

Finite-state automata modeling pattern of systems-theoretic process analysis results RAMS Seminar Date: Thursday 18.03.2021

By Nanda Anugrah Zikrullah

Outline

- 1. Introduction
- 2. Study case
- 3. Discussion

Introduction

From previous work

Integration concept

Systems-Theoretic Process Analysis

STPA – Generated requirements

Example of unsafe control actions (UCA):
 MCS provides aut. command pump shutdown to PSD node when
 Controller UCA type Control action Controlled process
 scrubber level status is normal and the pump status is running / unknown [LSc093-103]
 Process model Loss scenario
 Example of controller constraints (CC):
 MCS must not provide aut. command pump shutdown to PSD node when
 Controller CC keyword Control action Controlled process
 scrubber level status is lowlow and the pump status is running / unknown [LSc093-103]
 Process model Loss scenario

Unsafe control actions (Hazards) & Safety requirements

NTNU

Systems-Theoretic Process Analysis

- Hazard analysis technique developed by Leveson
- Based on systems theory and systems thinking
- Utilize a control structure model

Why STPA?

NTNU

Problem formulation and available contributions

SEA

- How can STPA results be used in a decisionmaking context?
 - Zikrullah et al. (2021) Generate high-level safety requirements
 - Kim et al.(2020) Risk-based prioritization of safety measures
 - Zhang et al.(2019) Incorporating results from STPA into availability calculation
 - Our contribution (under progress) Incorporating results from STPA to support safety demonstration

Finite state automata (FSA)

- An approach to model the system as a set of finite states
- Used to quantify system availability or mean time to failures
- Example techniques:
 - Markovian
 - Petri nets
 - Textual-based formal language (e.g., Altarica 3.0)

, manea ere,
class RepairableComp
Boolean vsWorking (init = true);
parameter Real pLambda = 2.3e-4;
parameter Real pMu = 8.3e-2;
<pre>event evFailure (delay = exponential(pLambda));</pre>
<pre>event evRepair (delay = exponential(pMu));</pre>
transition
evFailure: vsWorking -> {vsWorking := false; pLambda := pLambda * 0.8;}
evRepair: not vsWorking -> vsWorking := true;
Boolean input, output (reset = false);
assertion
output := if vsWorking then true else false;
end
block System
RepairableComp Cl (pLambda = 2.3e-4, pMu = 8.3e-2);
RepairableComp C2 (pLambda = 1.7e-4, pMu = 4.2e-2);
observer Boolean P3 = Cl.output and C2.output;
observer Boolean P2 = not Cl.output and C2.output;
observer Boolean P1 = Cl.output and not C2.output;
observer Boolean P0 = not Cl.output and not C2.output;
end

NTNU

STPA-FSA modeling approach

NTNU

Examples of STPA result

UCA example:

 UCA001. Controller xxx does not provide control action xxx to the controlled process during the condition xxx [H1]

NTNU

UCA classification

Classification of UCAs:

1.) not providing the control action during a specific condition,

- 2.) providing unnecessary control action (leading to hazard),
- 3.) providing a potentially safe control action but too early, too late, or in the wrong order,

4.) the (continuous) control action lasts too long or is stopped too soon.

(Generic) Controlled process model

S≩4.0

NTNU

Examples of STPA result

Loss scenario example:

• LSc001. Coupling of *hardware failure* in component xxx and *systematic failure* in component xxx results into UCA001.

