Reliability analysis of SISs against CAFs during prolonged demands

Lin Xie

Background

- Safety instrumented system (SIS)
- Equipment under control (EUC)
- Demands
- Cascading failures (CAF)

Fig. 1 Illustration of SISs and EUC

Fig. 2 CAFs within EUCs and SIS

Background

- Prolonged demands
 - A deterministic or stochastic period

- Stress during demands
 - High failure rates
 - Degradation

Fig. 3 an example of SIS with prolonged demands

Problems

Q1:
SIS performance — SIS ?

Fig. 2 CAFs within EUCs and SIS

• Q2: The failures on activation \longrightarrow PFDavg ? PFD(t) The failures during demands \longrightarrow ? PFD_{avg} ? PFD_{avg} ? $\prod_{\tau} \sum_{2\tau} \sum_{3\tau} \frac{1}{4\tau} \prod_{\tau} \sum_{\tau} \frac{1}{4\tau} \prod_{\tau} \frac{1}{4\tau} \prod_{\tau}$

Fig. 4 PFDavg for Low demand SISs

Objectives

- Propose a new method for modeling SISs to prevent CAFs during prolonged demands
 - SIS performance assessment from system perspective (EUC systems)
 - Consider the failures on demand(FODs) and the failures during demands (FDDs)

Fig. 2 CAFs within EUCs and SIS

Assumptions

- For any EUC components and SISs, only two states are considered: functioning or failed.
- The time to failure within EUC components and SISs follows known distributions.
- CAFs are concerned for EUC systems.
- Multiple CAFs can simultaneously occur, and the propagation time is negligible.
- Repairs after any failures are not considered.

Modeling CAFs

- Cascading probability [1]:
 - a measure of the easiness of this failure propagation

 $\gamma_i = \Pr(\text{propagation from } EUC_i | EUC_i \text{ failed })$

Fig. 5 CAFs within EUCs

[1] Levitin G et al. Reliability of series-parallel systems with random failure propagation time

Modeling SISs

Modeling SISs

Fig. 6 failures within EUC and SISs

Conditional reliability

• Conditional reliability

$$\tilde{R}_i(t) = \frac{R_i(t)}{1 - \gamma_i \bar{R}_i(t)} \quad \frac{1}{1 + 2}$$

• Conditional system reliability

$$\tilde{R}_{\Omega,S}(t) = \tilde{R}_i(t)R_j(t)$$

$$\tilde{R}_{\Omega,P}(t) = 1 - \left(1 - \tilde{R}_i(t)\right)\left(1 - R_j(t)\right)$$

Fig. 7 three scenarios within EUC

Fig. 8 series and parallel of EUC

Reliability of EUC systems

• Consider one CAF

$$R_{S}(t) = \underbrace{P_{r}(No \ CAF)\widetilde{R}_{\Omega_{n}}(t) + P_{r}(CAF \ event \ occurs)}_{SIS \ fails} \begin{bmatrix} P_{ij}(t)\widetilde{R}_{\Omega_{n-(i,j)}}(t) + \overline{P}_{ij}(t)\widetilde{R}_{\Omega_{n-i}}(t) \end{bmatrix}$$

Fig. 2 CAFs within EUCs and SIS

Reliability of EUC systems

Consider multiple CAFs

Fig. 10 illustrative example

Fig. 9 CAFs events and SIS events

•

Reliability of EUC systems

- Consider multiple CAFs
 - CAF event probability: $\theta_a(t) = \prod_{i=1}^m [\gamma_i \bar{R}_i(t)]^{mod\left(\left\lfloor \frac{a-1}{2^{i-1}} \right\rfloor, 2\right)} [1 \gamma_i \bar{R}_i(t)]^{\left(1 mod\left(\left\lfloor \frac{a-1}{2^{i-1}} \right\rfloor, 2\right)\right)}$
 - $\text{ SIS event probability: } \delta_{h,g}(t) = \frac{\int_{0}^{t} f_{h}(t_{h}) \prod_{j=1}^{l} [P_{h,j}(t)]^{mod} \left(\left| \frac{g-1}{2^{j-1}} \right|, 2 \right)}{\int_{0}^{t} f_{h}(t) dt} \left(\frac{g-1}{2^{j-1}} \right)^{2} \left(\frac{g-1}{2^{j-1}} \right)^{2} \right) \delta_{h,g}(t) = \frac{\left(\int_{0}^{t} f_{h}(t_{h}) \prod_{j=1}^{l} [P_{h,j}(t)]^{mod} \left(\left| \frac{g-1}{2^{j-1}} \right|, 2 \right) \right)}{\int_{0}^{t} f_{h}(t) dt}$
 - Conditional reliability: $\tilde{R}_{\Omega_{n-F}}(t)$
- System reliability:

$$R_{S}(t) = \sum_{a \in \forall (1,2\dots2^{m})} \prod_{h \in \forall \Omega_{a}} \sum_{g=1}^{2^{l}} \delta_{h,g}(t) \widetilde{R}_{\Omega_{n-F}}(t) Q_{a}(t)$$

= CAF event · SIS event · Conditional R

Illustrative example

- Step 1: Conditional reliabilities $R_1(t)$ $R_2(t)$
 - $\tilde{R}_{1}(t) = \frac{R_{1}(t)}{1 \gamma_{1}\bar{R}_{1}(t)} \qquad \tilde{R}_{2}(t) = \frac{R_{2}(t)}{1 \gamma_{2}\bar{R}_{2}(t)}$
- Step 2: CAF events probabilities:

