Criticality in Dynamic Arrest: Correspondence between Glasses and Traffic

Astrid S. de Wijn

astrid.dewijn@ntnu.no

Materials Group, MTP

Criticality in Dynamic Arrest:Correspondence betweenGlasses and Traffic – p. 1/26

Statistical Mechanics

micro particles \Rightarrow macro properties

Statistical mechanics: many particles, equilibrium: exp(-E/kT)

• out of equilibrium or few particles: no powerful formalism

The most important and interesting things are moving

- transport of matter, energy, momentum (diffusion, friction, viscosity, heat conductivity)
- fluctuations (small-ish systems)
- \Rightarrow not in equilibrium
- stuck with ad-hoc approaches

transport is everywhere

Applied to:

- material science
- surface science, especially tribology
- (soft) condensed matter
- ...
- biology (cells)
- traffic jams (cars)
- ...

overview

- introduction: phase transitions
- introduction: dynamic arrest
- kinetically constrained models for glasses
- $\bullet \ traffic \leftrightarrow glasses$
 - $\circ~$ traffic jams and nervous drivers \leftrightarrow low temperature
 - \circ use tools for glasses
 - o dynamic criticality in traffic
- conclusions

thermodynamics: phase transitions

- solid ice (below 0°C)
- liquid water (between 0°C and 100°C)
- gaseous water vapour (above 100°C) [ambient pressure]
- small change in temperature: equilibrium completely different

order

- solid ice: ordered lattice
- liquid water: high density, disorder
- gas: low density, disorder
- change in ordering or structure: order parameters
- correlation
- criticality: diverging correlation

dynamic arrest and jamming

jamming transition: increase in density \Rightarrow particles stop moving

- granular matter: sand, coffee grounds
- cars in traffic
- etc...

dynamic arrest in glasses

- viscosity of supercooled liquid diverges with decrease in temperature: behaves like solid
- amorphous, no long-range order, looks like liquid
- criticality at $T \rightarrow 0$

dynamic heterogeneity in glasses

picture from Chandler and Garrahan, Annu. Rev. Phys. Chem. 61, 191 (2010).

as $T\ {\rm decreases}$

- relaxation slows down (energy barrier, rearrangement of atoms)
- mobility becomes heterogeneous (available space)

dynamic arrest

slowing down in glasses

jamming in granular matter

there is no general description for dynamic arrest

- different dynamics
- out of equilibrium

dynamic phase transition?

- analogous to equilibrium phase transition
- dynamic order parameter
- similar signatures, f.e. diverging correlations
- dynamical critical point in traffic flow
- \Leftrightarrow critical slowing down in glasses

glasses: Kinetically Constrained Models (KCMs)

- successful at describing glasses
- discrete-time lattice models (amorphousness not essential for glassy behaviour!)

- stochastic
- criticality at $T \rightarrow 0$ (as supposed to be)
- kinetic constraint: activity only if local constraint is met
- f.e. spin-facilitated Ising models
 - $\circ \uparrow$ active, low-density region
 - $\circ \downarrow$ inactive, high-density region
 - $\circ \quad E = -J \sum_{nn} S_i S_j + \sum S_i$
 - $\circ~$ flip only possible if enough space, i.e. enough neighbours $\uparrow~$

traffic jams

- annoying to be stuck in
- a lot of time and fuel wasted, pollution
- bad weather makes it worse
- low activity (speed), because car in front inactive
- high activity (speed) only possible if car in front active
- \Rightarrow kinetic constraint

Nagel-Schreckenberg model

- developed in 80's
- widely used with all kinds of modifications
- catches much qualitative behaviour of traffic jams
- kinetic constraint
- 1d chain of road sites
- cars with velocities located at lattices sites
- discrete time

Nagel-Schreckenberg model

- parameters:
 - $\circ~$ density of cars ρ
 - \circ maximum velocity $v_{\max} \approx 5$
 - \circ driver stochasticity p.
- discrete time update:
 - 1 cars accelerate: $v_i \rightarrow \max(v_i + 1, v_{\max})$
 - 2 unless there is no space (kinetic constraint): $v_i \rightarrow \min(v_i, x_{i+1} - x_i - 1)$
 - 3 random deceleration with probability p: $v_i \rightarrow \max(v_i - 1, 0)$
 - 4 move: $x_i \rightarrow x_i + v_i$

