
BIT | SINCE 1940

Prognostics of Health and Risk for Lithium-ion Batteries

Huixing Meng, Ph.D., Assistant Professor

Department of Safety Engineering 

Beijing Institute of Technology



2

Academic experience

• Beijing Institute of Technology, Department of Safety Engineering Beijing, China

Assistant Professor/ Associate Researcher                                                                                    04/2020 till now

• Tsinghua University, Department of Industrial Engineering                                               Beijing, China

Postdoc (Assistant Researcher)                                                                                                       03/2018-04/2020

• École Polytechnique, Laboratory of Computer Science Paris, France

PhD. Computer Science                                                                                                             09/2014-01/2018

• China University of Petroleum (East China), College of Mechanical& Electronic Engineering Qingdao, China

M. Eng. Safety Technology and Engineering                                                                                       09/2011-06/2014 

B. Eng. Safety Engineering                                                                                                           09/2007-06/2011

Research area: Risk prevention and control; Intelligent maintenance 

Methods: Bayesian networks; Deep learning; Reinforcement learning

Engineering applications: Energy systems (e.g., deepwater oil and gas systems; batteries)



3

Academic output and service

• Published 30+ academic papers, including:

• Reliability Engineering & System Safety

• Process Safety and Environmental Protection

• Renewable and Sustainable Energy Reviews

• Ocean Engineering

• Energy

• Applied 8 Chinese invention patents (been granted 3) and 2 U.S. patens. 

• Has been granted

• a project from Natural Science Foundation of China (NSFC) 

• an international exchange project from Ministry of Science and Technology of China (MOST)

• Serves as:

• editorial board member of Safety Science 

• editorial board member of International Journal of Reliability and Safety



II

Battery heath prognosticsI

Battery risk prediction



5

Highlight

⚫ Propose a novel battery prognostic method with LSTM and partial IC features.

⚫ Presented partial IC features avoid the identification of specified IC curve peaks.

⚫ Bayesian optimization is adapted into LSTM to automatically tune hyper-parameters.

⚫ The effectiveness is comprehensively investigated in two battery aging datasets.

MENG H, GENG M, HAN T. Long short-term memory network with Bayesian optimization for health 
prognostics of lithium-ion batteries based on partial incremental capacity analysis. Reliability 
Engineering & System Safety, 2023, 236: 109288. 
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Standing fires
38%

Charging fires
23%

Driving fires
39%

Introduction1

➢ Electric vehicle spontaneous combustion➢ Electric Vehicle Fire Statistics*

Battery degradation may lead to battery system breakdown and an increased

probability of equipment failure, even resulting in disasters.

*D1EV. Analysis of electric vehicle fire accidents. http://m.d1ev.com/kol/138145 



2 Methodology
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Methodology2
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Partial IC features2.1

• LOWESS is used as a filter to denoise the IC curve

(the red curve shown in Fig. 2(b)).

• Partial IC curves are chosen to extract features, and it

is denoted as the interested region in Fig. 2(c).

• Given starting voltage (𝑉𝑠𝑡𝑎𝑟𝑡), end voltage (𝑉𝑒𝑛𝑑), and

voltage interval (∆𝑉 ), the data of each cycle can be

discretized into 𝑀 samples:

𝑀 =
𝑉𝑒𝑛𝑑 − 𝑉𝑠𝑡𝑎𝑟𝑡

∆𝑉

• The input to the deep learning model can be

represented by the discrete values of the IC curve as

𝑥𝑖𝑛𝑝𝑢𝑡 = [𝑥𝑖 , 𝑥𝑖+1,· · · , 𝑥𝑖+𝑛−1], where 𝑖 (0 < 𝑖 ≤ 𝑀 −

𝑛 + 1) is the randomly selected, and 𝑥𝑖 is the IC value

of initial voltage in the 𝑖th segment.

*LOWESS (locally weighted scatterplot smoothing)
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LSTM model2.2

Input sequence: 𝑥𝑡 = [𝑥𝑡,𝑖 , 𝑥𝑡,𝑖+1,· · · , 𝑥𝑡,𝑖+𝑛−1] 1. Forget gate

2. Input gate

3. Output gate

𝑓𝑡 = 𝜎 𝑊𝑓[ℎ𝑡−1,𝑥𝑡]+ 𝑏𝑓  

𝐶 𝑡 = tanh(𝑊𝑐[ℎ𝑡−1,𝑥𝑡]+ 𝑏𝑐) 

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1,𝑥𝑡]+ 𝑏𝑖) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶 𝑡  

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1,𝑋𝑡]+ 𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) 
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Hyper-parameter optimization2.3

➢ Bayesian optimization

➢ BO-LSTM model

• Double-layer LSTM model is designed to construct

the mapping relationship between HIs and output.