Loss scenario classsification

NTNU

(Generic) Control element model for State single failure type

- I. Single failure
 - 1. Random hardware failure (RHF)
 - a) Detected
 - b) Undetected
 - 2. Systematic failure
 - a) Software
 - i. Multiple occurrence. Reappearance follows a stochastic behavior
 - ii. Single occurrence. Can be removed by system design (cannot be modelled)
 - b) Human (the occurrence follows a stochastic behavior)

Control element model for multiple failure type

- I. Multiple failure
 - 1. Common cause failure _ _ _ _ _ _
 - 2. Cascading failure -> Utilize combination of single failure type model

S≩4.0

Study case

Subsea compression system schematic

19

Example of STPA results

• UCA22. SS part of the logic solver must provide Shutdown equipment command to SS actuator when The gas temperature is very high and the compressor is running [H2]

• Loss scenarios list:

LSID	Scenario	Treatment
LS104	Erroneous information from the SS sensor results in inaccurate information processed at the controller	2b
LS105	Component failure of the SS actuator results in system inability to process the control command	2b
LS106	Component failure of the SS sensor results in inaccurate information processed at the controller	2b
LS107	Problem in the transmitted information (e.g., erroneous, delay) results in inability to transfer information/command in the control loop	2a
LS108	Component failure of the communication transmission system results in inability to transfer information/command in the control loop	2b
LS109	Algorithm flaw on the SS part of the logic solver is a design problem that cause unintended functionality at the controller	1
LS110	Component failure of the PCS/SS logic solver (shared) results in incorrect administration of control action	2b
LS111	Unintended overwrite from PCS to SS in the logic solver is a design problem that cause unintended functionality at the controller	2a/2b*
LS112	Resource sharing problem between PCS and SS in the logic solver is a design problem that cause unintended functionality at the controller	1

* Depending on data availability

Loss scenario classsification

NTNU

S#4.0

NTNU

Scenario's modeling

UCA example:

 UCA22. SS part of the logic solver must provide Shutdown equipment command to SS actuator when The gas temperature is very high and the compressor is running [H2]

Loss scenario example:

- LS110. Component failure of the PCS/SS logic solver (shared) results in incorrect administration of control action
- LS111. Unintended overwrite from PCS to SS in the logic solver is a design problem that cause unintended functionality at the controller

Source code for implementation

Demand.alt 🗵

112

```
59 domain SystemState {Normal, Context, Safe, Hazardous, Loss}
 60 domain HardwareState {Working, Undetected, Detected, Repair}
61 domain SystematicState {Working, Systematic, Revealed, Repair}
 62 domain ElementState {Normal, Demand}
 63 domain HumanState (Normal, Systematic, Learning)
64 domain Phase {Operation, Inspection}
65
 66 Class CompWRHF
 67
        HardwareState H State (init = Working);
 68
        ElementState C State (init = Normal);
69
        Phase Crew Phase (init = Operation);
        parameter Real pLambdaU = 1e-6;
71
        parameter Real pLambdaD = 1e-4;
 72
        parameter Real pMu = 1.25e-1;
73
        parameter Integer pInspectionPeriod = 4380;
74
        parameter Integer pInspectionDuration = 0.0;
75
        event evUndetectedFailure (delay = exponential(pLambdaU));
76
        event evDetectedFailure (delay = exponential(pLambdaD));
 77
        event evUndDemand, evDetDemand (delay = 0, hidden = true);
 78
        event evPeriodicInsp (delay = pInspectionPeriod);
79
        event evCompleteInsp (delay = pInspectionDuration);
80
        event evRepairStart (delay = 0);
81
        event evRepairEnd (delay = exponential(pMu));
82
        transition
83
            evUndetectedFailure: H State == Working and Crew Phase == Operation -> H State := Undetected;
84
            evDetectedFailure:
                                   H State == Working and Crew Phase == Operation -> H State := Detected;
 85
            evUndDemand:
                                    H State == Undetected -> {H State:= Detected; C State := Demand;}
 86
            evDetDemand:
                                    H State == Detected -> C State := Demand:
 87
                                    Crew Phase == Operation -> Crew Phase := Inspection;
            evPeriodicInsp:
 88
            evCompleteInsp:
                                    Crew Phase == Inspection
89
                                -> {Crew Phase := Operation ; if H State == Undetected then H State := Detected;}
 90
            evRepairStart:
                                    Crew Phase == Operation and (H State == Detected) -> H State := Repair;
91
                                    Crew Phase == Operation and H State == Repair
            evRepairEnd:
92
                                -> {H State := Working; C State := Normal;}
93
        Boolean input, output (reset = false);
 94
        assertion
 95
            output := if H State == Working then true else false;
96
     end
97
98
     class Human
99
        HumanState Hu State (init = Normal);
        ElementState C State (init = Normal);
101
        Integer SystematicFailureCounter (init = 0);
102
        parameter Real pLearningRate = 0.8;
103
        parameter Real pLambdaS = le-2;
104
        parameter Real pMu = 1.25e-1;
105
        event evSystematicFailure1 (delay = exponential(pLambdaS));
106
        event evSystematicFailure2 (delay = exponential(pLambdaS * pLearningRate));
107
        event evHumDemand (delay = 0, hidden = true);
108
        event evLearningStart (delay = 0);
109
        event evLearningEnd (delay = exponential(pMu));
        transition
            evSystematicFailure1: Hu State == Normal and SystematicFailureCounter == 0
```

