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Problem statement

Framework of Safety Instrumented Systems in low demand rates (Rausand 2014)

Multi unit system

Periodic inspections
Proof tests every τ
Partial tests every ∆

Condition monitoring
Some units are continuously monitored
Some are inspected
Some are not monitored

Maintenance
Renewal every τ
Other interventions possible every ∆
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Problem statement

Current performance indicator

Average availability between 2 proof tests
Safety Integrity Level

Current more common assumptions for analytical formula

Exponential lifetime law for all the units
Perfect repair if failure detected at partial test
No action if no failure detected
No time to repair
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Problem statement

�estions

Should we consider other lifetime laws?

Should we consider degraded states?

Should we consider imperfect maintenance actions, preventive maintenance,
optimisation?

Should we consider the negative e�ect of tests (damage) of their performances (non
detection, false alarm)?

Should we consider time to repair?
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Generic structure
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Figure: System reliability block diagram of a SIS with n channels

�ere are n channels and their state is denoted η = (η1, . . . ,ηn) with ηi = 1 if channel i is in
the functioning state and ηi = 0 if it is failed. We noteM the set of the functioning states for
the redundant part of the system.
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Some notations

We use notation of (Jin & Rausand 2014).

Each channel i (1 ≤ i ≤ n) can have two types of failures that can be modelled by two series
units (with indexes a and b respectively).

�ese two units have a survival function noted Ra(t) and Rb(t).

�e series unit has a constant failure rate λc .

All the time to failure are supposed to be independent.

Partial inspections (partial tests) are performed every ∆ unit of time, at times t1, t2, ..., tm−1
with tk = k∆ and τ = m∆.
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What we can do

�e time to repair unit a, b, c can be taken into account as a constant value ma,mb,mc . Here
only mc , 0

During these partial tests, failure modes a can be detected with some imperfectness (unit a
degraded due to the testing procedure or non detection)

A failure of unit c is supposed to be immediately detected due to embedded self-diagnosis
functions.

Di�erent kind of maintenance actions can then be planned. �ey can correspond to
systematic complete renewal, renewal in case of failure or partial renewal.

Availability is calculated between each proof test before average calculation.
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Other way to say the same thing

What is the RUL of the SIS until the next partial test? Not so easy to calculate.

What is the quality of the diagnosis and its impact on the system (destructive control) at each
partial test? What it the impact of this quality on the SIS performance? Is condition
monitoring meaningful?

What is the optimal inspection period?
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Modelling

What we can calculate is the availability of the SIS at each time until the next partial test and
the average availability in this interval

A(t) = Ac(t)
∑
η∈M

n∏
i=1
(Ai(t))ηi (1 − Ai(t))1−ηi (1)

�e problem now is to calculate the availability Ai(t) for each channel. If t ∈ [tk−1, tk[ for

k = 1, 2, ...,m:
Ai(t) = Rb(t) Aa(t) (2)

where Aa(t) is the availability of indexed unit a at time t. It depends on degradation
modelling, and maintenance policy.
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Modelling

One model based on virtual age

One model based on degradation states
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Virtual Age

If the unit a is functioning at time tk and its age is d∆, then a�er the partial maintenance, its
age is f (d)∆. �e function f is a decreasing/increasing function de�ned from [0, 1, . . . ,m − 1]
to [0, 1, . . . ,m − 1]. If it is failed, it is supposed to be renewed.

Two extreme cases exist:
if f (d) = d, it means that if the unit is functioning at the partial test, then nothing is done
if f (d) = 0 for any d, it means that the part of the channel corresponding to unit a is
completely renewed
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Virtual Age

To calculate Aa(t) we need to describe the evolution of the age of unit a. We introduce the
Markov chain Xk which takes values between 0 and m − 1 such that Xk∆ is the age of the unit
at time tk = k∆ (0 ≤ k ≤ m − 1). �en X0 = 0 and for 0 ≤ k ≤ m − 1:

P(Xk = f (d + 1)/Xk−1 = d) = Ra((d + 1)∆)
Ra(d∆)

(3)

P(Xk = 0/Xk−1 = d) = 1 − Ra((d + 1)∆)
Ra(d∆)

(4)

