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Introduction
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Detection

Single Sensor 
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Distributed Detection

Sensor Network 
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Distributed Detection

Sensor Network with Fusion Center 
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Distributed Detection and Localization
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Distributed Detection and Localization

Sensor Network with Fusion Center
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Applications

• Collaborative Spectrum Sensing in Cognitive Radio 

• Event Detection in Underwater Acoustic Sensor Networks

• Leak Detection and Localization in Oil&Gas production/distribution systems 
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Sensor Modeling
Part I - Detection



Detection Theory – Decision Theory – Hypothesis Testing
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Receiver Operating Characteristic (ROC)
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ROC – Increasing the Signal Power
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ROC – Reducing the Noise Power
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Sensor Model
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Local Test – Optimum Test – Likelihood Ratio Test (LRT)

• LRT is the optimum test in the Neyman-Pearson framework and in the Bayesian framework

– 𝑦|ℋ0~𝑝 𝑦 ℋ0

– 𝑦|ℋ1~𝑝 𝑦 ℋ1

• Compute the likelihood ratio or equivalently the log-likelihood ratio (LLR)

– 𝜆 𝑦 = ln
𝑝 𝑦 ℋ1
𝑝 𝑦 ℋ0

• Compare the LLR with a threshold

– 𝜆 𝑦 ⋛ 𝛾

• Requires complete knowledge of the conditional probabilities 𝑝 𝑦 ℋ0 and 𝑝 𝑦 ℋ1
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LRT – Example 1 (Shift in Mean)

• Statistical Signal Model 

– 𝑦|ℋ0~𝒩 0; 𝜎2 𝑝 𝑦 ℋ0 =
1

2𝜋𝜎2
𝑒
−

𝑦2

2𝜎2

– 𝑦|ℋ1~𝒩 𝜇; 𝜎2 𝑝 𝑦 ℋ1 =
1

2𝜋𝜎2
𝑒
−

𝑦−𝜇 2

2𝜎2

• Compute the LLR

– 𝜆 𝑦 = ln
𝑝 𝑦 ℋ1
𝑝 𝑦 ℋ0

=
𝜇

𝜎2
𝑦 −

𝜇2

2𝜎2

• LRT is equivalent to Level Test

– 𝑦 ⋛ 𝛾
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LRT – Example 2 (Shift in Variance)

• Statistical Signal Model

– 𝑦|ℋ0~𝒩 0;𝜎0
2 𝑝 𝑦 ℋ0 =

1

2𝜋𝜎0
2
𝑒
−
𝑦2

2𝜎0
2

– 𝑦|ℋ1~𝒩 0;𝜎1
2 𝑝 𝑦 ℋ1 =

1

2𝜋𝜎1
2
𝑒
−
𝑦2

2𝜎1
2

• Compute the LLR

– 𝜆 𝑦 = ln
𝑝 𝑦 ℋ1
𝑝 𝑦 ℋ0

=
1

2

𝜎1
2−𝜎0

2

𝜎0
2𝜎1

2 𝑦
2 +

1

2
ln

𝜎0
2

𝜎1
2

• LRT is equivalent to Energy Test

– 𝑦2 ⋛ 𝛾
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Practical Tests

• (Optimum) LRT

ln
𝑝 𝑦 ℋ1

𝑝 𝑦 ℋ0
⋛ 𝛾

• Test commonly employed in absence of other relevant information 

– Level Test

𝑦 ⋛ 𝛾

– Energy Test

𝑦2 ⋛ 𝛾
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(Wireless) Sensor Networks
Part I – Distributed Detection



Sensor-Network Architecture
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Sensor-Network Architecture

• Possible assumptions on the information processing at sensor location

– Hard decisions, local binary decision 𝑑𝑘 ∈ {0,1}

– Soft decisions, level of confidence, multibit quantization of the LRT 𝑑𝑘 ∈ {0,1, … , 2
𝑛 − 1}

– Analog information, in the ideal case of infinite precision, LLR information is sent (e.g. 𝑑𝑘 = 𝜆𝑘(𝑦𝑘))

• Possible assumptions on the reporting channel

– Perfect channel: 𝑟𝑘 = 𝑑𝑘
– Parallel Access Channel (no interference): 𝑟𝑘 = 𝑓𝑘 𝑑𝑘
– Multiple Access Chanel (interference): 𝑟 = 𝑓 𝑑1, 𝑑2, … , 𝑑𝐾
– MIMO Chanel (interference and multiple antennas): 𝑟𝑛 = 𝑓𝑛 𝑑1, 𝑑2, … , 𝑑𝐾

– Common channel models: 

• Binary Symmetric Channel 

• Additive White Gaussian Noise Channel 

• Rayleigh-Fading Channel

• The fusion center takes a global decision depending on a specific fusion rule: 𝜆 𝑟1, 𝑟2, … , 𝑟𝑁 ⋛ 𝛾
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MIMO Decision Fusion in WSNs
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01.12.2017 Page 37WORLD CLASS - through people, technology and dedication



Why MIMO in WSNs?