- North State - North and State - State- State - State - State - State - State - State - State

-> {Hu State := Systematic; SystematicFailureCounter := SystematicFailureCounter + 1;}

• Altarica 3.0

 Library module for controlled process model and control element models

Results (Stepwise simulation)

SELO

Parameters for simulation (from PDS (2021) and experts judgment

Parameter	Value	Probability distribution
SS Sensor failure rate	DU = 2e-7 /hour	Exponential
SS Sensor erratic reading rate	DD = 4e-7 / hour	Exponential
SS Actuator failure rate	DU = 5e-7 /hour	Exponential
Communication equipment failure rate	DD = 1e-8 /hour (assumption, need discussion)	Exponential
PCS/SS logic solver failure rate	DU = 1.1e-6 /hour; DD = 1.5e-6 /hour	Exponential Exponential
SS software systematic fault introduction rate	Sys= 1e-8 /hour (assumption, need discussion)	Exponential
Repair time	8 hour	Exponential
Repair delay	8 hour	Exponential
Inspection period	once every 6 months	Dirac
Inspection duration	24 hour	Exponential
Frequency of context change	once per year	Exponential
System restoration time	8 hour	Exponential
Simulation time	87,600 hour	n/a
Number of simulations	500,000	n/a

Results (Stochastic simulation)

meta-data									1		
incla data	number-of-runs	500000			-						
	seed	12345			-						
	mission-time	87600.0			-						
	model-name	System									
	file-name	C:/Users/	/nandaa/Google Driv	e/RAMS/PHD/Research/A	Itarica/J	untao/Syste	mets				
	start-time	Tue Feb	16 12:48:19 2021		1	1					
	end-time	Tue Feb	16 12:48:22 2021								
	steps min	1									
	steps mean	22.6083									
	steps max	87									
	tool version	1.0.0									
	compiler version	1.0.0									
observer	SCA22	type	Boolean								ΙΙΓΔχχχ
	indicator	SCA1	type	number-of-occurrences	value	TRUE					
		date	87600.0								froquon
			sample-size	500000	1						nequein
			mean	2.03938							
			standard-deviation	1.49259							
			confidence-interval	0.95	size	0.0041372	low	2.03524	high	2.04352	
observer	UCA22	type	Boolean								
	indicator	UCA1	type	number-of-occurrences	value	TRUE					
		date	87600.0								
			sample-size	500000	1						
			mean	0.474194							
			standard-deviation	0.620325							
			confidence-interval	0.95	size	0.0017194	low	0.472475	high	0.475913	
observer	Ufailure	type	Integer								
	indicator	UFailure	type	value							
		date	87600.0								
			sample-size	500000)						
			mean	0.717696							
			standard-deviation	0.70462							
			confidence-interval	0.95	size	0.0019531	low	0.715743	high	0.719649	

