

European Safety and Reliability Conference Trondheim, Norway, 17-21 June 2018

Common Cause Failures and Cascading Failures

Lin Xie Mary Ann Lundteigen Yiliu Liu

Background

- Complex systems
 - Advanced and digitalized functions
 - Interactions and dependency
- Dependent failures
 - Common cause failure (CCF)
 - Cascading failures
- Objectives:
 - Similarities
 - Differences
 - Barriers

Why is it important

- To understand phenomena and mechanisms of the failures:
 - CCF: Main contributors of the failures in safety critical systems(oil & gas)
 - Cascading failures: fires (chemical), blackouts (power), conflicts(railway)
- To help making decisions on barrier strategies:
 - Barriers against CCFs V.S. Barriers against cascading failures

CCFs

- Exist simultaneously or in a short time interval
- A shared cause

Explanation

- Root causes: most basic reason for the component failure
- Coupling factors: characteristic of components with same causal mechanisms

At least two failures are due to a shared or common cause

Cascading failures

Affect remaining components .

Multiple failures may have sequential effects

analysis

Similarities

• Multiplicity

• Timeliness

Root causes

Fig. 1. Comparison of CCFs and cascading failures

Differences

• Initiation

• Propagation

• Consequence

Fig. 1. Comparison of CCFs and cascading failures

Barriers

• Barriers for both failures

- Barriers for CCFs
- Barriers for cascading failures

Fig. 2. Safety barriers against DFs based on bow-tie models

Case study 1

Fig. 3 Two-component system with CCFs and cascading failures

Assumptions: • CCF: – β=0.1

• Cascading failures:

- P₁₂=0.1

Method:

Analytical formulas

Fig. 4 Effects of CCFs and cascading failures on system reliability

Case study 2

(a) (b) Fig. 5 Five-component system with CCFs and cascading failures

Assumptions

- CCF: β=0.1->0
- Cascading failures:
 - B1:P₁₂=0.3->0
 - B2: $\lambda_2 = 0.001 >0$
 - B3: P=0.3->0

Method:

Monte Carlo Simulation

$\lambda = 0.001 / hour$

Conclusion and further work

- Answer the questions:
 - Why such dependent failures initiate
 - How dependent failures contribute to disruptions of systems
 - What kinds of barriers are needed and implemented
- Further works:
 - More advanced quantitative analyses are required in a larger and more complex system
 - To perform further barrier analysis for dependent failures

Thanks!