• Introduces spatial diversity

– Fading mitigation

• Is spectrally efficient

– Resource saving

• Comes (almost) for free

– Exploiting interference

– No additional cost except for appropriate 

processing
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System Model

𝒚 = 𝑯𝒙 +𝒘

• 𝒚 = 𝑦1, … , 𝑦𝑁
𝑇 is the received-signal vector

• 𝑦𝑛 ∈ ℂ is the complex-valued signal received at the nth RX antenna

• 𝑯 = 𝐻1,1, … , 𝐻1,𝐾
𝑇
, … , 𝐻𝑁,1, … , 𝐻𝑁,𝐾

𝑇
𝑇

is the channel matrix

• 𝐻𝑛,𝑘~𝒩ℂ 0; 1 is the channel coefficient between the kth sensor and the nth RX antenna

• 𝒙 = 𝑥1, … , 𝑥𝐾
𝑇 is the transmitted vector

• 𝑥𝑘 ∈ −1, +1 is the BPSK symbol transmitted by the kth sensor

• 𝒘 = 𝑤1, … , 𝑤𝑁
𝑇 is the noise vector

• 𝑤𝑛~𝒩 0;𝜎𝑤
2 is the AWGN at the nth RX antenna
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SNR𝑡𝑥 =
𝐾

𝜎𝑤
2 SNR𝑡𝑥

∗ =
1

𝜎𝑤
2

SNR𝑟𝑥 =
𝐾𝑁

𝜎𝑤
2

SNR𝑟𝑥
∗ =

𝑁

𝜎𝑤
2

𝜆 𝒚 ⋛ 𝛾

𝑄𝐷 = 𝑝 𝜆 > 𝛾 ℋ1

𝑄𝐹 = 𝑝 𝜆 > 𝛾 ℋ0



Performance Benchmarks

• Observation Bound: noisy sensing with perfect reporting

𝑄𝐹 = σ𝑘=𝑔
𝐾 𝐾

𝑘
𝑃𝐹
𝑘 1 − 𝑃𝐹

𝐾−𝑘 𝑄𝐷 = σ𝑘=𝑔
𝐾 𝐾

𝑘
𝑃𝐷
𝑘 1 − 𝑃𝐷

𝐾−𝑘

• Communication Bound: perfect sensing with noisy reporting

• Optimal Fusion Rule: LRT

𝜆 𝒚 = ln
σ
𝑥∈ ±1 𝐾 𝑒

−
𝒚−𝑯𝒙 2

𝜎𝑤
2

ς𝑘=1
𝐾 𝑝 𝑥𝑘 ℋ1

σ
𝑥∈ ±1 𝐾 𝑒

−
𝒚−𝑯𝒙 2

𝜎𝑤
2

ς𝑘=1
𝐾 𝑝 𝑥𝑘 ℋ0

– High computational complexity: exponential with the number of sensors ℴ 2𝐾𝑁

– Numerical instability: large dynamic range is problematic with fixed-point implementations

– Excessive knowledge requirements: local performance, channel matrix, noise variance
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Alternative Fusion Rules

• Decode-and-Fuse approach

– Maximum Ratio Combining 

(optimum at low SNR, linear complexity ℴ 𝑁 , requires partial channel)

– Equal Ratio Combining 

(no optimality, linear complexity ℴ 𝑁 , requires less partial channel)

– Max-Log 

(optimal, reduced exponential complexity, full knowledge)

• Decode-then-Fuse approach

– Chair-Varshney Rule with Maximum Likelihood Estimation 

(optimum at high SNR, reduced exponential complexity, requires local performance and channel matrix)

– Chair-Varshney Rule with Minimum Mean Square Error Estimation 

(no optimality, polynomial complexity ℴ 𝑁𝐾2 + 𝑁2 ,  full knowledge)
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Performance 
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Sensor Modeling
Part II – Distributed Detection and Localization