• Bayesian optimization is performed over several

iterations to export the optimal set of hyper-

parameters to guide the model training.

• Dense layer implements the dimensional

transformation to obtain the estimated SOH.

𝐸𝐼𝑦∗(𝐾) =
𝛾𝑦∗𝑙(𝜃) − 𝑙(𝜃)  𝑝(𝑦)𝑑𝑦

𝑦∗

−∞

𝛾𝑙(𝜃) + (1 − 𝛾)𝑔(𝑥)
∝  𝛾 +

𝑔(𝐾)

𝑙(𝐾)
(1 − 𝛾) 

−1
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Experiment data3.1

➢ Case 1：NASA lithium-ion battery dataset

• Batteries: B0005, B0006, B0007, B0018

• Rated capacity: 2Ahr

• Charging and discharging protocols (CCCV-CC):

The battery is charged with a constant current

of 1.5A, until the voltage reaches 4.2V

The charging process continues with constant

voltage (i.e., 4.2V) until the current drops to 20mA

The battery is discharged at a constant current

of 2A, until the voltage drops to 2.7V, 2.5V, 2.2V, and

2.5V for B0005, B0006, B0007, and B0018,

respectively.
MENG H, GENG M, XING J, et al. A hybrid method for 
prognostics of lithium-ion batteries capacity considering 
regeneration phenomena. Energy, 2022, 261: 125278.
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Experiment data3.1

➢ Case 2：CALCE lithium-ion battery dataset

• Batteries: CS35, CS36, CS37, CS38

• Rated capacity: 1.1Ahr

• Cathode material: LiCoO2

• Charging and discharging protocols (CCCV-CC):

The battery is charged with a constant current rate of 0.5C until the voltage reached 4.2 V.

Then the battery follows a constant voltage charging process and the charge stage stops when the

current drops to 20 mA.

The batteries are discharged with a constant current rate of 1C until the voltage decreases to 2.7 V.
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Feature Extraction3.2

The extraction of the peak relies on the

complete IC curve, which is difficult to

obtain in practice.

• 𝑉𝑠𝑡𝑎𝑟𝑡 and 𝑉𝑒𝑛𝑑 are selected as 3.85V and 4.15V.

• Discretized into 30 equally space samples with

the voltage interval of 0.01V.

• 𝑛(0 ≤ 𝑛 ≤ 30) segment data are randomly

extracted from the discretized samples.
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Configurations of the prognostic models3.3

Hyper-parameters Selection range

lstm_units_1 (2, 400)

lstm_units_2 (2, 400)

dense_units (2, 400)

Learning_rate (1e-3, 0.1)

Optimizer Adam

Activation function ReLu

Loss function MSE

➢ Comparison Model

• LSTM: lstm_units_, lstm_units_2, dense_units, and

learning_rate are selected 320, 32, 10, 1e-3, respectively.

• RNN: the same as LSTM.

• GRU: the same as LSTM.

➢ Evaluation metrics

𝑅𝑀𝑆𝐸 =
1

𝑁
෍

𝑖=1

𝑁

෤𝑦𝑖 − 𝑦𝑖
2

𝑀𝐴𝐸 =
1

𝑁
෍

𝑖=1

𝑁

෤𝑦𝑖 − 𝑦𝑖

𝑀𝐴𝑃𝐸 =
1

𝑁
෍

𝑖=1

𝑁 ෤𝑦𝑖 − 𝑦𝑖

𝑦𝑖



4 Discussion
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Prognostic Results and Comparisons4.1

➢ Case 1：SOH estimation results of NASA batteries

• Compared to other methods in the same battery.

• LSTM and GRU obtained smoother estimation results and

were closer to the actual degradation curve.

• Manual adjustment of the hyper-parameters makes their

estimation performance on different batteries varies.

30% training set
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Prognostic Results and Comparisons4.1

➢ Case 1：SOH estimation results of NASA batteries

• The estimation accuracy of the four deep learning

methods is improved as the training set size grows.

• RNN exhibits a less homogeneous capacity degradation.