NTNU

Result tabulation

Loss scenario ID (Causal factor)	LS frequency (/year) (Individual simulation)	Simulation time	LS frequency (/year) (Combined simulation)	Simulation time
LS104 (Sensor)	3.780E-04	9 s	3.778E-04	-
LS105 (Actuator)	9.342E-04	9 s	9.198E-04	-
LS106 (Sensor)	8.200E-06	8 s	1.260E-05	-
LS108 (Communication)	6.000E-07	8 s	4.000E-07	-
LS110 (PCS/SS logic Solver)	2.102E-03	18 s*	2.073E-03	-
LS111 (PCS/SS logic Solver)	7.600E-05	9 s	8.280E-05	-
Total UCA frequency & simulation time	3.499E-03	avg. 60.86 s	3.460E-03	avg. 27.27 s

* two simulations are performed due to contribution from several causal factors (undetected & detected failure)

D NTNU

Sensitivity analysis

Discussion

Contribution of the new approach

- Capability to model systematic faults
- Aggregation of multiple scenarios into one model (for LSs)
- Improved simulation time ?
- Comparison with traditional quantitative modeling approach
- Prioritization based on quantified value
- Reduction of model uncertainty
- Input for risk assessment method using STPA

NTNU

Capability to model systematic faults

Aggregation of multiple scenarios into one model (for LS)

Loss scenario ID (Causal factor)	LS frequency (/year) (Individual simulation)	Simulation time	LS frequency (/year) (Combined simulation)	Simulation time
LS104 (Sensor)	3.780E-04	9 s	3.778E-04	-
LS105 (Actuator)	9.342E-04	9 s	9.198E-04	-
LS106 (Sensor)	8.200E-06	8 s	1.260E-05	-
LS108 (Communication)	6.000E-07	8 s	4.000E-07	-
LS110 (PCS/SS logic Solver)	2.102E-03	18 s*	2.073E-03	-
LS111 (PCS/SS logic Solver)	7.600E-05	9 s	8.280E-05	-
Total UCA frequency & simulation time	3.499E-03	avg. 60.86 s	3.460E-03	avg. 27.27 s

* two simulations are performed due to contribution from several causal factors (undetected & detected failure)

Combined simulation results										
	Egilura rata	Individual	Effect to	Individual frequ	Individual frequency (with base value)					Simulation
	value	Contribution		L S 104 (2E 7)	L S 105 (4E 7)	L S 106 (5E 7)	1 5 1 0 9 (1 5 9)	LS110 (DU = 1.1E-6 &	LS111 (1E 09)	Time
	value	Conultouton	UCA	L3104 (2E-7)	L3103 (4E-7)	L3100 (3E-7)	L3108 (IE-8)	DD = 1.5E-6)	L3111 (1E-08)	(seconds)
LS104 (Sensor DU) -50%	1.000E-07	1.810E-04	3.315E-03	n/a 🧳	9.330E-04	1.300E-05	2.000E-07	2.103E-03	8.900E-05	27.00
LS104 (Sensor DU) base	2.000E-07	3.778E-04	3.460E-03	3.778E-04	9.198E-04	1.260E-05	4.000E-07	2.073E-03	8.280E-05	27.00
LS104 (Sensor DU) +50%	3.000E-07	5.620E-04	3.667E-03	n/a	9.460E-04	1.500E-05	2.000E-07	2.071E-03	7.900E-05	27.00
					N					

Improved simulation time (?)