Sensor Model
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Sensing Model

𝑦 = 𝜃 ∙ 𝑔 𝒙; 𝒙𝑇 +𝑤

• 𝑦 is the measurement at the sensor

• 𝑤~𝒩 0;𝜎𝑤
2 is the noise at the sensor

• 𝒙 is the location of the sensor

• 𝜃 is the intensity of the target to be detected

– Unknown and Deterministic: 𝜃 ∈ Ω𝜃
e.g.     𝜃 ∈ −𝜃0, +𝜃0

– Unknown and Stochastic: 𝜃~𝑝 𝜃

e.g.     𝜃~𝒩 0;𝜎𝑇
2

• 𝑔(∙;∙) is the (distance-dependent) amplitude attenuation function (AAF) or spatial signature

• 𝒙𝑇 is the target location
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Amplitude Attenuation Function (AAF)
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• Comes from domain knowledge

• Represents the physical phenomenon and related 

propagation

• Common AAF with EM signals:

– Exponential AAF

𝑔2 𝒙; 𝒙𝑇 = 𝑒
−

𝒙−𝒙𝑇
2

𝜂2

– Power-Law AAF

𝑔2 𝒙; 𝒙𝑇 =
1

1+
𝒙−𝒙𝑇

2

𝜂2



Local Test

• Statistical Signal Model 

– 𝑦|ℋ0~𝒩 0;𝜎𝑤
2 𝑝 𝑦 ℋ0 =

1

2𝜋𝜎𝑤
2
𝑒
−

𝑦2

2𝜎𝑤
2

– 𝑦|ℋ1~𝒩 0;𝜎𝑇
2𝑔2(𝒙; 𝒙𝑇) +𝜎𝑤

2 𝑝 𝑦 ℋ1 =
1

2𝜋(𝜎𝑇
2𝑔2(𝒙𝑘;𝒙𝑇)+𝜎𝑤

2 )

𝑒
−

𝑦2

2(𝜎𝑇
2𝑔2(𝒙;𝒙𝑇)+𝜎𝑤

2 )

• Compute the LLR

– 𝜆 𝑦 = ln
𝑝 𝑦 ℋ1
𝑝 𝑦 ℋ0

=
Γ𝑠

2

𝑔2(𝒙;𝒙𝑇)

𝜎𝑇
2𝑔2(𝒙;𝒙𝑇)+𝜎𝑤

2 𝑦
2 +

1

2
ln

1

1+Γ𝑠𝑔
2(𝒙;𝒙𝑇)

Γ𝑠 ≜
𝜎𝑇
2

𝜎𝑤
2 sensing SNR 

• LRT is equivalent to Energy Test

– 𝑦2 ⋛ 𝛾
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Local Performance

• Assume fixed local FA probability

• Assume fixed AAF

• Evaluate local detection probability vs target distance

• 𝑃𝐹 = 2𝑄
𝛾

𝜎𝑤
2

• 𝑃𝐷 = 2𝑄
𝛾

𝜎𝑇
2𝑔2(𝒙;𝒙𝑇)+𝜎𝑤

2
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Local Performance

• Assume fixed local FA probability

• Assume fixed AAF

• Evaluate local detection probability vs target distance

• Performance improves with sensing SNR

• 𝑃𝐹 = 2𝑄
𝛾

𝜎𝑤
2

• 𝑃𝐷 = 2𝑄
𝛾

𝜎𝑇
2𝑔2(𝒙;𝒙𝑇)+𝜎𝑤

2
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Local Performance (ROC)

• Performance worsens with distance

• Performance improves with sensing SNR

• 𝑃𝐹 = 2𝑄
𝛾

𝜎𝑤
2

• 𝑃𝐷 = 2𝑄
𝛾

𝜎𝑇
2𝑔2(𝒙;𝒙𝑇)+𝜎𝑤

2
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(Wireless) Sensor Networks
Part II – Distributed Detection and Localization



MIMO Decision Fusion in WSNs
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• D. Ciuonzo, A. De Maio, P. Salvo Rossi, “A Systematic Framework for 

Composite Hypothesis Testing of Independent Bernoulli Trials,” IEEE 
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• D. Ciuonzo, P. Salvo Rossi, P. Willett, “Generalized Rao Test for 
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Process. Lett. (2017)
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Sensor-Network Architecture

