

Norwegian University of Science and Technology

Modelling of accident scenarios from hydrogen transport and use

RAMS PhD seminar

Federico Ustolin

28.04.2022

Content

- 1. Introduction on hydrogen
- 2. Liquid hydrogen hazards

2.1 BLEVE

- 3. Consequence analysis
 - 3.1 Before loss of containment
 - 3.2 After loss of containment

4. Risk-based inspection and maintenance methodologies

Liquid hydrogen hazards

Liquid hydrogen (LH2) properties:

- ✓ Density: 70.9 kg/m3
- ✓ Normal boiling temperature: 20.7 K (-253°C)

LH2 tanks:

LH2 hazards

- ✓ Double-walled vacuum insulated
- ✓ Operative pressure: ~1 bar
- ✓ Maximum allowable pressure: 10 bar ^{filling port}

Consequences of LOC: BLEVE, RPT

Boiling Liquid Expanding Vapour Explosion

BLEVE is a physical explosion might result from the catastrophic rupture of a tank containing a superheated liquid due to the rapid depressurization

Chain of events leading to the tank rupture

Valid for cryogenic substances

Hot liquid undergoing sudden depressurization in a tank (adapted from [Casal, 2008])

LH2 hazards

LH2 hazards *Fireball if substance is flammable and ignition source is present 7

LH2 BLEVE

Two LH₂ BLEVE occurred in the past:

1974: an LH₂ tank of 9,000 gal (34 m³) underwent a BLEVE after the tank and its safety devices (PRV) were sprayed with water due to a near by fire [30].

1986: space shuttle "Challenger" disaster. Hot gases from the main rocket impinged the LH₂ and LOX tanks provoking a BLEVE.

[Feldman et al., "1974 LHY Tank Failure", SAF75U002 RRS . Air Products internal report (1975)

Source: hystory.com

BMW safety programme

SH₂IFT LH₂ experiment has been delayed, therefore the results from the BMW tests were exploited.

Fire tests: double walled vessel filled at 50% fully engulfed in propane fire.

Bursting tank scenario test: ten vessels (0.120 m³) filled with different amount of LH2 ($1.8 \div 5.4 \text{ kg}$) were wrecked by means of cutting charges.

Figure 11: Bonfire test of a liquid hydrogen fuel tank (Source: BAM)

Development of a fireball. (a) Ignition; (b) 250 ms after ignition

9

LH2 hazards

[Pehr K. Aspects of safety and acceptance of LH2 tank systems in passenger cars. Int J Hydrogen Energy 1996;21:387–95]

Consequence analysis (CA)

Modelling of loss of integrity and containment of an LH2 tank

Fire test modelling

Two approaches were selected to estimate the behaviour of an LH2 tank during an accident scenario (e.g. fire):

- 1. Lumped model (differential equation system)
- 2. Computational Fluid Dynamics (CFD)

<u>Focus</u>: LH2 tank with multi-layer vacuum insulation (MLVI)

MULTI LAYER INSULATING BLANKET

Lumped model - Methodology

Figure 1: Schematization of thermal nodes discretization. L = liquid phase, V = vapour phase, S = shell, I =insulant, $J = jacket, A_L = liquid wetted area, A_V = vapour$ wetted area, $A_{LV} = liquid-vapour$ interface area. Table 1: Thermal and mass balances for the nodes depicted in Figure 1.