If we note M the transition matrix of this Markov chain, we obtain the column vector Pk of
components (P(Xk = d), 0 ≤ d ≤ m − 1) with : Pk = MkP0. �en if t ∈ [tk, tk+1[
(0 ≤ k ≤ m − 1), we can write:

Aa(t) =
m−1∑
d=0

Ra(t − tk + d∆)
Ra(d∆)

P(Xk = d) (5)

In case of the system is renewed at each partial test, we get P(Xk = 0) = 1 and
Aa(t) = Ra(t − tk).
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Virtual Age

If N (η) is the number of channels which are functioning when the system is in the functioning
state η, then the availability is:

A(t) = Ac(t)
∑
η∈M

(Rb(t)Aa(t))N (η) (1 − Rb(t)Aa(t))n−N (η)

= Ac(t)
∑
η∈M

n∑
j=N (η)

(−1)j−N (η)Cj−N (η)
n−N (η) (Rb(t)Aa(t))j

(6)

We can get an expression for the average availability over [0,τ [ per unit of time (commonly
named Probability of Failure on Demand - PFD):

Ãτ =
1
τ

∫ τ

0
A(s)ds

=
e−λcmc

τ

m∑
i=1

∑
η∈M

n∑
j=N (η)

(−1)j−N (η)Cj−N (η)
n−N (η)

∫ ti

ti−1
(Rb(s)Aa(s))j ds

(7)
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Exponential case

As a reference case, we can look at the case when the lifetime laws of units a and b are
modelled by exponential laws with parameters λa and λb . �en, all the maintenance policies
are equivalent to complete renewal at each partial test (systematic renewal). We have
Ra(t) = exp(−λat) and Rb(t) = exp(−λbt).

�e analytical expression of the average availability is:

Ãτ =
e−λcmc

τ

∑
η∈M

n∑
j=N (η)

(−1)j−N (η)Cj−N (η)
n−N (η)

1
j(λa + λb)

e−jλbm∆ − 1
e−jλb∆ − 1

(
e−j(λa+λb)∆ − 1

)
For example if the system is made of two parallel channels, we get if t ∈ [tk, tk+1[:

A(t) = e−λcmc
(
(A1(t))2 + 2A1(t)(1 − A1(t))

)
= e−λcmc (2A1(t) − A2

1(t)) (8)

= e−λcmc (2e−λbt−λa(t−tk) − e−2λbt−2λa(t−tk))

and

Ãτ = 2
e−λcmc

m∆

1 − e−mλb∆

1 − e−λb∆
1 − e−(λa+λb)∆

λa + λb
− e−λcmc

m∆

1 − e−2mλb∆

1 − e−2λb∆
1 − e−2(λa+λb)∆

2(λa + λb)
(9)
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Weibull lifetime laws with general renewals

Lifetime of units a and b are Weibull laws with parameters λa, ka and λb , kb .
�e matrix M equals for 0 ≤ d ≤ m − 2 :

M(d, f (d + 1)) = exp
(
−(λa∆)ka ((d + 1)ka − dka )

)
M(d, 0) = 1 −M(d, f (d + 1)) (10)

and M(m − 1, 0) = 1.
�en for t ∈ [tk+1, tk[ (0 ≤ k ≤ m − 1),

Aa(t) =
m−1∑
d=0

e−(λa(t−tk+d∆))
ka

e−(λa(d∆))ka
(MkP0)(d + 1, 1) (11)

and the system availability is:

A(t) = e−λcmc
∑
η∈M

(
e−(λbt)

kbAa(t)
)N (η) (

1 − e−(λbt)
kbAa(t)

)n−N (η)
(12)

= e−λcmc
∑
η∈M

n∑
j=N (η)

(−1)j−N (η) Cj−N (η)
n−N (η)

(
e−(λbt)

kbAa(t)
) j

(13)
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Weibull lifetime laws with general renewals

In case of two channels, we get:

A(t) = e−λcmc

(
2e−(λbt)

kbAa(t)
(
1 − e−(λbt)

kbAa(t)
)
+

(
e−(λbt)

kbAa(t)
)2)

(14)

�e average availability over [0,τ [ equals:

1
τ

∫ τ

0
A(s) ds =

e−λcmc

τ

m∑
i=1

∑
η∈M

n∑
j=N (η)

(−1)j−N (η) Cj−N (η)
n−N (η)

∫ ti

ti−1

(
e−(λbs)

kbAa(s)
) j
ds

Anne Barros, Nicolas Lefebvre ( NTNU / DNV-GL) February 10, 2017 16 / 36



References

Numerical results

Numerical results are limited for this paper to two channels in parallel.

