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® Propose a novel battery prognostic method with LSTM and partial IC features.
® Presented partial IC features avoid the identification of specified IC curve peaks.
® Bayesian optimization is adapted into LSTM to automatically tune hyper-parameters.

® The effectiveness is comprehensively investigated in two battery aging datasets.

MENG H, GENG M, HAN T. Long short-term memory network with Bayesian optimization for health
prognostics of lithium-ion batteries based on partial incremental capacity analysis. Reliability
Engineering & System Safety, 2023, 236: 109288.

B2 ZFi$#l



() nxmzxs

0 Background
e Methodology

CONTENTS




() nxmzxs




{BR Background IEELXT

Lithium-ion
batteries

System
Electrification * high energy
depsity
* lorgevity

e | cost




th!!lk'g‘

5  BEIJING INSTITUTE OF TECHNOLOGY

1 Introduction

» Electric Vehicle Fire Statistics* » Electric vehicle spontaneous combustion

Battery degradation may lead to battery system breakdown and an increased

probability of equipment failure, even resulting in disasters.

*D1EV. Analysis of electric vehicle fire accidents. http://m.d1ev.com/kol/138145
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 LOWESS is used as a filter to denoise the IC curve
(the red curve shown in Fig. 2(b)). 42

>

(a) Voltage platform#2 (T2, Vz)~
(Around 3.99V) '

——Cyele 10 Interested region

—Cycle 60
Cycle 100
Cycle 150

(c)

o
M

 Partial IC curves are chosen to extract features, and it
Is denoted as the interested region in Fig. 2(c).
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(Around 3.94V) : do fTTz 1dT I <, [ A
voltage interval (AV ), the data of each cycle can be 36 - ==V | Al j/
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—H IC peak #1 z X / i \ Y
. =il Voltage platform #1 = [ : :
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S U , SR,
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o ) ) 35 36 37 38 39 4 41 42 av; AVy
of initial voltage in the ith segment. Voltage/V Voltage/V

*LOWESS (locally weighted scatterplot smoothing)
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Input sequence: x; = [X¢i, Xtis1  *» Xeitn-1] 1. Forget gate

fo = o(Wslh,—1,x.] + bf)
2. Input gate

C; = tanh(W,[h,_1, x,] + b;)
ir = o(Wilhe—1,x.] + b;)
Co=fi* Comq +ip * C,

3. Output gate

o, = o(W,lhi—1, X¢] + b,)

‘ ‘ h, = o, * tanh(C,)
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» Bayesian optimization

*l(g) l(g) fy* ( )d ( ) -1 Lithium-ion batteries Partial I1C curve /)
Yy - “o Py)ay Ay
ElL-(K) = 1- \
y ( ) yl(e) + (1 —y)g(x) X ( l(K) ( V)) / ‘
> BO-LSTM model
T e || A o [P
* Double-layer LSTM model is designed to construct o 4 |
VX Pleen J 2F &
the mapping relationship between His and output. ; 2 p——
v Eox N ot Hl,
« Bayesian optimization is performed over several 3 s
iterations to export the optimal set of hyper- E HI,

parameters to guide the model training. =
) . . Input LST™ Hidden s | Estimated
« Dense layer implements the dimensional e | et | EESWSEY iwe: | N o

transformation to obtain the estimated SOH.

e BiZ Fu#Hi



() nxmzxs




MR Experiment data JF T Kk F

BEIJING INSTITUTE OF TECHNOLOGY

» Case 1: NASA lithium-ion battery dataset

- Batteries: BO005, BO006, BO007, BO018 :':_m ] . :’: & 1 ] ‘ | B
« Rated capacity: 2Ahr 2 sif :;:3 %.'; ’\ o
« Charging and discharging protocols (CCCV-CC): ii:L | o g %’3: N @ %
The battery is charged with a constant current ::0 I — 8(;00_:: 0;0 L Tmm 0
of 1.5A, until the voltage reaches 4.2V s .-\(Q[\ ——— s
The charging process continues with constant W Batery 006
voltage (i.e., 4.2V) until the current drops to 20mA §:: —3:::222(;.
The battery is discharged at a constant current o
of 2A, until the voltage drops to 2.7V, 2.5V, 2.2V, and Mo 40 s(ol 20 160 .
2.5V for BO0O005, B0006, B0007, and BO0018, o