Node	Variable	Equation	Eq.
L	TL	$m_{L}cp_{L}\frac{dT_{L}}{dt} = A_{L}h_{L}(T_{SL} - T_{L}) + A_{LV}h_{LV}(T_{V} - T_{L}) + q_{R} + m_{C}(\widehat{H}_{V}(T_{V}) - \widehat{H}_{L}(T_{L})) - m_{E}(\widehat{H}_{V}(T_{L}) - \widehat{H}_{L}(T_{L}))$	(1)
	mL	$\frac{dm_L}{dt} = m_C - m_E$	(2)
V	Τv	$m_{V}cv_{V}\frac{dT_{V}}{dt} = A_{V}h_{V}(T_{SV} - T_{V}) - A_{LV}h_{LV}(T_{V} - T_{L}) - m_{E}\left(\widehat{H}_{V}(T_{L}) - \widehat{H}_{V}(T_{L})\right) + \frac{RT_{V}}{M}\frac{dm_{V}}{dt}$	(3)
	\mathbf{m}_{V}	$\frac{dm_V}{dt} = -m_C + m_E - m_{PSV}$	(4)
SL	T _{SL}	$\delta_{S}\rho_{SL}cp_{SL}\frac{dT_{SL}}{dt} = -h_{L}(T_{SL} - T_{L}) + \frac{k_{S-I}}{\delta_{S-I}}(T_{IL} - T_{SL})$	(5)
Sv	T _{SV}	$\delta_{S}\rho_{SV}cp_{SV}\frac{dT_{SV}}{dt} = -h_{V}(T_{SV}-T_{V}) - q_{R} + \frac{k_{S-I}}{\delta_{S-I}}(T_{IV}-T_{SV})$	(6)
ΙL	T _{IL}	$\delta_I \rho_{IL} c p_{IL} \frac{dT_{IL}}{dt} = -\frac{k_{S-I}}{\delta_{S-I}} (T_{IL} - T_{SL}) + \frac{k_{I-J}}{\delta_{I-J}} (T_{JL} - T_{IL})$	(7)
Iv	T _{IV}	$\delta_{I} \rho_{IV} c p_{IV} \frac{dT_{IV}}{dt} = -\frac{k_{S-I}}{\delta_{S-I}} (T_{IV} - T_{SV}) + \frac{k_{I-J}}{\delta_{I-J}} (T_{JV} - T_{IV})$	(8)
JL	T _{JL}	$\delta_J \rho_{JL} c p_{JL} \frac{dT_{JL}}{dt} = -\frac{k_{I-J}}{\delta_{I-J}} (T_{JL} - T_{IL}) + A_L q_{FIRE}$	(9)
J_V	T_{JV}	$\delta_J \rho_{JV} c p_{JV} \frac{dT_{JV}}{dt} = -\frac{k_{I-J}}{\delta_{I-J}} (T_{JV} - T_{IV}) + A_V q_{FIRE}$	(10)
-	Р	$\frac{dp}{dt} = \frac{\rho_V}{m_V} \left(\frac{P}{\rho_L} \frac{dm_L}{dt} + \frac{RT_V}{M} \frac{dm_V}{dt} + \frac{Rm_V}{M} \frac{dT_V}{dt} \right)$	(11)
-	Level	$\frac{dLevel}{dt} = \frac{1}{\rho_L} \left(\frac{dV_L}{dLevel}\right)^{-1} \frac{dm_L}{dt}$	(12)

T = temperature, *m* = mass, *P* = pressure, *V*_L = liquid volume, *cp* = specific heat capacity at constant pressure, *cv* = specific heat capacity at constant volume, *h* = convective heat transfer coefficient, \hat{H} = specific enthalpy, *R* = gas constant, *M* = molecular weight, *m*_E = evaporation rate, *m*_C = condensation rate, *m*_{PSV} = PSV discharging rate, ρ = density, δ = thickness, *k* = thermal conductivity, *q* = heat flux

[Scarponi GE, Landucci G, Ovidi F, Cozzani V. Lumped Model for the Assessment of the Thermal and Mechanical Response of LNG Tanks Exposed to Fire. Chem Eng Trans 2016;53:307–12]

Lumped model - Assumptions

Known: tank volume (0.120 m³), insulation thickness (35 mm)[•]

- PRV diameter (ISO 21013-3:2016): 9.6 mm
- MLVI thermal conductivity with the Barron and Nellis (2016) procedure
- > Tank dimensions:
 - o diameter: 460 mmo length: 722 mm

[Pehr, K., 1996. Experimental examinations on the worst-case behaviour of LH2/LNG tanks for passenger cars, in: Proceedings of the 11th World Hydrogen Energy Conference, Stuttgart 23–28 June 1996. Stuttgart, pp. 2169–87] 13

Lumped model - Assumptions

Initial conditions

Parameter	Unit	Value
	s	
Tank filling degree	%	55
Tank pressure	bar	1.06
PRV pressure open	bar	4.68
PRV pressure close	bar	4.14
Ambient temperature	Κ	275
Flame temperature	Κ	1193
LH ₂ temperature	Κ	20.3
H ₂ temperature	Κ	20.3

