

European Safety and Reliability Conference Trondheim, Norway, 17-21 June 2018

Risk-based maintenance backlog

Authors:

Harald Rødseth¹,

1: Norwegian University of Science and Technology (NTNU)

Agenda

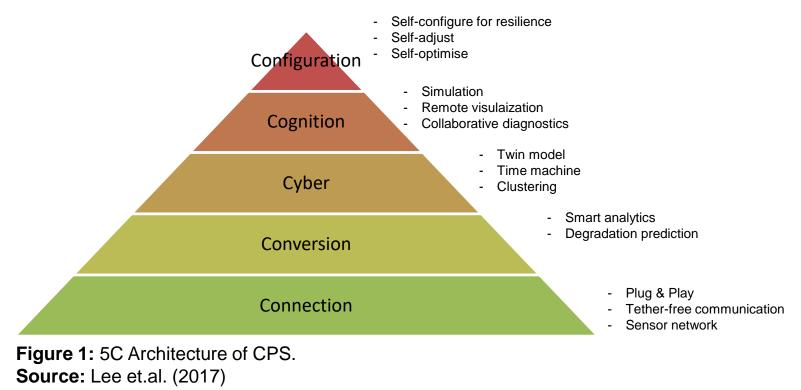
- 1. Introduction
- 2. CPS as a potential in Industry 4.0
- 3. Description of example case
- 4. Risk modelling
- 5. Result
- 6. Adapting RISK OMT with CPS

1 Introduction

- Integrated Operations: New way of doing business in Oil & Gas (O&G) industry, increasing oil production, lowering operating costs and life extension.
- Transferring the IO principle into the planning domain leads us to the concept *integrated planning* (IPL).
- Maintenance backlog (MB) is of relevance in IPL.
- In risk modelling, the Risk OMT (Risk modelling Integration of Organisational, human and technical factors) has been developed.

1 Introduction

- Due to different view of the term "maintenance backlog" and how it is modelled, a novel model for MB has been recently developed.
- It remains to model MB as a RIF itself.
- With the potentials from Industry 4.0 it would be expected that enterprises establish cyber physical systems (CPS).


1 Introduction

- The main objective of this article is to develop a model of MB in QRA. To achieve this main objective following subobjectives have been outlined:
 - 1. Develop a general model that connects MB with QRA.
 - 2. Test the model with a case example.
 - 3. Propose how the model can be improved with support from the potentials in Industry 4.0.

2 CPS as a potential in Industry 4.0

- Cyber physical systems (CPS) is an essential element in Industry 4.0.
- Maintenance clearly positions in Industry 4.0.
- 5C architecture seems promising as a CPS architecture for maintenance.
- Has been proposed for the maintenance model deep digital maintenance (DDM).

3 Description of example case

The example case is a heat exchanger and a barrier system

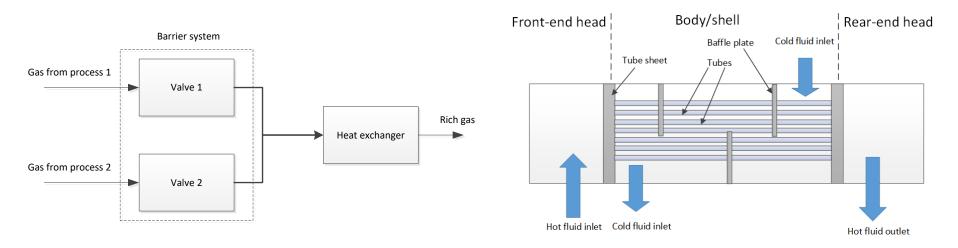
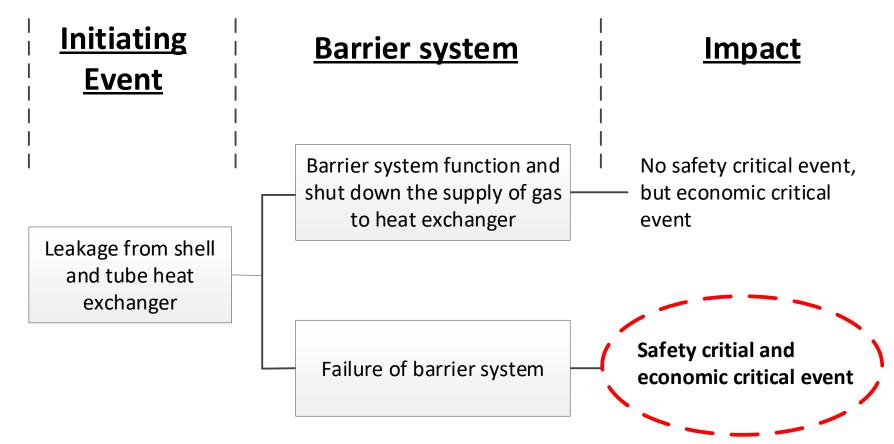