Comparison with Zhang et al. (2019)

Failure rate (/hour)	Juntao's result (UCA freq./year)	Simulation time	My result (UCA freq./year)	Simulation time
5e-6	3.3e-4	~44 minutes	2.5e-2	3 seconds
1e-5	5.7e-4	~44 minutes	4.7e-2	3 seconds
1.5e-5	7.9e-4	~44 minutes	6.6e-2	3 seconds

- Differences in the result are caused by several reasons:
 - Unseen parameters from Juntao's paper
 - Transition that are coupled between LS 1 and 2 in the Juntao's model (not modelled due to missing information)

Comparison with traditional quantitative modeling approach

 STPA-FSA approach is essentially quantifying PFH and demand rate in the same model

NTNU

Prioritization based on quantified value

SEA (

NTNU

Reduction of model uncertainty

11-

end //-

domain ControlledProcessState {Normal, Context, Safe, Hazardous, Loss} domain CCFState {Normal, CCF}

block ControlledProcess

block Com## //Control element model for a group of component ##, following the modeling pattern for CCF

```
end
```

end

11-

```
parameter Real pContext = 8760.0; // Frequency of context transition
parameter Real pRestorefrHaz = 8.0; // Required restoration time from hazardous
parameter Real pRestorefrSaf = 8.0; // Required restoration time from safe
ControlledProcessState CP_State (init = Normal); // Controlled process state
event evContextchg (delay = exponential(1./pContext));
event evRestorefrHaz (delay = exponential(1,/pRestorefrHaz));
event evRestorefrSaf (delay = exponential(1./pRestorefrSaf));
event evSCA## (delay = 0.001); //Delay is for observation purpose
event evUCA## (delay = 0.001); //Delay is for observation purpose
transition
    evContextchg: CP_State == Normal -> CP_State := Context; // Change in the operational condition
    evRestorefrHaz: CP_State == Hazardous and (SF### and ...)
       -> CP_State := Normal; // System restoration transition from hazardous
    evRestorefrSaf: CP_State == Safe and (SF### and ...)
        -> CP_State := Normal; // System restoration transition from safe
    mrSCA##-
                    CP_State == Context and (SF### and ...)
        -> CP State := Safe: // Safe control action transition
    evUCA##:
                 ?Com##.evDemand & CP_State == Context and (CF### or ...)
        -> CP_State := Hazardous: // Unsafe control action transition
    Boolean SF###, ... (reset = false);
    Boolean CF###, ... (reset = false);
    assertion
        SF### := (Com##.Ele##.H State -- Working and Com##.Ele##.C State -- Normal);
observer Boolean UCA## - if CP_State -- Hazardous then true else false; // Observed UCA
observer Boolean SCA## - if CP_State -- Safe then true else false; // Observed SCA
observer Boolean LS### - if (CP State - Context and CF###) then true else false: // Observed Loss Scenario
observer Integer EleUFailure = Com##.Ele##.Failure; // Observed individual failure
```

```
domain HardwareState (Working, Undetected, Detected, Repair)
domain ElementState {Normal, Demand}
domain Phase {Operation, Inspection}
11---
class CompWRHF
   HardwareState H_State (init = Working); // Component hardware state
   ElementState C_State (init = Normal); // Synchronization with controlled process state due to demand
   Phase Team_Phase (init = Operation); // Maintenance team working phase
   parameter Real pLambdaU = 1e-6; // Undetected failure rate
   parameter Real pLambdaD = 1e-4; // Detected failure rate
   parameter Real pMu = 1.25e-1; // Repair rate
   parameter Real pRepairDelay = 24.0;
   parameter Real pInspectionPeriod = 4380.0;
    parameter Real pInspectionDuration = 5.0;
    Integer UndetectedFailure, DetectedFailure (init = 0);
   event evUndetectedFailure (delay = exponential(pLambdaU));
   event evDetectedFailure (delay = exponential(pLambdaD));
   event evCCFU (delay = 0, hidden = true);
   event evCCFD (delay = 0, hidden = true);
   event evDemand (delay = 0, hidden = true);
    event evPeriodicInsp (delay = pInspectionPeriod);
   event evCompleteInsp (delay = exponential(1/pInspectionDuration));
   event evRepairStart (delay = exponential(1/pRepairDelay));
   event evRepairEnd (delay = exponential(pMu));
   transition
        evUndetectedFailure: H State == Working
           -> {H_State := Undetected; UndetectedFailure := UndetectedFailure + 1;}
        evDetectedFailure: H_State == Working
           -> {H_State := Detected; DetectedFailure := DetectedFailure + 1;}
        ewCCFII-
                            H_State == Working
           -> {H_State := Undetected; UndetectedFailure := UndetectedFailure + 1;}
        ewCCFD -
                            H State -- Working
           -> {H_State := Detected; DetectedFailure := DetectedFailure + 1;}
                            H State == Undetected or H State == Detected
        evDemand:
           -> {if I State == Undetected then I State := Detected; C State := Demand;}
        evPeriodicInsp:
                            Team_Phase == Operation -> Team_Phase := Inspection;
                            Team Phase == Inspection
        evCompleteInsp:
           -> {Team_Phase := Operation ; if H_State == Undetected then H_State := Detected;}
        evRepairStart:
                            Team_Phase == Operation and (H_State == Detected) -> H_State := Repair;
        evRepairEnd:
                            Team_Phase == Operation and H_State == Repair
            -> {H_State := Working; C_State := Normal;}
    Boolean input, output (reset = false);
    accortion
        output := if H State == Working then true else false:
```