Material properties

Material	Property	Units	Value
5083 Al alloy	Density	kg m ⁻³	2,660
(ISO, 2014)	Heat capacity	J kg ⁻¹ K ⁻¹	897
(NIST, 2021a)	Thermal conductivity	$W m^{-1} K^{-1}$	120
	Yield strength	MPa	125
	Emissivity	-	0.9
MLVI	Density	kg m ⁻³	64*
	TT / ·/	T 1 1 T 7 1	0.001
	Heat capacity	J kg ⁻¹ K ⁻¹	838*
	Thermal conductivity	$\frac{J \text{ kg}^{-1} \text{ K}^{-1}}{\text{W m}^{-1} \text{ K}^{-1}}$	838* 0.0015*
AISI 304	Thermal conductivity Density	U m ⁻¹ K ⁻¹ W m ⁻¹ K ⁻¹ kg m ⁻³	838* 0.0015* 7,800
AISI 304 (NIST, 2021b)	Heat capacity Thermal conductivity Density Heat capacity	J kg ⁻¹ K ⁻¹ W m ⁻¹ K ⁻¹ kg m ⁻³ J kg ⁻¹ K ⁻¹	838* 0.0015* 7,800 490
AISI 304 (NIST, 2021b)	Thermal conductivity Density Heat capacity Thermal conductivity	J kg ⁻¹ K ⁻¹ W m ⁻¹ K ⁻¹ kg m ⁻³ J kg ⁻¹ K ⁻¹ W m ⁻¹ K ⁻¹	838* 0.0015* 7,800 490 16
AISI 304 (NIST, 2021b)	Thermal conductivity Density Heat capacity Thermal conductivity Yield strength	J kg ⁻¹ K ⁻¹ W m ⁻¹ K ⁻¹ kg m ⁻³ J kg ⁻¹ K ⁻¹ W m ⁻¹ K ⁻¹ MPa	838* 0.0015* 7,800 490 16 -

At t=115 s, changed to 0.110 W m⁻¹ K⁻¹

Lumped model - Results

Fire test

- Estimated tank pressure and LH₂ level approximate well the measurements
- Complete hydrogen venting after 854 s (model) instead of 900 s (exp.)

Lumped model - Results

Estimated temperatures do not agree with experimental results due to the thermal nodes approach.

[Ustolin, F., Iannaccone, T., Cozzani, V., Jafarzadeh, S., Paltrinieri, N., 2021. Time to Failure Estimation of Cryogenic Liquefied Tanks Exposed to a Fire, in: 31st European Safety and Reliability Conference. pp. 935–942]

Lumped model - SH2IFT

Initial conditions

Parameter	Unit	Value
	s	
Tank filling degree	%	38
Tank pressure	bar	3.78
PRV pressure open	bar	48,5
PRV pressure close	bar	47.5
Ambient temperature	Κ	293
Flame temperature	Κ	1073
LH ₂ temperature	Κ	25.8
H ₂ temperature	Κ	25.8

- Tank volume: 1m³
- Tank internal diameter: 925 mm
- > Tank insulation thickness: 70 mm
- Tank length: 1,488 mm
- Initial H2 mass: 27 kg (24 kg LH2)
- Estimated PRV diameter: 10.8 mm
- > MLVI thermal conductivity (<u>assumed</u>):
 - o th1 = 1.5 mW/m K (t < 272 s)</p>
 - o th2 = 109 mW/m K (272 < t < 1,727 s)</p>
 - o th3 =160 mW/m K (t > 1,727 s)

MLVI thermal conductivity changed according to tank and vacuum press.

Simulation time: ~20 minutes

CFD analysis - Methodology

- **Type**: 2D
- Software: Ansys Fluent
- Multiphase model: Volume of Fluid
- Turbulence model: k-omega SST
- **Evaporation-condensation model**: Lee (Hertz-Knudsen)
- **Pressure-velocity coupling algorithm**: SIMPLEC
- Thermodynamic properties: implemented from NIST database
- Symmetry: axial

CFD analysis - Assumptions

- Tank diameter: 460 mm
- MLVI properties
 - Thermal conductivity: 1.5, 160.0, 239.0 mW/m K
 - **Density**: 167 kg/m³
 - Layer density: 23 layers/cm

MLVI thermal conductivity was changed from **1.5** to **160.0 mW/m K** at the simulated time of **115 s** in case D

CFD analysis - Results

Case A: 1.5 mW/m K Case B: 239.0 mW/m K Case C: 160.0 mW/m K Case D: 1.5 mW/m K if t<115 s; 160.0 mW/m K if t>115 s

CFD analysis - Results

🔥 Fire test

Case D: 1.5 mW/m K if t<115 s; 160.0 mW/m K if t>115 s

CFD analysis - Results

Consequences of an LH₂ BLEVE

Methods: BLEVE consequences (blast wave, fragments range, fireball) were simulated by means of:

1. Integral models

- Mechanical energy
- Overpressure and impulse
- Missiles range

2. Numerical model (CFD)

 Blast wave (no combustion)

Integral models - Methodology

Methods: theoretical models for mechanical energy

Proposed by	Equation		
Brode (1959)	$E_{Brode} = \frac{P - P_0}{1} V^*$		
Smith and Van Ness (1996	$E_{IE} = P \cdot V^* \cdot \ln \frac{P}{P}$	Ideal gas	Blast wave overpressure
Crowl (1992, 1991)	$E_{TA} = P \cdot V^* \left[\ln \left(\frac{P}{P_0} \right) - \left(1 - \frac{P_0}{P_0} \right) \right]$	behaviour	and impulse (far field):
Prugh (1991)	$\left[\begin{array}{c} \left(P_0 \right) \\ P \cdot V^* \\ \end{array} \right] \left[\begin{array}{c} \gamma - 1 \\ \gamma - 1 \\ \end{array} \right]$	models	TNT equivalent mass
	$E_{Prugh} = \frac{1}{\gamma - 1} \left(1 - \frac{1}{P} \right)^{-\gamma}$		
van den Bosch	$E_{TNO} = m_V \left(u_V - u_{V_{is}} ight) + m_L \left(u_L - u_{L_{is}} ight)$)	Sachs scaling law
and Weterings (2005)			(Baker curves)
Planas-Cuchi	$E_{Planas} = - \left[\left(u_{L0} - u_{V0} ight) m_T \cdot x - m_T \cdot u_{L0} + U_i ight]$	Real gas	
et al. (2004) Casal and Salla (2006)	$E_{SE} = k \cdot m_L \ (h_L - h_{L0})$	> behaviou	
Genova et al. (2008)	$E_{Genova} = \psi \cdot m_L \cdot c_{p,L} (T_L - T_{L0})$	models	
Birk et al. (2007)	$E_{Birk} = m_V \left(u_V - u_{V_{is}} \right)$) [Safety distance $\rightarrow P < 1.35$ kPa

Integral models - Assumptions

Ten LH2 vessels with different H2 content and initial pressure and temperatures were tested by BMW

- **Tank volume:** 0.120 m³
- Rupture pressure: 2, 4, 11 and 15 bar
- Temperature (LH2, GH2): saturation
- Hydrogen mass: 1.8, 5.4 kg

Integral models - Results

TNT equivalent mass to convert mechanical energy to overpressure

Integral models - Results

liquid hydrogen vessel explosions

28

Integral models (combustion)

1. Ideal and real gas behaviour models (mechanical energy)

2. <u>Combustion process</u> (chemical energy): methodology proposed by Molkov and Kashkarov (2015) for pressurized H2 tanks:

$$E_{ch} = \beta \cdot \left(\frac{r_{sh}}{r_h}\right)^3 \cdot LHV \qquad \qquad \beta = 0.052 \qquad \qquad E_{TOT} = \alpha \cdot E_{mech} + E_{ch}$$

3. Therefore, the total energy (mechanical + chemical) is estimated

Integral models (combustion) - Results

Most conservative model: TNO

Overestimation at low pressure (2, 4 bar)

CFD analysis

Methods: CFD analysis of the BLEVE explosion by means of the ADREA-HF in-house 3D time dependent finite volume code (activity of the visiting period at NCSR "Demokritos").

- > Multiphase flow model: Homogeneous Equilibrium Model (HEM)
- Raoult's law is used for the components phase distribution
- **Turbulence model**: standard k-ε model with wall functions

Aim: reproduce the BMW bursting scenario tests by means of a <u>parametric analysis</u> (LH₂ mass, tank pressure and temperature).

CFD analysis

Configurations

- Pressure levels: <u>4, 11 and 15 bar</u>
- The tank was simulated either <u>full of liquid</u> or <u>gaseous H</u>₂
- Filling degree: <u>37%</u> only at <u>11 bar</u>
- The model was first validated with <u>CO₂ BLEVE</u> experiments [56]
- The focus was placed on the <u>dynamic of the BLEVE blast wave</u> (no combustion).