40% training set
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Prognostic Results and Comparisons4.1

Training

set

Battery

No.

LSTM GRU RNN Proposed model

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

30% B0005 4.49 3.61 4.49 3.68 3.49 4.78 4.69 4.27 5.97 2.43 2.32 2.43

B0006 2.50 1.97 2.70 2.91 2.36 3.36 6.86 6.55 9.39 1.93 1.52 2.17

B0007 3.66 3.56 4.61 3.67 3.52 4.57 5.73 5.28 6.97 2.70 2.54 3.36

B0018 3.60 3.39 4.76 3.11 2.94 4.03 3.14 2.62 3.63 1.90 1.60 2.16

40% B0005 2.64 2.47 3.54 3.11 2.84 3.90 1.88 1.47 2.09 1.27 0.92 1.35

B0006 3.69 3.21 4.64 2.96 2.48 3.56 3.71 3.09 4.51 1.53 1.10 1.59

B0007 3.07 2.81 3.76 3.76 3.50 4.66 3.02 2.63 3.52 1.62 1.34 1.76

B0018 3.57 3.40 4.76 2.31 2.18 3.05 2.70 2.28 3.19 1.72 1.59 2.22



24

Prognostic Results and Comparisons4.1

➢ Case 2：SOH estimation results of CALCE batteries

• 𝑉𝑠𝑡𝑎𝑟𝑡 and 𝑉𝑒𝑛𝑑 are selected as 3.75V and 4.05V.

• Prediction curve gradually deviates from the actual

curve in the late prediction stage.

• The proposed method still exhibits better performance in

long-term estimation.

• The estimation accuracy improves with the increasing of

the training set.

• The battery CS36 of 30% training set displays the

largest errors with RMSE, MAE, and MAPE of 3.33%,

2.53%, and 3.64%, respectively.

30% training 

set

40% training 

set
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Prognostic Results and Comparisons4.1

Training

set

Battery

No.

LSTM GRU RNN Proposed model

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

30% CS35 5.07 3.50 5.10 4.13 2.98 4.29 4.79 3.65 5.18 1.85 1.24 1.82

CS36 6.59 5.10 7.44 6.27 5.37 7.44 5.80 4.96 6.90 3.33 2.53 3.64

CS37 3.99 2.96 4.07 4.25 3.14 4.32 4.83 3.63 4.99 2.02 1.58 2.14

CS38 3.12 2.34 3.14 2.28 1.73 2.31 3.53 2.64 3.55 1.13 0.87 1.15

40% CS35 4.87 3.43 5.05 4.02 2.86 4.19 5.56 356 5.37 1.67 1.12 1.65

CS36 6.94 5.53 8.04 5.93 4.73 6.88 6.23 4.91 7.15 3.20 2.54 3.68

CS37 3.93 2.96 4.12 3.15 2.43 3.36 4.62 3.33 4.65 1.64 1.31 1.78

CS38 2.70 1.99 2.70 1.90 1.44 1.95 3.41 2.58 3.50 0.73 0.56 0.74
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Influence analysis of partial segment lengths4.2

➢ n = 5, n = 10, n = 15, and n = 20 correspond to voltage

ranges of 0.05, 0.1, 0.15, and 0.2 V.

➢ RMSE shows a relatively obvious increase when the

segment length n = 20.

➢ RMSE of the proposed method is almost less than 3%.

➢ We recommend choosing the segment length n = 10

for battery SOH estimation.
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Influence analysis of partial segment position4.3

➢ Segment length n = 10 was selected;

➢ B0005, B0006, and B0007 tend to have larger RMSE

at the segment with large voltage (4.05V-4.15V).

➢ B0018 achieves a higher error level at the segment

with small voltage (3.85V-3.95V).

➢ Similar IC curves pose a challenge to model training

and cause a decrease in estimation performance.

➢ When the segment is moved to both ends of the IC

curve, RMSE tends to increase.

➢ We suggest that voltage segments extracted from the

IC curve around 4V may improve SOH estimation

accuracy.
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Discussions about Bayesian optimization4.4

➢ B0018, Voltage range: 3.85V-3.95V, Segment length: n = 10.

➢ The optimal hyper-parameter configuration is dense_units=15, learning_rate=0.045,

lstm_units_1=237, and lstm_units_2=18.

➢ The optimized hyper-space occupies a small area in the lower-middle part of the search

space, which is difficult to find by random search, grid search, or expertise.



