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3H2 Intro

Property Value

Gravimetric energy density (MJ/kg) [3] 119.96

Combustion products
Water, NOx 
(avoidable)

Toxic No

Density at NTP (kg/m3) [4] 0.0883

Minimum ignition energy (mJ) [5] 0.017

Flammability range in air (%vol) [6] 4 ÷ 75

Flame visibility Scarce

Colour and/or odour None

Molecule diameter (pm) 120

Hydrogen properties

Highly flammable

Difficult to detect

Difficult to contain

Storage issue

Volatile 
(safety)
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Liquid hydrogen hazards
Liquid hydrogen (LH2) properties:

✓ Density: 70.9 kg/m3

✓ Normal boiling temperature: 20.7 K 
(-253°C)

LH2 tanks:

✓ Double-walled vacuum insulated

✓ Operative pressure: ~1 bar

✓ Maximum allowable pressure: 10 bar

Consequences of LOC: BLEVE, RPT
LH2 automotive tank (source: BMW)LH2 hazards
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P = Prup

BLEVE is a physical explosion might result from the catastrophic 

rupture of a tank containing a superheated liquid due to the rapid 

depressurization

Boiling Liquid Expanding Vapour Explosion

T > Tbp

P > Patm

Time

Valid for 
cryogenic 
substances

Chain of events leading to the tank rupture

T ≈ Tbp

P ≈ Patm

LH2 hazards



6

Vapor

Liquid

Compressed
BLEVE

Hot liquid undergoing sudden depressurization in a tank 
(adapted from [Casal, 2008])

Time

metastable/unstable

LH2 hazards
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BLEVE
Consequences

*Fireball if substance is flammable and ignition source is present

*

LH2 hazards
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LH2 BLEVE
Two LH2 BLEVE occurred in the past:

1974: an LH2 tank of 9,000 gal (34 m3) 

underwent a BLEVE after the tank and its 

safety devices (PRV) were sprayed with 

water due to a near by fire [30].

1986: space shuttle “Challenger” disaster. 

Hot gases from the main rocket impinged 

the LH2 and LOX tanks provoking a BLEVE.

Source: hystory.com

[Feldman et al., “1974 LHY Tank Failure”, SAF75U002 RRS . Air Products internal report (1975)

LH2 hazards
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SH2IFT LH2 experiment has been delayed, 
therefore the results from the BMW tests were 
exploited.

Fire tests: double walled vessel filled at 50% fully 
engulfed in propane fire.

Bursting tank scenario test: ten vessels (0.120 m3) 
filled with different amount of LH2 (1.8 ÷ 5.4 kg) 
were wrecked by means of cutting charges.

BMW safety programme

Development of a fireball. (a) Ignition; (b) 250 ms after ignition 

A 7 Series BMW with hydrogen IC engine and LH2 storage

[Pehr K. Aspects of safety and acceptance of LH2 tank systems in 
passenger cars. Int J Hydrogen Energy 1996;21:387–95]LH2 hazards
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Modelling of loss of integrity and containment of an LH2 tank

LH2 tank LH2 tankTime

Fire test:
• Pressure build up and 

temperature gradient in LH2 tank

Catastrophic rupture (BLEVE):
• Pressure wave
• Fragments
• Fireball

CA

How:
1. Lumped models
2. Numerical models (CFD)

How:
1. Engineering tools
2. Numerical models (CFD)

Consequence analysis (CA)
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Two approaches were selected to estimate the behaviour of 
an LH2 tank during an accident scenario (e.g. fire):

1. Lumped model (differential equation system)

2. Computational Fluid Dynamics (CFD)

Fire test modelling

Fire test Credit: ESA-SJM Photography

Focus: LH2 tank 
with multi-layer 
vacuum insulation 
(MLVI)

Source: chemfab.com



12

Figure 1: Schematization of thermal nodes discretization. 

L = liquid phase, V = vapour phase, S = shell, I =

insulant, J = jacket, AL = liquid wetted area, AV = vapour

wetted area, ALV = liquid-vapour interface area.