MENG H, GENG M, XING J, et al. A hybrid method for
prognostics of lithium-ion batteries capacity considering
regeneration phenomena. Energy, 2022, 261: 125278.

respectively.
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» Case 2: CALCE lithium-ion battery dataset
- Batteries: CS35, CS36, CS37, CS38

* Rated capacity: 1.1Ahr

« Cathode material: LiCoO,

« Charging and discharging protocols (CCCV-CC):

The battery is charged with a constant current rate of 0.5C until the voltage reached 4.2 V.

Then the battery follows a constant voltage charging process and the charge stage stops when the

current drops to 20 mA.

The batteries are discharged with a constant current rate of 1C until the voltage decreases to 2.7 V.




2R Feature Extraction

The extraction of the peak relies on the
complete IC curve, which is difficult to
obtain in practice.

Vstare @nd V., 4 are selected as 3.85V and 4.15V.

Discretized into 30 equally space samples with
the voltage interval of 0.01V.
* n(0 < n < 30) segment data are randomly

extracted from the discretized samples.
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» Comparison Model
« LSTM: Istm _units , Istm units 2, dense_units, and

Hvper-parameters learning_rate are selected 320, 32, 10, 1e-3, respectively.

* RNN: the same as LSTM.

Istm units 1 (2, 400)
_ * GRU: the same as LSTM.
Istm_units 2 (2, 400)
' : } RMSE = J—Z 5 = )
_ N £aj=q
Adam
Activation function RelLu MAE = Nzi=1IYi - yil
Loss function MSE 1N |5 —y;
MAPEzﬁzizl " |
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» Case 1: SOH estimation results of NASA batteries S O _— S —
09 I —Pl_.uposcd model |4 1B | l'tgxxm\l maodel] |
\N\f\\ G : —
. 085} N wnd 1 : ;
« Compared to other methods in the same battery. N : RN os}
= ¢ =
. . . S \ S 08 :
« LSTM and GRU obtained smoother estimation results and | : - .
0.7+ - ‘ :
were closer to the actual degradation curve. oes| 06
. . 0.6 — - - 0.5 ! . :
« Manual adjustment of the hyper-parameters makes their ’ B L 1 ! W
0.95 T — 0.95 R
. . . . . ! | Actual curve | — Actui] curve
estimation performance on different batteries varies. 0ol © : —radmell]] q) ; —— Proposed mode |
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» Case 1: SOH estimation results of NASA batteries 0.95
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Training | Battery |LSTH 2r9p0sed mogel

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

set NoO.

BOO05 4.49 3.61 4.49 3.68 3.49 4.78 4.69 427 597 243 232 243
BO006 2.50 1.97 2.70 2.91 2.36 3.36 6.86 655 939 193 152 217
BOOO7  3.66 3.56 4.61 3.67 3.52 4.57 5.73 528 697 270 254 3.36
BO018 3.60 3.39 4.76 3.11 2.94 4.03 3.14 262 363 190 160 216
BOO0OS 2.64 2.47 3.54 3.11 2.84 3.90 1.88 1.47 209 127 092 135
BO006  3.69 3.21 4.64 2.96 2.48 3.56 3.71 309 451 153 110 1.59
BOOO7  3.07 2.81 3.76 3.76 3.50 4.66 3.02 263 352 162 134 1.76
B0O018 3.57 3.40 4.76 2.31 2.18 3.05 2.70 228 319 172 159 222
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» Case 2: SOH estimation results of CALCE batteries .