 $v_i = 2 \quad v_{i+1} = 0$

Nagel-Schreckenberg model

- spontaneous percolation of jams
- backwards moving jams

- no phase transition at $p \in \langle 0, 1 \rangle$ (agreed upon after much fighting) no phase separation: typical jam size is finite
- Kinetically Constrained Model:
 - $\circ v_i$ is activity
 - step 2 is kinetic constraint
 - $\circ p$ equivalent to temperature
 - $\circ \quad \begin{array}{l} \text{deterministic } 1-p \rightarrow 0 \\ \text{is low temperature} \end{array}$

transition density

When do traffic jams persist? inflow = outflow

• average outflow rate: $\approx 1 - p$

- = average backwards velocity of back of jam
- average inflow velocity: $v_{\rm max} p$
- cars approach jam with speed $v_{\max} + 1 2p$

dynamic heterogeneity

What does the jammed regime look like?

- road consists of jams and free flow at $ho_{\rm tra.}$
- jam size is finite, no phase separation
- glasses: dynamic heterogeneity
- quantify with dynamic susceptibility

correlated activity

• average activity over time between 0 and t

$$c(i;t) = (1/(t+1)) \sum_{t'=0}^{t} v_i(t')$$

in glasses: $c = [x(t) - x(0)]^2/t$.

• dynamic correlation of activity between two sites distance *i* apart

$$G_4(i,t) = \langle c(i;t)c(0;t) \rangle - \langle c(0;t) \rangle^2$$

associated susceptibility

$$\chi_4(t) = \frac{1}{\langle v^2 \rangle - \langle v \rangle^2} \sum_{i=0}^{N-1} G_4(i;t)$$

 $v_{\rm max} = 2, p = 0.98, \rho_{\rm tra.} \approx 0.02$ 1 $\rho = 0.012$ 0.9 .016 0.8 = 0.020 $G_4(i, 0)/(\langle v^2 \rangle - \langle v \rangle^2)$ 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 5 10 15 20

simulation details

- periodic boundary condition (circular road)
- $2^{14} = 16384$ cars
- up to 5×10^8 time steps

spatial correlation

- $\chi_4(t)$ maximum at t = 0 (cars cannot escape environment independently)
- $\rho_{\rm tra.} \propto 1 p \Rightarrow$ rescaled density
- reproduce discontinuous point at p = 0
- peak at $\rho_{\rm tra.}$
- at $\rho > \rho_{tra.}$, $\chi_4(0) = typical number of subsequent cars <u>not</u> in jam$

transition density and correlation length

- powerlaws near $p \rightarrow 1$
- correlation length $\propto (1-p)^{-\nu}$
- \Rightarrow dynamic critical point at $p \rightarrow 1$
- ν depends on $v_{\rm max}$

temporal correlations

• interchange time and car index $\chi_4(t) \rightarrow \vartheta_4(i)$

• peak near $\rho_{\rm tra.}$

• as
$$p \to 1$$
:

$$\max[\vartheta_4(0)] \propto (1-p)^{-\mu}$$

- $\mu \approx 1.5$
- diverging correlation time in traffic jams is not nice!

dynamic order parameter

• dynamic order parameter

$$M = \frac{v_f - \langle v \rangle}{v_f} ,$$
$$v_f = v_{\max} - p$$

•
$$\rho < \rho_{\text{tra.}}$$
:
 $\langle v \rangle \approx v_f \Rightarrow M \approx 0$

•
$$\rho > \rho_{\text{tra.}}$$
,
simple coexistence:
 $\langle v \rangle \approx v_f \rho_{\text{tra.}} / \rho$
 $\Rightarrow M \approx \frac{\rho - \rho_{\text{tra.}}}{\rho}$

• kink as
$$p \to 1$$

critical exponents and universality

- glasses: directed percolation for d > 2[Whitelam et al., PRL 92, 185705 (2004)]
- critical exponents depend on parameters
- \Rightarrow more complicated [Miedema et al., PRE 89, 062812 (2014)]

conclusions

- Nagel-Schreckenberg model for traffic

 kinetically constrained models for glasses
 - tools usually used for glasses (dynamic susceptibility)
 - $\circ~$ dynamic critical point at $p \to 1~(T \to 0),~\rho \to 0,$ diverging correlation length and time
 - some differences (critical exponents)
- traffic jams behave a lot like a glass
- \Rightarrow universal nature of dynamic arrest

de Wijn et al., PRL 109, 228001 (2012), Miedema et al., PRE 89, 062812 (2014).