Input for risk assessment method using STPA (Kim, 2020)

Table 4. Evaluation criteria for loss scenarios.

^aFor details of classifications of likelihood, readers can refer to Rausand.²⁶

 $RPN_{LossScenario} = RPN_{UCA} \times LH \times SOK_{LossScenario} = SV \times ATR \times SOK_{UCA} \times LH \times SOK_{LossScenario}$

Approach limitation

- Data uncertainty
- Completeness uncertainty
- Aggregation of multiple scenarios into one model (for UCAs)

Data uncertainty

Parameter	Value	Probability distribution
SS Sensor failure rate	DD = 2.490e-8 /hour	Exponential
SS Sensor erratic reading rate	DU = 2.122e-7 /hour	Exponential
SS Actuator failure rate	DU = 3e-7 /hour	Exponential
Communication equipment failure rate	DD = 1e-6 /hour (assumption, need discussion)	Exponential
PCS/SS logic solver failure rate	DU = 3.810e-8 /hour; DD = 4.25e-7 /hour	Exponential Exponential
SS software systematic fault introduction rate	Sys= 5e-6 /hour (assumption, need discussion)	Exponential
Repair time	8 hour	Exponential
Repair delay	8 hour	Exponential
Inspection period	once every 6 months	Dirac
Inspection duration	24 hour	Exponential
Frequency of context change	once per year	Exponential
System restoration time	8 hour	Exponential
Simulation time	87,600 hour	n/a
Number of simulations	100,000	n/a

Completeness uncertainty

Aggregation of multiple scenarios into one model (for UCA)

Omission of some scenario's risk

Reference

NTNU

41

- References
- [1] N. Leveson, Engineering a safer world: systems thinking applied to safety, Engineering systems, The MIT Press, Cambridge, MA, 2011.