30% training

* Viare and V,, 4 are selected as 3.75V and 4.05V. set

» Prediction curve gradually deviates from the actual

3

curve in the late prediction stage. e

* The proposed method still exhibits better performance in

Cyele

long-term estimation. e
« The estimation accuracy improves with the increasing of M@\ NTF"\
the training set. \\ A
« The battery CS36 of 30% training set displays the
largest errors with RMSE, MAE, and MAPE of 3.33%,
2.53%, and 3.64%, respectively.

iz F i
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BB Prognostic Results and Comparisons STEIRY

Training STy __ or9p0sed moce

RMSE MAPE RMSE MAE MAPE RMSE MAPE RMSE MAE MAPE

set

CS35 5.07 3.50 5.10 4.13 2.98 4.29 4.79 365 518 185 124 1.82
CS36 6.59 5.10 7.44 6.27 5.37 7.44 5.80 496 690 333 253 3.64
CS37 3.99 2.96 4.07 4.25 3.14 4.32 4.83 363 499 202 158 214
CS38 3.12 2.34 3.14 2.28 1.73 2.31 3.53 264 355 113 087 1.15
CS35 4.87 3.43 5.05 4.02 2.86 4.19 5.56 356 537 167 112 1.65
CS36 6.94 5.53 8.04 5.93 4.73 6.88 6.23 491 715 320 254 3.68
CS37 3.93 2.96 4.12 3.15 2.43 3.36 4.62 333 465 164 131 1.78

CS38 2.70 1.99 2.70 1.90 1.44 1.95 3.41 258 350 073 056 0.74
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%8 Influence analysis of partial segment lengths & tsmxx¥

» n=5n=10,n=15, and n = 20 correspond to voltage : s i T A: s - E‘i
ranges of 0.05, 0.1, 0.15, and 0.2 V. gs : ¥ —— éz | Lo _
» RMSE shows a relatively obvious increase when the - o 2 i
segment length n = 20, .', 'l || II Iiff ; JI “ “
» RMSE of the proposed method is almost less than 3%. s (:m N micd s (;;N: - o Ljd
» We recommend choosing the segment length n = 10 ,4 ] ig A‘ L :g
£3 s
for battery SOH estimation. %22 - gz
'I|1I| II il IIII||
"TLstM  GRU RN .!!md " TLSTM  GRU  RNN  Proposed
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A\

Segment length n = 10 was selected;

¥ [(a) 9385395 () 5355395
» B0005, BO006, and BO0OO7 tend to have larger RMSE : : |20 12 | 400
at the segment with large voltage (4.05V-4.15V). s 8 5 siosais| I1 glz T et
» B0018 achieves a higher error level at the segment 25 | [ - -'_‘_iT B 2:
with small voltage (3.85V-3.95V). f ]I I |Il |Jl 2
> Similar IC curves pose a challenge to model training  ° tsty  GRU RN Proposes LSIM  GRU  RNN  Proposed
and cause a decrease in estimation performance. :, ©) b TY 3%853.8 , [@ §§§j§§
> When the segment is moved to both ends of the IC S: 2405415 S: 4.00-4.10
curve, RMSE tends to increase. gs %:
» We suggest that voltage segments extracted from the f f [
0 0

IC curve around 4V may improve SOH estimation

LSTM GRU RNN Proposed LSTM GRU RNN Proposed

accuracy.
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Z/W/BR Discussions about Bayesian optimization

» B0018, Voltage range: 3.85V-3.95V, Segment length: n = 10.

» The optimal hyper-parameter configuration is dense units=15, learning rate=0.045,
Istm_units_1=237, and Istm_units_2=18.

» The optimized hyper-space occupies a small area in the lower-middle part of the search

space, which is difficult to find by random search, grid search, or expertise.

0.02 0.04 0.06 0.08 50 100 150 200 250 300 350
learning_rate Istm_units_1
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« The proposal of this method enables feature selection to be obtained from the interested
voltage region of the IC curve, hence avoiding the identification of specific features, such
as IC peaks.

« Bayesian optimization is incorporated into LSTM to achieve the automatic selection of
optimal parameters.

« According to prognostic results on NASA batteries and CALCE batteries, the proposed
LSTM model outperforms the other neural network models, like RNN, LSTM, and GRU.