CFD analysis

Main finding on dynamic of pressure wave. Influence on the overpressure and impulse of:

- hydrogen liquid and gaseous phase
- hydrogen mass
- initial temperature and pressure

LH₂ BLEVE CFD analysis

Speculation: the difference in overpressure is caused by the

combustion (not simulated)

SH2IFT project LH2 BLEVE test

S(H)IFT

Discussion & conclusions

- ✓ Conditions in outdoor mediumscale experiments are difficult to control
- Developed models show good agreement with experiments
- ✓ Lumped and integral models are good starting points for developing more accurate models

Temperatures measured in different positions on the outer LH2 tank shell during the SH2IFT fire test

Discussion & conclusions

- ✓ Material behaviour (e.g. tank insulation) exposed to fire must be investigated
- ✓ Initial conditions (e.g. LH2 and GH2 mass) must be known
- ✓ Combustion process must be considered for LH2 BLEVE
 blast wave assessment

Proposed safety barrier:

- Supply of subcooled LH2
- Nets for fragments

Risk definition Consequence Risk **Frequency of Failure** Χ of Failure MF GFF Χ DF Χ CoF Injury Age Abbreviations: Equip. Repair Damage DF: Factor Damage **Business Int. Generic Failure** GFF: Type/Rate Frequency **Environ. Effects MF: Management Factor** Inspection

Effectiveness

RBIM

Support for inspection and maintenance

Risk target and inspection planning

RBIM

Support for inspection and maintenance

Consolidated standards on inspection planning (and subsequently maintenance) based on quantitative risk assessment (risk-based inspection -RBI- methodology):

- ➢ API 580/581,
- DNV RP G101
- ➢ EN16991:2018

Few hydrogen-related degradation mechanisms to define the damage factors are considered

The introduction of hydrogen-specific mechanisms into quantitative risk methods used for planning inspection and maintenance activities would boost accident prevention.

RBIM

[Ustolin, F., Paltrinieri, N., Berto, F., 2020. Loss of integrity of hydrogen technologies: A critical review. Int. J. Hydrogen Energy 45, 23809–23840. https://doi.org/https://doi.org/10.1016/j.ijhydene.2020.06.021]

RBI planning for hydrogen technologies

1. Review of current RBI standards and recommended practises

			(
Standard	Ref.	Title	Year
API 580	[12]	Risk Based Inspection	2016
API 581	[13]	Risk Based Inspection methodology	2016
ASME PCC-3	[15]	Inspection Planning Using Risk-Based Methods	2017
		Risk based inspection of offshore topsides static	
DNVGL-RP-G101	[8]	mechanical equipment	2017
EN16991	[14]	Risk-based inspection framework	2018

Table 1. Risk-based inspection standards in literature.

2. Metal-hydrogen interactions, loss of integrity (LOI) phenomena and their mechanisms

Loss of integrity (LOI) phenomena and mechanisms

Table 2. Comparison between examples of damages provided by the EN16991 standard [14], and the loss of integrity (LOI) phenomena for hydrogen technologies [5].

		LOI phenomena	EN16991
		Hydrogen damages (HD):	
	0	Hydrogen embrittlement (H ₂ environment embrittlement, H2 stress cracking, loss in tensile ductility)	Embrittlement incl. hardening, strain aging, temper embrittlement, liquid metal embrittlement, etc. (general)
	0	Hydrogen attack (HA)	High temp. HA (H ₂ induced damage)
	0	Blistering	Blistering (H ₂ induced damage)
-	0	Shatter cracks, flakes, fisheyes	Cracking, mainly on surface (general)
	0	Microperforation	Micro-cracking (general)
	0	Degradation in flow properties	Fluid flow disturbance (general)
-	•	Metal hydride formation	Dealloying (general)
		Low temp. embrittlement	Embrittlement (general)
	Thermal contraction, stresses caused by:		
	0	dimensional change	Dimensional changes, thermal fatigue
	0	thermal gradients	(general)

Projects on hydrogen safety

- **SH**, **IFT**: Safe Hydrogen Fuel Handling and Use for Efficient Implementation
 - *PRESLHY : PRENORMATIVE RESEARCH FOR SAFE USE OF LIQUID HYDROGEN PRESLHY * Collaboration during visiting
 - H2 CoopStorage: Development of tools enabling the deployment and management of a multi-energy Renewable Energy Community with hybrid storage H2COOPSTORAGE

- **<u>SH</u>₂IFT 2** : follow-up of SH₂IFT
- **SUSHy:** SUStainability development and cost-reduction of hybrid renewable 5. energies powered Hydrogen stations by risk-based multidisciplinary approaches

Thank you for your attention

Contact: <u>federico.ustolin@ntnu.no</u>

QUESTIONS?