01.12.2017 Page 54WORLD CLASS - through people, technology and dedication

ℋ0
ℋ1

𝑠2
Sensor 2

𝑑2

𝑠𝐾
Sensor K

𝑑𝐾

𝑠1
Sensor 1

𝑑1

C
o

m
m

u
n

ic
a
ti

o
n

 C
h

a
n

n
e

l

𝑟2

𝑟𝑁

𝑟1

Fusion

Center

𝑑

𝑄𝐷 = 𝑝 𝑑 = ℋ1 ℋ1

𝑄𝐹 = 𝑝 𝑑 = ℋ1 ℋ0

𝑃𝐷,𝑘 = 𝑝 𝑑𝑘 = ℋ1 ℋ1

𝑃𝐹,𝑘 = 𝑝 𝑑𝑘 = ℋ1 ℋ0

Global Test and Global Performance

Local Test and Local Performance

𝜆 ⋛ 𝛾

𝜆𝑘 ⋛ 𝛾𝑘



Counting Rule (CR)

• Simple and intuitive strategy is to count the number of reported detections

– 𝜆 = σ𝑘=1
𝐾 𝑑𝑘

• Advantages

– System knowledge not required (e.g. local performance, sensing SNR, etc.)

– It is optimal in the case of homogeneous sensor networks

𝑃𝐹,𝑘 = 𝑃𝐹 and   𝑃𝐷,𝑘 = 𝑃𝐷

• Disadvantages

– Poor performance in practical scenarios of interest

– No localization provided
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Ring Scenario
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Performance of CR in Ring WSNs

• Assume a WSN with K sensors

• All sensors have the same distance from the target

• Performance improves with K

• Unrealistic assumption

– if present the target is in known position

– good approximation for large spreading factors
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Performance of CR in Ring WSNs
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• Performance improves with sensing SNR

• Unrealistic assumption

– if present the target is in known position

– good approximation for large spreading factors
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Randomly-Deployed Sensors
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Performance of CR in Random WSNs

• Assume a WSN with K sensors

• Sensors are randomly generated in the sensor area

• Target (if present) is randomly generated in the target 

area

• Performance improves with sensing SNR

• Performance improves with η
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Optimum Rule – (Clairvoyant) LRT

• Compute the LLR

– 𝜆 = ln
𝑝 𝒅ℋ1

𝑝 𝒅ℋ0
= σ𝑘=1

𝐾 𝑑𝑘 ln
𝑃𝐷,𝑘

𝑃𝐹,𝑘
+ 1 − 𝑑𝑘 ln

1−𝑃𝐷,𝑘

1−𝑃𝐹,𝑘

• Advantages

– Optimum performance

• Disadvantages

– Cannot be implemented in practice

Requires knowledge of both 𝑃𝐹,𝑘 and 𝑃𝐷,𝑘 which is unrealistic (because depending on 𝒙𝑇 and 𝜎𝑇
2)
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Generalized LRT (GLRT)

• Compute the LGLR using ML estimation

– 𝜆 = ln

max
𝒙𝑇;𝜎𝑇

2
𝑝 𝒅ℋ1; 𝒙𝑇; 𝜎𝑇

2

𝑝 𝒅ℋ0
= σ𝑘=1

𝐾 𝑑𝑘 ln
𝑃𝐷,𝑘 ෞ𝒙𝑇;

෢𝜎𝑇
2

𝑃𝐹,𝑘
+ 1 − 𝑑𝑘 ln

1−𝑃𝐷,𝑘 ෞ𝒙𝑇;
෢𝜎𝑇
2

1−𝑃𝐹,𝑘

– ෞ𝒙𝑇;
෢𝜎𝑇
2 = argmax

𝒙𝑇;𝜎𝑇
2
𝑝 𝒅 ℋ1; 𝒙𝑇; 𝜎𝑇

2

• Advantages

– System knowledge not required (e.g. local performance, sensing SNR, etc.)

– Excellent performance for both detection and localization tasks

• Disadvantages

– Requires optimization procedure for ML estimation (e.g. grid search)
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Randomly-Deployed Sensors
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Performance of GLRT and CR in Random WSNs

• Sensors are randomly generated in the sensor area

• Target (if present) is randomly generated in the target area

• Performance improves with sensing SNR

• The improvement of GLRT wrt CR is apparent
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Alternative Fusion Rules

• Bayesian approach

– Bayesian LLR

• Locally Optimum Detection (LOD) approach

– Generalized LOD (GLOD)

• Hybrid approach

– Bayesian/GLLR

– Bayesian/LOD 
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