For reminder:
a failure of component c is immediately detected and followed by a corrective
maintenance.
failures of component b are not detected.
a�er one inspection (partial test), component a is instantaneously renewed if it is failed
at the inspection time
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Numerical results

In our modelling framework, the matrix M allows the modelling of di�erent preventive
maintenance policies for unit a. It can be decided to put unit a back to any age d∆ lower than
the current one. Numerical results focus here on a special case: when unit a is found to be
working at one inspection, nothing is done and when unit a is found to be failed at one
inspection, it is replaced by a new one. �is is a maintenance policy currently applied to many
SIS in low demand mode.

We focus here on a discussion about Weibull law versus exponential one.
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Numerical results

We consider the framing condition given by data bases as OREDA (SINTEF, NTNU, &
DNV-GL 2015). �is data basis gives for each unit of the SIS an estimation of the mean number
of failures per unit of time. Usually, this mean is used by ��ing an exponential lifetime
distribution. We propose here to �t several possible Weibull distributions and then to use our
virtual age model to calculate the system availability. �e objective is to show that starting
with the same inputs but with di�erent assumptions for the lifetime model, we can obtain
signi�cant variations for the availability and the average availability between two proof tests.
We focus on component a because it is the one that can be maintained at test/inspection times.
Hence, the common assumption of exponential distribution can be problematic because:

if we want to increase the inspection periods, we should be able to push the unit to be
out of the zone of ”constant failure rate” and to evaluate the impact of an increasing
failure rate,
it can be unrealistic to assume that the tests and renewals are always perfect and make
the unit systematically back to an as good as new state.
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Numerical results

With exponential law, the average value of component a is µref = 1/λa and the standard
deviation is σref = 1/λa. If we consider that the component a follows a Weibull law with
parameters (λa, ka) and it has the same mean as the exponential one, then the parameters λa
and ka have to be tuned in such a way that the resulting µref is kept equal to the exponential
case and the standard deviation is equal to K σref where the coe�cient K can take the
following values [0.01, 0.1, 0.25, 0.5, 1, 1.5, 2]. �e resulting distributions are represented
through histograms.
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Numerical results

Illustrative set of parameters: the total renewal and inspection periods are respectively:
τ = 10000,∆ = 10000/4, m = 4. Components a, b and c follow exponential laws with
parameters λa = 1/2700, λb = 1/20000, λc = 1/5000. �e duration of the corrective
maintenance of component c is mc = 8.
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Numerical results
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Numerical results

Table: Illustrative set of parameters

K λa ka 1 − Ã
0.01 3.7203e-04 127.5302 4.8499e-01
0.10 3.8631e-04 12.1534 2.4290e-01
0.25 4.0563e-04 4.5422 2.3790e-01
0.50 4.1817e-04 2.1013 2.7843e-01
1.00 3.7037e-04 1.0000 2.6327e-01
1.50 2.8638e-04 0.6848 2.2047e-01
2.00 2.1306e-04 0.5427 1.9138e-01
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Numerical results

Realistic set of parameters: We consider a shutdown valve. Realistic input parameters
given are: τ = 8760,∆ = 8760/4,m = 4, λa = 0.52e − 6, λb = 0.28e − 6, λc = 6e − 6,mc = 8 (Jin
& Rausand 2014), (Rausand 2014), (Habrekke, Hauge, & Onshus 2013).
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Figure: Histogrammes obtained with the same MTTF but di�erent standard deviations for unit a
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Numerical results
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Figure: Availability for each partial test interval
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Numerical results

We can notice that when K increases, the number of infant failure increases and this impacts
accordingly the availability. On the opposite when K decreases, we can expect a reduction of
the spreading of the failure dates around the average value which is in this case upper than
the renewal period. �erefore, component a does not fail anymore and we obtain mostly the
curve associated to the failures rates of components b and c. In Table 2, we can observe that
the average unavailability 1 − Ã is constant for the smaller values of coe�cient K . In these
cases, there is almost no failure of the component a on the period [0,τ [ therefore, the
availability is ”constant” and depend only on component b and c. �en, the availability
decreases when the value of coe�cient K increase: the probability of failure of the component
a increases on the considered period [0,τ [ since the standard deviation of the distribution of
the time to failure increases for a �xed average value.
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Numerical results