735

- [2] T. Bjerga, T. Aven, E. Zio, Uncertainty treatment in ⁷⁶ risk analysis of complex systems: The cases of STAMP and FRAM, Reliability Engineering & System Safety 156 (2016) 203-209.
- [3] N. Leveson, J. Thomas, STPA handbook, 2018.
- [4] M. Rodríguez, I. Díaz, A systematic and integral hazards analysis technique applied to the process industry, Journal of Loss Prevention in the Process Industries 43 (2016) 721-729.
- [5] S. Sultana, P. Okoh, S. Haugen, J. E. Vinnem, Hazard 750 analysis: Application of stpa to ship-to-ship transfer of Ing. Journal of Loss Prevention in the Process Industries 60 (2019) 241-252.
- [6] S. M. Sulaman, A. Beer, M. Felderer, M. Höst, Comparison of the FMEA and STPA safety analysis methodsa case study 27 (1) (2019) 349-387.
- [7] B. Rokseth, I. B. Utne, J. E. Vinnem, Deriving verification objectives and scenarios for maritime systems using the systems-theoretic process analysis, Reliability Engineering & System Safety 169 (2018) 18-31.
- [8] ISO/PAS 21448, Road vehicles-safety of the intended functionality, Standard, International Organization for Standardization (2019).
- [9] H. Kim, M. A. Lundteigen, A. Hafver, F. B. Pedersen. Utilization of risk priority number to systems-theoretic process analysis: A practical solution to manage a large 76 number of unsafe control actions and loss scenarios. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability.
- [10] A. Hafver, S. Eldevik, I. Jakopanec, O. V. Drugan, F. Pedersen, R. Flage, T. Aven, Risk-based versus control-based safety philosophy in the context of complex systems, in: Safety and reliability - theory and applications : proceedings of the 27th European Safety and Reliability Conference (ESREL 2017), Portoroz, Slovenia, 18-22 June 2017, Boca Raton et al.: CRC Press, 2017, pp. 38-38.
- [11] W. G. Temple, Y. Wu, B. Chen, Z. Kalbarczyk, Systems-theoretic likelihood and severity analysis for safety and security co-engineering, in: International Conference on Reliability, Safety and Security of Railway Systems, Springer, 2017, pp. 51–67.
- [12] J. Zhang, H. Kim, Y. Liu, M. A. Lundteigen, Combining system-theoretic process analysis and availability assessment: A subsea case study, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of 765 Risk and Reliability 233 (4) (2019) 520–536.
- [13] H. Jianbo, Z. Lei, X. Shukui, Safety analysis of wheel brake system based on STAMP/STPA and Monte Carlo simulation, Journal of Systems Engineering and Electronics 29 (6) (2018) 1327-1339.
- [14] NUREG 1855, Guidance on the treatment of uncertainties associated with pras in riskinformed decision making, Standard, United States Nuclear Regulatory Commission (2009).
- [15] H. Meng, L. Kloul, A. Rauzy, Modeling patterns for reliability assessment of safety instrumented systems, Reliability Engineering & System Safety 180 (2018) 111-
- [16] ISO/TR 12489, Petroleum, petrochemical and natural

- gas industries reliability modelling and calculation of safety systems, Standard, International Organization [36] for Standardization (2013).
- [17] IEC 61508, Functional safety of electrical/electronic/programmable electronic safety-related systems - part 1-7, Standard, International Electrotechnical Commis-[37] D. Cook, W. D. Schindel, Utilizing mbse patterns to sion (2010)
- [18] M. Batteux, T. Prosvirnova, A. Rauzy, Modeling patterns for the assessment of maintenance policies with altarica 3.0, in: International Symposium on Model-Based Safety and Assessment, Springer, 2019, pp. 32-
- [19] A. Raury, Notes on computational uncertainties in probabilistic risk/safety assessment, Entropy 20 (3) (2018) 162.
- [20] A. Hoyland, M. Rausand, System reliability theory: & Sons, 2009.
- [21] P. Hokstad, K. Corneliussen, Loss of safety assessment and the IEC 61508 standard, Reliability Engineering & System Safety 83 (1) (2004) 111-120.
- [22] A. Toola, The safety of process automation, Automatica 29 (2) (1993) 541-548.
- [23] L. Xie, M. Lundteigen, Y. Liu, Safety barriers against common cause failure and cascading failure: literature reviews and modeling strategies, in: 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), IEEE, 2018, pp. 122-127
- [24] M. Rausand, Risk assessment: theory, methods, and N.J., 2011.
- national Electrotechnical Commission (2006).
- [26] IEC 61078, Reliability block diagrams, Standard, International Electrotechnical Commission (2016).
- [27] J. I. Aizpurua, E. Muxika, Model-based design of dependable systems: limitations and evolution of analysis and verification approaches, International Journal on Advances in Security 6 (1).
- [28] IEC 61165, Application of Markov techniques, Standard, International Electrotechnical Commission (2006).
- [29] IEC 62551, Analysis techniques for dependability -Petri net techniques, Standard, International Electrotechnical Commission (2012).
- for safety analyses, Ph.D. thesis, Ecole Polytechnique (2014).
- [31] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, [49] S. Häbrekke, S. Hauge, T. Onshus, Reliability data for G. Franceschinis, Modelling with generalized stochastic Petri nets, Vol. 292, Wiley New York, 1995,
- [32] S. F. Railsback, V. Grimm, Agent-based and individualbased modeling: a practical introduction, Princeton university press, 2019.
- 790 [33] O. Nývlt, S. Haugen, L. Ferkl, Complex accident scenarios modelled and analysed by stochastic petri nets, Re liability Engineering & System Safety 142 (2015) 539-555.
 - [34] J.-P. Signoret, Y. Dutuit, P.-J. Cacheux, C. Folleau,
- S. Collas, P. Thomas, Make your petri nets understandable: Reliability block diagrams driven petri nets, Reli ability Engineering & System Safety 113 (2013) 61-75.
- [35] Q. Wu, D. Gouyon, P. Hubert, E. Levrat, Towards model-based systems engineering (mbse) patterns to ef-