[Scarponi GE, Landucci G, Ovidi F, Cozzani V. Lumped Model for the Assessment of the Thermal 
and Mechanical Response of LNG Tanks Exposed to Fire. Chem Eng Trans 2016;53:307–12]Fire test

Lumped model - Methodology



13

Known: tank volume (0.120 m3), insulation thickness (35 mm)

Lumped model - Assumptions

Fire test

➢ PRV diameter (ISO 21013-3:2016): 9.6 mm

➢ MLVI thermal conductivity with the Barron 
and Nellis (2016) procedure

➢ Tank dimensions:

o diameter: 460 mm

o length: 722 mm

[Pehr, K., 1996. Experimental examinations on the worst-case behaviour of LH2/LNG tanks for passenger cars, in: 
Proceedings of the 11th World Hydrogen Energy Conference, Stuttgart 23–28 June 1996. Stuttgart, pp. 2169–87]
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Material properties

Lumped model - Assumptions

Fire test

Initial conditions

At t=115 s, changed to 0.110 W m-1 K-1
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Lumped model - Results

• Estimated tank pressure and LH2 level approximate well the measurements
• Complete hydrogen venting after 854 s (model) instead of 900 s (exp.)

Fire test
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Lumped model - Results

Estimated temperatures do not agree with experimental results due to the 
thermal nodes approach.

Fire test
[Ustolin, F., Iannaccone, T., Cozzani, V., Jafarzadeh, S., Paltrinieri, N., 2021. Time to Failure Estimation of Cryogenic 
Liquefied Tanks Exposed to a Fire, in: 31st European Safety and Reliability Conference. pp. 935–942]
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Lumped model - SH2IFT

Initial conditions
➢ Tank volume: 1m3

➢ Tank internal diameter: 925 mm

➢ Tank insulation thickness: 70 mm

➢ Tank length: 1,488 mm

➢ Initial H2 mass: 27 kg (24 kg LH2)

➢ Estimated PRV diameter: 10.8 mm

➢ MLVI thermal conductivity (assumed):

o th1 = 1.5 mW/m K (t < 272 s)

o th2 = 109 mW/m K (272 < t < 1,727 s)

o th3 =160 mW/m K (t > 1,727 s)
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Lumped model - SH2IFT

th1
th2

th3

MLVI thermal conductivity changed according to tank and vacuum press.

PRV opening

Simulation time: ~20 minutes
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• Type: 2D

• Software: Ansys Fluent

• Multiphase model: Volume of Fluid

• Turbulence model: k-omega SST

• Evaporation-condensation model: Lee (Hertz-Knudsen)

• Pressure-velocity coupling algorithm: SIMPLEC

• Thermodynamic properties: implemented from NIST database

• Symmetry: axial

CFD analysis - Methodology

Fire test
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• Tank diameter: 460 mm

• MLVI properties

– Thermal conductivity: 1.5, 160.0, 239.0 mW/m K

– Density: 167 kg/m3

– Layer density: 23 layers/cm

Fire test

CFD analysis - Assumptions

MLVI thermal conductivity was changed from 1.5 to 
160.0 mW/m K at the simulated time of 115 s in case D
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CFD analysis - Results

Case A: 1.5 mW/m K

Case D: 1.5 mW/m K if t<115 s; 160.0 mW/m K if t>115 s

Case B: 239.0 mW/m K Case C: 160.0 mW/m K

Fire test
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CFD analysis - Results

Case D: 1.5 mW/m K if t<115 s; 160.0 mW/m K if t>115 s
Fire test



23Fire test

CFD analysis - Results
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Methods: BLEVE consequences (blast wave, fragments range, 
fireball) were simulated by means of: 

Consequences of an LH2 BLEVE

1. Integral models

• Mechanical energy
• Overpressure and 

impulse
• Missiles range

2. Numerical model 
(CFD)

• Blast wave 
(no combustion)