K λa ka 1 − Ã
0.01 5.2233e-07 127.5302 5.0000e-05
0.10 5.4238e-07 12.1534 5.0000e-05
0.25 5.6951e-07 4.5422 5.0000e-05
0.50 5.8711e-07 2.1013 5.0006e-05
1.00 5.2000e-07 1.0000 5.1938e-05
1.50 4.0208e-07 0.6848 6.7778e-05
2.00 2.9913e-07 0.5427 1.1606e-04

Table: Average unavailability for di�erent values of the standard deviation
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Numerical results

�e change of assumption for the lifetime law can a�ect the Safety Integrity Level (SIL) in
some extreme cases. According to the IEC 61508 standard (?), a SIS has a SIL 4 if its mean
unavailability per unit of time is in [10−5, 10−4]. Regarding Figure 4 and Table 2, it is clear that
the SIL of our realistic system can be a�ected by the lifetime assumption. �en from a safety
point of view, the exponential law can be reasonable or not. It depends on the standard
deviation among the failure dates and also on the period inspections. Here we can see that
only a very high standard deviation can in�uence the SIL if it is inspected every 2500 hours.
We study now the impact of the inspection periods on the average unavailability for di�erent
values of K .
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Numerical results

Figure: Unavailability according to the number of partial test per year

τ = 8760h,MTTFa = 1923076h,MTTFb = 3571428h,MTTFc = 166666h,mc = 8h
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Numerical results

When the number of partial test is high, the system unavailability is weakly impacted by
larger standard deviation of the time to failure. �e impact is much more important when the
number of partial tests is lower.

Discussion about OREDA
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Conclusion

Further work will be devoted to:
investigation for other realistic data sets and impact on the Safety Integrity Level,
numerical analysis for intermediate cases when the age of unit a can be reduced or
increased by partial repair at inspection/test date,
use of more advanced framing condition for the data set. We expect at least to have the
number of failures for each interval between to partial tests. Given that no preventive
actions are currently done on working units, it is possible to capture in such data set
some degradation trend and for example some information about the Weibull parameters.

Anne Barros, Nicolas Lefebvre ( NTNU / DNV-GL) February 10, 2017 31 / 36



References

Modelling

One model based on virtual age

One model based on degradation states (Generalised Markov Process)
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Generalised Markov Process

�e evolution of a type a unit between two maintenance interventions is modelled by a
discrete states degradation process and the transition rates λa,k from state k to state k + 1,
(k = 0, 1, . . . ,K − 1) are given by the following transition matrix:

A =

©«

−λa,0 λa,0 0 . . . 0 0
0 −λa,1 λa,1 . . . 0 0
0 0 −λa,2 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . λa,K−2 0
0 0 0 . . . −λa,K−1 λa,K−1
0 0 0 . . . 0 0

ª®®®®®®®®®¬
We are now looking at the system performance within the renewal time interval [0,τ [.

Anne Barros, Nicolas Lefebvre ( NTNU / DNV-GL) February 10, 2017 33 / 36



References

Generalised Markov Process

During one inspection, units a can be renewed systematically, renewed if they are failed, or
partially renewed.

In order to model this, we de�ne a matrix M such that if the unit is in state k before the
maintenance, it will be in state m a�er the maintenance with the probability Mk,m

(
K∑

m=0
Mk,m = 1).

If unit a is systematically renewed, then for any k Mk,0 = 1 andMk,m = 0 for m , 0. If the unit
is renewed only when a failure occurs, then MK,0 = 1 and Mk,k = 1 for k , K . For a partial
maintenance, all the cases can be considered.
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Generalised Markov Process

In order to calculate Aa(t), we describe the evolution of a type a unit.

If t ∈ [tk, tk+1[, the law µt of the unit state is:

µt = µ0
(
eτAM

)k
e(t−tk)A

and
Aa(t) = 1 − µt (K) = 1 − µ0

(
eτAM

)k
e(t−tk)A(K)
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Generalised Markov Process
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