- ficiently reuse know-how, Insight 20 (4) (2017) 31-33. B. Hamid, J. Perez, Supporting pattern-based dependability engineering via model-driven development: Approach, tool-support and empirical validation, Journal of Systems and Software 122 (2016) 239-273.
- accelerate system verification, Insight 20 (1) (2017) 32-41.
- N. A. Zikrullah, M. J. P. van der Meulen, M. A. Lundteigen, A comparison of hazardous scenarios in architectures with different integration types, in: Proceedings of the 30th European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment and Management Conference (ESREL 2020 PSAM15), Research Publishing Services, 2020, pp. 4001-4008.
- models and statistical methods, Vol. 420, John Wiley [39] N. A. Zikrullah, H. Kim, M. J. van der Meulen, G. Skofteland, M. A. Lundteigen, A comparison of hazard analysis methods capability for safety requirements generation. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability (2021) 1748006X211003463.
 - [40] N. A. Zikrullah, M. J. P. van der Meulen, M. A. Lundteigen, Building blocks for safety arguments with stpa, in: xxx, xxx, n.d., pp. xxx-xxx.
 - [41] J. P. Thomas IV, Extending and automating a systemstheoretic hazard analysis for requirements generation and analysis, Ph.D. thesis, Massachusetts Institute of Technology (2013).
- applications, Statistics in practice, Wiley, Hoboken, [42] OREDA, Handbook 2015, 6th edition Volume I and II, Princeton university press, 2015.
- [25] IEC 61025, Fault tree analysis (FTA), Standard, Inter- [43] DNVGL-RP-A203 technology qualification, Recommended practice, DNV GL (2009).
 - [44] S. Yamada, Software reliability modeling: fundamentals and applications, Vol. 5, Springer, 2014.
 - [45] B. Kirwan, A guide to practical human reliability assessment, CRC press, 1994.
 - [46] N. A. Zikrullah, M. J. P. van der Meulen, G. Skofteland, M. A. Lundteigen, Systems-theoretic process analysis results for system with different integration types, dataset V1, doi: 10.17632/prwtzmt3kg.1 (2021).
 - [47] DNV GL, Safety 4.0, retrieved 2021-03-10. URL https://www.dnvgl.com/research/oilgas/safetv40/index.html (2018).
- [30] T. Prosvirnova, Altarica 3.0: a model-based approach [48] Recommended practice for analysis, design, installation, and testing of safety systems for subsea applications, Standard, American Petroleum Institute (2015).
 - safety instrumented systems-PDS data handbook, 2021 edition, Vol. 13502, SINTEF.