« Extending segment length or extracting the mid-charging data can improve the

accuracy of battery prognostics.
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Future work € rnimzxy

When the training and test have different voltage range, there are several approaches to solve

this problem.

1.

Use transfer learning: A pre-trained model that has been trained on a different voltage range
Is fine-tuned on the new data.
Use domain adaptation techniques: This involves using a small amount of labeled data from

the new voltage range to adapt the model to the new domain.

Collect new data.
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Highlight TS L KF

® \We proposed an integrated methodology to conduct risk assessment and prediction.

® \We utilized FAHP to obtain weights of experts and fuzzy number to calculate failure
probabilities.

® \We built a DBN to investigate the evolution mechanism of LIB thermal runaway risk.

® Our results show that ML methods perform well in the prediction of LIB thermal runaway
risk.

MENG H, YANG Q, ZIO E, et al. An integrated methodology for dynamic risk prediction of thermal
runaway in lithium-ion batteries. Process Safety and Environmental Protection, 2023, 171: 385-95.

B2 ZFi$#l
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High risk

Strong demand

In the U.S. EV sales should grow to reach|National Fire and Rescue Administration: the
approximately 29.5% of all new car sales in 2030 | overall fire risk of EV is higher than that of
from an expect roughly 3.4% in 2021. traditional vehicles powered by fossil fuel.

GLOBAL BEV & PHEV SALES ('000s) EV voLumes

mm Battery Electric Vehicles

m= Plug-In Hybrids fars
-=E\ Market Share

' 1,3%

02% 04 8% O09% 2082 2276
1262
= o g 1 [

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Growth +55% +70%  +46%  +59% +65% «8% +43%  +109%
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Battery thermal runaway is the main cause of electric vehicle fires

e Heat accumulation inside
« The rate of heat accumulation exceeds -8

~
ﬂ ! ! 2l

o

the external heat dissipation rate

p

Short Circuit

« PBattery temperature rapidly increases

Internal

-

 |Internal chemical reaction

 Release alarge amount of heat and gas Om.

« Smoke, fire, or explosion -
E

Electrical
Abuse

" Explosion
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Methodology

Evolution |
mechanism of Collecting information
thermal runaway

Determining top events

v Building FT structure

Fault Tree

Indentifying basic events Analysis
Dynamic evaluation i tig it

of thermal runaway Mapping FT to DBN

\/ Setting dynamic nodes
S

Probability prediction Expert knowledge
of thermal runaway

Dynamic Bayesian mg Prepossessing data

SVR Prediction
Network

il

Training model
Checking score |

o

Statistical results
» Prior Knowledge

| FAHP/FST



LIB thermal
runaway

Methodology——FT TELXT

' - Binary states symbol

« Static analysis only X1 Emergency response failure
1 :
oo | X2 Extrusion
X3 Puncture
[ [ ] X4 Immersion
mechanical | 340 recapilll fl oo M4 o C
X5 Collision
X6 Short circuit and aging of
| L internal components
X7 Overcharge

Exte 1]
snoncwoun | M5

X8 Overdischarge

@ @ X9 External thermal shock
X10 Local overheating
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i >>> >>>

Directed acyclic graph (DAG)

St : : :

: ‘ ‘ t
percentage?d |- percentaged).  [C  percentagel’ percentage100 ‘ I I ' . 2 ‘
normal ww.lu'xinate Hgnormal w.. ultimate ifdnormal w«lukimate Ifenormal W...|ultmate if | ; : T
- = = = = - = = Wit y W33 W22 | X ' v

0990479 0167 0993448,  O.118: 0906413 0062 (0999375 0 | ' |
000520, 0.833 0000551 04882 0000586 0938 0000625 ] > - - * = >
i WMo hesiion v A | Vi ) Y2 Y1 Y3 Y2

Systematic risk analysis  Conditional Probability Table (CPT) Adding dynamic nodes

e MiZ FiuHe
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LIB thermal
runaway
Abnormal
heating-up
Emergency w
response failure n External
Trigger factor thermal

shock

@ Local
SOC (state of charge)
@ Shij;:‘ff‘rj'u “ Full of charge — SOC=1
m @ Discharge completely— SOC=0

Short circuit
and aging of
internal
components

' "o
IIIII'—o
'OQ
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LIB thermal
runaway
Abnormal
heating-up
Emergency
response failure
Trigger factor

oé;%:

Short circuit
and aging of
internal
components

Local

overheating

SOH (state of health)

SoH = 100%
P gp—
=2 - > -

n External
thermal
shock

A —

Ageing

Internal
short circuit

SOH:Qmax/Cr
Qmax

C:—— the rated capacity

li}'l"l:h\.