BLEVE
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Integral models - Methodology
Methods: theoretical models for mechanical energy

Ideal gas 
behaviour 
models

Real gas 
behaviour 
models

BLEVE

Blast wave overpressure 

and impulse (far field):

➢ TNT equivalent mass 

➢ Sachs scaling law 

(Baker curves)

Safety distance → P < 1.35 kPa
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Ten LH2 vessels with different H2 content and initial pressure 
and temperatures were tested by BMW

• Tank volume: 0.120 m3

• Rupture pressure: 2, 4, 11 and 15 bar

• Temperature (LH2, GH2): saturation

• Hydrogen mass: 1.8, 5.4 kg

BLEVE

Integral models - Assumptions

[Pehr, K., 1996. Aspects of safety and acceptance of LH2 tank systems in passenger cars. Int. J. Hydrogen Energy 21, 387–395]
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Integral models - Results

BLEVE

TNT equivalent mass to convert mechanical energy to overpressure
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Integral models - Results

BLEVE

No harm

Injury

TNT
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Integral models (combustion)

1. Ideal and real gas behaviour models (mechanical energy) 

2. Combustion process (chemical energy): methodology proposed by 
Molkov and Kashkarov (2015) for pressurized H2 tanks:

3. Therefore, the total energy (mechanical + chemical) is estimated

𝐸𝑐ℎ=𝛽∙
𝑟𝑠ℎ
𝑟𝑏

3

∙𝐿𝐻𝑉
𝛽 = 0.052 𝐸𝑇𝑂𝑇=α∙𝐸𝑚𝑒𝑐ℎ+𝐸𝑐ℎ

BLEVE
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Integral models (combustion) - Results

Most conservative model: TNO

Overestimation at low pressure (2, 4 bar)BLEVE

Large overprediction 

at low pressure
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CFD analysis
Methods: CFD analysis of the BLEVE explosion by means of the ADREA-HF 

in-house 3D time dependent finite volume code (activity of the visiting 

period at NCSR “Demokritos”).

➢ Multiphase flow model: Homogeneous Equilibrium Model (HEM)

➢ Raoult's law is used for the components phase distribution

➢ Turbulence model: standard k-ε model with wall functions

Aim: reproduce the BMW bursting scenario tests by means of a 

parametric analysis (LH2 mass, tank pressure and temperature). 

BLEVE
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CFD analysis

Configurations

• Pressure levels: 4, 11 and 15 bar

• The tank was simulated either full of liquid or gaseous H2

• Filling degree: 37% only at 11 bar

• The model was first validated with CO2 BLEVE experiments [56]

• The focus was placed on the dynamic of the BLEVE blast wave (no 
combustion).

BLEVE
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CFD analysis
Main finding on dynamic of pressure wave. 
Influence on the overpressure and impulse 
of:
• hydrogen liquid and gaseous phase
• hydrogen mass
• initial temperature and pressure

BLEVE
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LH2 BLEVE CFD analysis

Speculation: the difference in overpressure is caused by the 

combustion (not simulated)

• BMW (considered)

o BMW (neglected)

+ CFD

BLEVE



SH2IFT project LH2 BLEVE test

Video

BLEVE



36

Discussion & conclusions

✓ Conditions in outdoor medium-
scale experiments are difficult 
to control

✓ Developed models show good 
agreement with experiments

✓ Lumped and integral models 
are good starting points for 
developing more accurate 
models

Temperatures measured in different 
positions on the outer LH2 tank shell 
during the SH2IFT fire test
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Discussion & conclusions
✓ Material behaviour (e.g. tank insulation) exposed to fire 

must be investigated

✓ Initial conditions (e.g. LH2 and GH2 mass) must be known

✓ Combustion process must be considered for LH2 BLEVE 
blast wave assessment

Proposed safety barrier:

• Supply of subcooled LH2

• Nets for fragments



Risk definition

Risk = Frequency of Failure X
Consequence 
of Failure

GFF DFx

Age

Damage

Type/Rate 

Inspection

Effectiveness 

Equip. Repair

Environ. Effects

Injury

Business Int.