5 Conclusion
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Conclusion5.1

• The proposal of this method enables feature selection to be obtained from the interested

voltage region of the IC curve, hence avoiding the identification of specific features, such

as IC peaks.

• Bayesian optimization is incorporated into LSTM to achieve the automatic selection of

optimal parameters.

• According to prognostic results on NASA batteries and CALCE batteries, the proposed

LSTM model outperforms the other neural network models, like RNN, LSTM, and GRU.

• Extending segment length or extracting the mid-charging data can improve the

accuracy of battery prognostics.
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Future work5.2

When the training and test have different voltage range, there are several approaches to solve

this problem.

1. Use transfer learning: A pre-trained model that has been trained on a different voltage range

is fine-tuned on the new data.

2. Use domain adaptation techniques: This involves using a small amount of labeled data from

the new voltage range to adapt the model to the new domain.

3. Collect new data.
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Highlight

⚫ We proposed an integrated methodology to conduct risk assessment and prediction.

⚫ We utilized FAHP to obtain weights of experts and fuzzy number to calculate failure 

probabilities.

⚫ We built a DBN to investigate the evolution mechanism of LIB thermal runaway risk.

⚫ Our results show that ML methods perform well in the prediction of LIB thermal runaway 

risk.

MENG H, YANG Q, ZIO E, et al. An integrated methodology for dynamic risk prediction of thermal 
runaway in lithium-ion batteries. Process Safety and Environmental Protection, 2023, 171: 385-95.
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Research Background1

In the U.S., EV sales should grow to reach
approximately 29.5% of all new car sales in 2030
from an expect roughly 3.4% in 2021.

Strong demand

National Fire and Rescue Administration: the
overall fire risk of EV is higher than that of
traditional vehicles powered by fossil fuel.

High risk
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1

• Heat accumulation inside

• The rate of heat accumulation exceeds 

the external heat dissipation rate

• Battery temperature rapidly increases

• Internal chemical reaction

• Release a large amount of heat and gas

• Smoke, fire, or explosion

Research Background



2 Methodology & 

Case study
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Methodology2

Evolution 

mechanism of 

thermal runaway

Dynamic evaluation 

of thermal runaway

Probability prediction 

of thermal runaway



40

Methodology——FT2

Symbol Basic event

X1 Emergency response failure

X2 Extrusion

X3 Puncture

X4 Immersion

X5 Collision

X6
Short circuit and aging of
internal components

X7 Overcharge

X8 Overdischarge

X9 External thermal shock

X10 Local overheating

• Binary states

• Static analysis only
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Methodology——mapping2

Dynamic Bayesian 
network

Adding dynamic nodes

Directed acyclic graph (DAG)

Bayesian 
network

Conditional Probability Table (CPT)

Fault tree

Systematic risk analysis
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Methodology——DBN2

SOC（state of charge）

Full of charge → SOC=1

Discharge completely→ SOC=0
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2

SOH（state of health）

SOH=Qmax/Cr

Qmax—— the maximum battery charge

Cr —— the rated capacity

Methodology——DBN
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2

CPT

Statistic data

Data set

Expert 
knowledge

Methodology——DBN
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2

Expert weight Expert judgement

Fuzzy set theory (FST)Fuzzy analytic hierarchy process (FAHP)

Methodology——fuzzy mathematics
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2

Thermal runaway probabilityDBN model

charge/ 

discharge cycle 

number

Thermal

runaway

probability

DBN can describe the evolution process of thermal runaway.

Methodology——DBN
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2

Method R2
Time

consuming(s)

Support vector regression (SVR) 0.9999 655.2

Quadratic regression (QR) 0.8781 0.290

Recurrent neural network (RNN) 0.9646 68.52

Long short-term memory (LSTM) 0.9994 143.4

Gated recurrent unit (GRU) 0.9784 86.68

Methodology——SVR



3 Conclusion
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Conclusion3

• A FT-DBN-SVR methodology is proposed for risk assessment and prediction.

• FAHP is used to obtain weights of experts and FST converts fuzzy number to failure probability.

• A FT is built and then mapped to a DBN for investigating the evolution of LIB thermal runaway 

risk.

• Support vector regression performs well in the prediction of LIB thermal runaway risk.

Innovation

Future work

• More basic events are expected to expand the FT structure. 

• If sufficient data is available, adding other dynamic nodes (e.g., short circuit rate) will make the 

model more useful in engineering applications.



THANK YOU