S0H = 50

- }

Ageing

OI’"I.'II

the maximum battery charge

i FiHkl
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LIB thermal
runaway
Abnormal
heating-up
Emergency w
response failure n
Trigger factor
® @ Local
overheating

Internal
@ @ short circuit

External
thermal
shock

Short circuit
and aging of
internal
components

Statistic data

C PT - Data set

Expert
knowledge

!

Linguistic variables Triangular fuzzy numbers
Equally important (E) (1L, 1,1

Weakly more important (W) (1,32,2)

Moderately more Important (M) (32,2, 512)

Strongly more important (V) (2,52, 3)

Extremely more important (S) (5/2,3,712)
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Fuzzy analytic hierarchy process (FAHP)

Fuzzy set theory (FST)

Education level Major Working years \\m’.kmg .
performance
TAY E I'W
Education level E E / /W
w W 1w
A \Y Vv
Major E E E /W
/W E W
E VAY E
Working vears 1/W E E I™M
/W E (A%
: M 1AY E
Working M W M E
performance M w v
Elements Education level Major Wixemg Wm};mg Total
- years performance
X1 Bachelor degree Firefighting >5 Good
and above related 35
Score 10 8 10 7
Bachelor degree Firefighting e 4
a2 and above related = Good 35
Score 10 8 10 7
A Bachelor degree Firefighting _, =
%3 and above related 9 Good 31
Score 10 8 6 7

Number Nodes and explanation Expert judgment

1 Overcharge: EV fire occurs when overcharge happening. M/FH/FH

2 Over-discharge: Senious over-discharge happens M/FH/L

3 Collision: EV fire occurs when collision happening VH/M/H

4 Short circuit and aging of internal components: EV fire occurs  H/FH/FL
when there 1s short circuit and aging components inside

5 Immersion: EV fire occurs when immersion happening, L/M/M

6 External thermal shock: EV fire occurs when there is burning  VH/M/VH
1gniter around

7 Emergency response failure: Before the thermal runaway of LIB,  VH/H/H
there are certain signs but not be detected in time or not be tackled
effectively

8 Puncture: LIB 1s punctured when the EV suffers collision VH/H/H

4 Extrusion: LIB is extruded when the EV suffers collision FH/H/H

10 Local overheating: The local temperature is too high caused by FL/H/H

loose connection joints or poor heat dissipation inside the battery

pack

Expert weight

Expert judgement
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DBN model

Thermal runaway probability

2.50E-04

2.00E-04

1.50€E-04

1.00E-04

charge/
discharge cycle

0.00E+00

0 200 400 600 800 nqgglper 1200

DBN can describe the evolution process of thermal runaway.
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Time
Method :
consuming(s)
Support vector regression (SVR) 0.9999 655.2
Quadratic regression (QR) 0.8781 0.290
Recurrent neural network (RNN) 0.9646 68.52
Long short-term memory (LSTM)  0.9994 143.4
Gated recurrent unit (GRU) 0.9784 86.68
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Conclusion T xF

Innovation

« AFT-DBN-SVR methodology is proposed for risk assessment and prediction.

 FAHP is used to obtain weights of experts and FST converts fuzzy number to failure probability.
 AFT is built and then mapped to a DBN for investigating the evolution of LIB thermal runaway

risk.

» Support vector regression performs well in the prediction of LIB thermal runaway risk.

* More basic events are expected to expand the FT structure.

 |If sufficient data is available, adding other dynamic nodes (e.g., short circuit rate) will make the

model more useful in engineering applications.
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