. mass balance: Markov property + total probability)

(i i (1)

Legend

— Random jump + deterministic motion
----- > Deterministic motion

» Instantaneous jump due to process
hitting the frontier (z € T')

Figure 2: Transitions into state (7,y) in (nd, (n 4 1)d]
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Norwegian University of
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N-1
T & D (0[O, X, ))5] (6)
yorts
+ Liyypvs) T30 Ol = 4G %)8]
N N-1
+ Y Y xR WA WO w.k)5]lg(k. 2. )]
zel’
N
+ Y mkwll - Ak, w)dllglk,z. j)]
=1
=l

Approximation of the Chapman-Kolmogorov equation (backward)
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Interesting remarks

. Simulations
—  Computational cost, dynamics

100 hours
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. Numerical approach
—  Discretization: fixed vs variable-step

Text
Troom

fixed

L L L L L L
0 1000 2000 3000 4000 5000 5000 7000 8000

variable (auto-
selected Simulink)
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Dynamic reliability - PDMP

3 cases
Troom= 10 07+ Failure probability - Numerical approach
d ‘HOt’ mOdel t'intearage
—  Same failure rate 061 rm
when on or 05F
standby
+  ‘Warm’ model .
— The failure rate 03}
when in standby is Troom= 15
. Z(L Z(L) (Hot i
80% of the failure (L) (L) (Hot) 02
rate when on 0.8 z(L) (Warm) |
«  ‘Cold’ model 0 (Cold) O ey

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
time

— No failure while on
standby
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PDMP for CBM

/’/ Condition Based Maintenance Model

Deterioration Intervention Optimal Policy
Model Model

/

Figure 1: Condition-based maintenance model
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In our case: not modelling a physical
law with a differential equation, then
why PDMP?

Interventions:

« Deterministic durations

* Non-continuous monitoring (the state of
the item is only revealed by the operator
at inspections)

+ Delay before maintenance task

Deterioration:
+ Time-dependent transition rates
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PDMP for CBM

{Itr Xt}

 Discrete-state deterioration

« Continuous component

not related to any physical phenomena, but used as an artifact to track time, either for:

* Not constant random jump rate.
* Introducing jumps at specified times.
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PDMP for CBM — bridge management

Periodic Inspections:

Laws & rules

Condition is assigned according to the
damage degree / severity:

1. Small

2.  Medium |:>
3. Large

4. Critical
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Maintenance scheduling

Based on the condition assigned at
inspection, laws and rules dictate
when to maintain.

Maintenance action:

No action required

Action required between 4 to 10 years
Action required between 1 to 3 years
Action required before 6 months

PonE

18



PDMP for CBM

Assumptions:

« Constant jump rate
» Perfect periodic inspections

+ Delay (fixed duration) before maintenance

+ Good-as-new repairs

70 X0 Y

/N

@ NTNU |

Norwegian University of
Science and Technology

Prapesisstarts

() No maintenance
() Maintenance in 8 years

Q Maintenance in 3 years
@ Maintenance in ¥ year
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PDMP for CBM

Model state {I,,X,} = {(is, ig), (x4, xp, )}

Jumps at random times

Used to model the deterioration process of the structure

* i, - deterioration state of the structure * The deterioration state iy, jumps to a more deteriorated state

* g -type of maintenance scheduled  The type of maintenance iz does not change

* x4 - date of next inspection
*  xp - date of next maintenance action

. t -time

Jumps at deterministic times

Used to model the inspection and maintenance of the structure

A

Inspection, t = x4

Used to model the deterioration process of the structure
+ Thetype of maintenance ig, is updated

* The date of next inspection x4, is updated

* A maintenance action xg is scheduled or re-scheduled
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Maintenance, t = xp

Used to model the deterioration process of the structure

The discrete component (ig4, ig) jumpsto (1,1)
The date of next inspection x4, does not change
The date of next maintenance action xp is set to

infinite
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PDMP for CBM

. Simulations

Model state {Itl Xt} = {(iA' iB)I (xA' XB, t)}

States probabilities - Numerical

1 T T
L Set initial sys- '-.‘ Small damage
tem time and ini- 0.9} Medium damage | 7
tial system state \ Large damage
081 Critical damage
II. SBample date of L !
next stochastic jump 0.7 X
:: Ve, Update iy, iz, Ta. 0.6 . ' l‘.‘_ Y N \
Im. ¢ = {Unit i= maintained) = A P \ N
T ey 1, T2 & 05T \ h -
0.4
/ N,
/ \ \\ I
\ ) N
03r / ¥
IVa. Update iy N
(Unit detericrates) 02r /
01
0 i 1 — L L L L L
V. Final time ty,, Vb, Update 0 5 10 15 20 25 30 35
and final system state 2,71, T2, (Unit is time
inspected and main-
tenance i scheduled) Fig. 5. Deterioration state probabilities.
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PDMP for CBM

E[C] = E[N,,1C;, + E[N,

25

1.5

E(N)t

0.5

@ NTNU

Expected cost per unit of time

mr]Cmr + E[Nfr]cfr + E[Ncr]ccr

x10® Mean number of repairs per unit of time
Medium repairs
I Large repairs
Critical repairs
. . L . . )
10 12 14 16 18 20

Inspection interval T (years)

Fig. 8. Mean number of repairs per unit of time.

Norwegian University of
Science and Technology
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1078 Expected cost
\
//
7/
N\
. /
. e
10 12 14 18 18
Inspection interval T (years)
Fig. 9. Expected cost per unit of time.
lllustration with symbolic values for
cost
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PDMP (time-dependent rates)

. Example:
— Two states
—  Weibull dist. Lifetime
—  Fixed repair duration (corrective)

{Itﬂ Xt}
i ={1,0} where: 1-working, O-failed

x: amount of time spent in the current discrete state i atime t

Flow

¢, x) =1

Jump rate

X

. i a (a—1)
The failurerate fromi=1toi =0is: z(1,x) = ;(;)
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Continuous variable
Bounded when i=0 due to repair duration,
(intervention jump to i=1, x=0)

If age-based PM, then x can be bounded
when i=1, resetting x to zero.

The challenge:

Numerical approach implementation
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Summary

PDMP

Markov process consisting of a mixture of deterministic motion and random jumps

Hybrid stochastic process {I;, X;},t = 0 with values in a discrete-continuous space E X R. Can be
considered a canonical model including a variety of applications as special cases.

A general class of non-diffusion stochastic models that provides a framework for studying
optimization problems

It is not implied that methods for studying non-diffusion models are obsolete. In many fields,
efficient techniques for calculations have been built up, making use of the special structure of
specific models.

Two approaches are commonly used in the quantification of such models : Montecarlo simulation
and Finite-volume scheme
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