Abbreviations: :

DF: Damage
Factor

GFF: Generic Failure
Frequency

MF: Management Factor

xMF

Equipment/Component Risk calculation in Detailed Analysis
Based on API 581

CoF

RBIM



Support for inspection and maintenance

Inspection 

Target

R
is

k
 /
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(D
F

)

Predicted Risk 

Increase

Now

Time to next 

inspection

Highly Effective

Risk / DF

Fairly Effective

Time

Risk target and inspection planning

RBIM



Support for inspection and maintenance
Consolidated standards on inspection planning (and subsequently maintenance)
based on quantitative risk assessment (risk-based inspection -RBI- methodology):

➢ API 580/581,

➢ DNV RP G101

➢ EN16991:2018

Few hydrogen-related degradation mechanisms to define the damage factors are
considered

The introduction of hydrogen-specific mechanisms into quantitative risk methods used for
planning inspection and maintenance activities would boost accident prevention.

[Ustolin, F., Paltrinieri, N., Berto, F., 2020. Loss of integrity of hydrogen technologies: A critical review. Int. 
J. Hydrogen Energy 45, 23809–23840. https://doi.org/https://doi.org/10.1016/j.ijhydene.2020.06.021]RBIM



RBI planning for hydrogen technologies
1. Review of current RBI standards and recommended practises

2. Metal-hydrogen interactions, loss of integrity (LOI) phenomena and their
mechanisms

Table 1. Risk-based inspection standards in literature. 

Standard Ref. Title Year 

API 580 [12]  Risk Based Inspection 2016 

API 581 [13]  Risk Based Inspection methodology 2016 

ASME PCC-3 [15]  Inspection Planning Using Risk-Based Methods 2017 

DNVGL-RP-G101 [8]  
Risk based inspection of offshore topsides static 

mechanical equipment 2017 

EN16991 [14]  Risk-based inspection framework 2018 

 

RBIM



Loss of integrity (LOI) phenomena and mechanisms
Table 2. Comparison between examples of damages provided by the 

EN16991 standard [14], and the loss of integrity (LOI) phenomena for 

hydrogen technologies [5]. 

LOI phenomena EN16991 

Hydrogen damages (HD):  

o Hydrogen embrittlement (H2 

environment embrittlement, H2 stress 

cracking, loss in tensile ductility) 

Embrittlement incl. hardening, strain 

aging, temper embrittlement, liquid 

metal embrittlement, etc. (general) 

o Hydrogen attack (HA) High temp. HA (H2 induced damage) 

o Blistering Blistering (H2 induced damage) 

o Shatter cracks, flakes, fisheyes Cracking, mainly on surface (general) 

o Microperforation Micro-cracking (general) 

o Degradation in flow properties Fluid flow disturbance (general) 

o Metal hydride formation Dealloying (general) 

Low temp. embrittlement Embrittlement (general) 

Thermal contraction, stresses caused by: 

o dimensional change 

o thermal gradients 

Dimensional changes, thermal fatigue 

(general) 

 
A discussion about the mechanical and thermal fatigue was also provided.RBIM
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Projects on hydrogen safety

1. SH2IFT: Safe Hydrogen Fuel Handling and Use for Efficient Implementation 

2. *PRESLHY : PRENORMATIVE RESEARCH FOR SAFE USE OF LIQUID HYDROGEN

3. H2 CoopStorage: Development of tools enabling the deployment and 
management of a multi-energy Renewable Energy Community with hybrid 
storage

4. SH2IFT 2 : follow-up of SH2IFT

5. SUSHy: SUStainability development and cost-reduction of hybrid renewable 
energies powered Hydrogen stations by risk-based multidisciplinary approaches

* Collaboration during visiting
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Thank you for your attention

Contact: 
federico.ustolin@ntnu.no 

mailto:federico.ustolin@ntnu.no
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QUESTIONS?