Figure 2: Heat exchanger with a barrier system

Figure 3: Heat exchanger

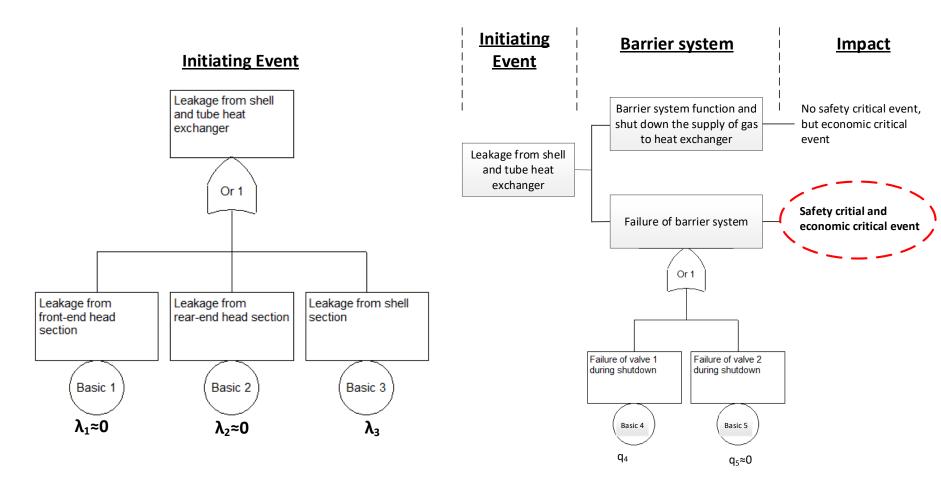
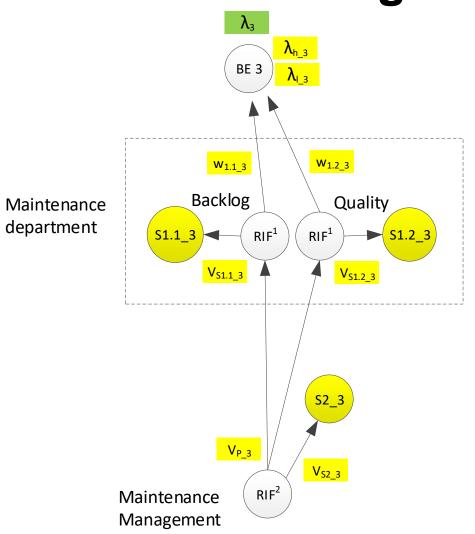



Figure 5: FTA of initiating event.

Figure 6: FTA of barrier system

Score	Evaluation criteria
Α	«Best case» score
В	
С	«Normal case» score
D	
E	
F	«Worst case» score

Figure 7: RIF structure

- Approach for calculating the basic events:
 - 1. Expert judgement of each RIF with score A-F
 - 2. Map the scores in the interval [0,1]
 - 3. Calculate the posterior distribution of parents RIF
 - 4. Calculate the prior distributions of child RIFs
 - 5. Calculated the weighted sum
 - 6. Apply the law of total probability

5 Result

Input data for basic event 3

Parameter	Value
S _{1.1_3}	D=0.58333
S _{1.2_3}	B=0.25000
S _{2_3}	C=0.41667
W _{1.1.3}	0.3
W _{1.2_3}	0.7
VS _{1.1_3}	0.01
VS ₁₂₃	0.04
VS _{1.2_3} VS _{2_3}	0.04
VP ₃	0.0025
 MTTR ₃ (hours)	3.0
$\lambda_{1,3}$ (/hours) from (Sintef and Oreda, 2009)	0.39*10 ⁻⁶
λ_{h} ₃ (/hours) from (Sintef and Oreda, 2009)	23.87*10 ⁻⁶

Input data for basic event 4

Parameter	Value
S _{1.1_4}	C=0.41667
S4	C=0.41667
S _{2_4}	C=0.41667
w4	0.3
W _{1.2_4}	0.7
VS _{1.1_4}	0.01
VS _{1.2_4}	0.04
VS _{2_4}	0.04
	0.0025
q_h_4	10 ⁻³
q _{1 4}	10-4

Result

Initiating event, (/hours)	Barrier system	Frequency in QRA (/year)
λ ₃ =λ _{IE} = 2.9500*10⁻ ⁶	q4=0.0030	F ₂ =λ _{IE} *q4 =7.75*10 ⁻⁵

6 Adapting RISK OMT with CPS

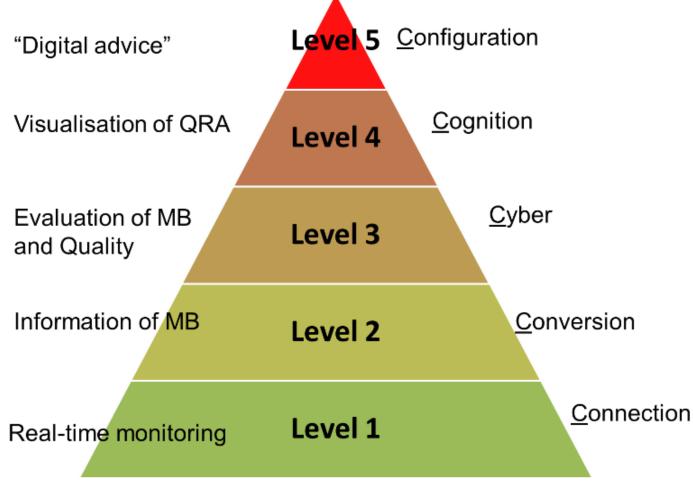


Figure 7: CPS architecture proposed for Risk OMT.

7 Concluding remarks

- Need for improving the model, in particular the decision criteria.
- Should be included in the maintenance model DDM.
- Should be performed in other industry branches in addition to O&G industry.

The End

"Success is not final, failure is not fatal: it is the courage to continue that counts." -Winston Churchill

Thank you for your attention!