 $\theta_1(t) = \begin{bmatrix} 1 - \gamma_1 \overline{R}_1(t) \end{bmatrix} \cdot \begin{bmatrix} 1 - \gamma_2 \overline{R}_2(t) \end{bmatrix} \quad \theta_2(t) = \begin{bmatrix} \gamma_1 \overline{R}_1(t) \end{bmatrix} \cdot \begin{bmatrix} 1 - \gamma_2 \overline{R}_2(t) \end{bmatrix} \quad \theta_3(t) = \begin{bmatrix} 1 - \gamma_1 \overline{R}_1(t) \end{bmatrix} \cdot \begin{bmatrix} \gamma_2 \overline{R}_2(t) \end{bmatrix}$

• Step 3: SIS events probabilities:

 $\delta_{2,1}(t) = \frac{\int_0^t f_1(t_1) \left[(1 - PFD_{avg,12})(1 - \int_{t_1}^t f_{SIS_{12}}(\mu - t_1)d\mu) \right] \left[(1 - PFD_{avg,13})(1 - \int_{t_1}^t f_{SIS_{13}}(\mu - t_1)d\mu) \right] dt_1}{\int_0^t f_1(t)dt}$

• Step 4: Conditional reliability:

 $\tilde{R}_{\Omega_{n-1}}(t)=\tilde{R}_2(t)\tilde{R}_3(t) \quad \cdots$

• Step 5: System reliability:

 $R_{S}(t) = \theta_{1}(t) \,\tilde{R}_{\Omega_{n}}(t) + \theta_{2}(t)\delta_{2,1}(t)\tilde{R}_{\Omega_{n-1}}(t) + \theta_{3}(t)\delta_{3,1}(t)\tilde{R}_{\Omega_{n-2}}(t)$

NTNU

Table 1 the parameters of the EUC components in the case study EUC_i Components λ_{EUC} α_{EUC} (/hour) 0.2145 Separator 1 1.4 1 0.1234 1.3 2 Separator 2 3 Separator 3 0.2367 1.2 4 Scrubber 0.1678 1.5 0.3207 2.1 5 Compressor 1 6 Compressor 2 0.3207 2.1 7 Compressor 3 0.3207 2.1

Case study

Fig. 13 RBD with CAFs and SISs in case study

Table 1 parameters of the SISs in the case study								
SIS _{ii}	FOD		FDD					
	λ_{SIS} (/hour)	α_{SIS}	(PFD _{avg} , /year)					
SIS_{24}	0.4157	2.0	10^{-1}					
SIS_{25}	0.3253	2.0	10^{-1}					
SIS_{64}	0.4134	2.0	10^{-1}					
SIS ₆₇	0.1789	2.0	10^{-1}					

Fig. 14 system reliability profiles with different SISs

NTNU

Sensitivity analysis

Fig. 15 system reliability with γ_2 and γ_6 at t = 2 hours

Failure 2: FDD

2

NTNU

Importance evaluation

	No	CIC	D(+)	$I_{(i t)(0/1)}$	aget	$I_{aost}(0/a)$
	INO.	515	R(l)	$I_{B}(l l)(\%)$	cost	$I_{\rm B}/{\rm cost}(\%/a)$
	1	No	0.56	-	-	-
	2	SIS ₂₄	0.59	5.60	а	5.60
_	3	SIS ₂₅	0.56	0.02	а	0.02
E	4	SIS ₆₄	0.64	15.60	а	15.6
	5	SIS ₆₇	0.56	0.02	а	0.02
	6	<i>SIS</i> ₂₄ , <i>SIS</i> ₂₅	0.59	5.83	2a	2.92
	7	<i>SIS</i> ₂₄ , <i>SIS</i> ₆₄	0.68	21.21	2a	10.6
	8	<i>SIS</i> ₂₄ , <i>SIS</i> ₆₇	0.59	5.60	2a	2.80
_	9	<i>SIS</i> ₂₅ , <i>SIS</i> ₆₄	0.64	15.60	2a	7.80
E	10	<i>SIS</i> ₂₅ , <i>SIS</i> ₆₇	0.56	0.02	2a	0.01
	11	<i>SIS</i> ₆₄ , <i>SIS</i> ₆₇	0.67	19.98	2a	9.99
	12	<i>SIS</i> ₂₄ , <i>SIS</i> ₂₅ , <i>SIS</i> ₆₄	0.68	22.25	3a	7.42
	13	<i>SIS</i> ₂₄ , <i>SIS</i> ₂₅ , <i>SIS</i> ₆₇	0.59	5.83	3a	1.94
	14	<i>SIS</i> ₂₄ , <i>SIS</i> ₆₄ , <i>SIS</i> ₆₇	0.70	26.37	3a	8.79
	15	SIS ₂₅ , SIS ₆₄ , SIS ₆₇	0.67	19.98	3a	6.66
	16	$SIS_{24}, SIS_{25}, SIS_{64}, SIS_{67}$	0.71	26.94	4a	6.74

Table 3 System reliability with multiple SISs at t = 2 hours

Fig. 13 RBD with CAFs and SISs in case study

Importance evaluation

(B)

Fig. 17 system reliability of two options of SISs

Conclusions & future works

- SISs against CAFs within EUC considering FOD and FDD.
- Apply for other industrial series-parallel systems.
- Improve its numerical efficiency.
- Future works can be time-dependent cascading probability, complex systems, maintenance optimization...

Questions.....

