

Using Bayesian Networks to quantify the reliability of a subsea system in the early design

J.Zhang, Y. Liu & M.A. Lundteigen L.Bouillaut

Contact: juntao.zhang@ntnu.no

The content

BackgroundState of subseaReliability modelling and quantification

	Introduction to Bayesian Networks
Proposed approach	Intended application

	Model
Illustrative example	Results and discussion

Concluding remarks Further work

State of subsea: Motivation

Reliability modelling and quantification

Background

Call for a (new) approach to address foreseeable situations of subsea systems in the early design.

NTNU

Norwegian University of Science and Technology

In the early design, **high-level uncertainty** is involved in many aspects.

State of subsea: the use case

Reliability modelling and quantification

High integrity pressure protection system (HIPPS):

- Located at subsea to de-rated the design pressure of long pipeline.
- Operate in low-demand mode.

Background

2003 logic Riser Pilot valve HIPPS Source PT2 PT3 PT1 HIPPS valve Predefined Leading to the reading 1. drift limits offset Influenced by various 2. factors Drift over time May experience 3. 0 different magnitude at Start with the same time minor offset

Receiving facilities

I NTNU Norwegian University of Science and Technology

ISO/TR 12489 (2013): reliability modelling and calculation

Approaches	5	Features	
Analytical formula		When complexity and redundancy is limited	
Boolean approache	S	Graphical features	
(e.g. Fault Tree Ana Reliability Block Di	Di Current reliability modelling		
Markovian approa	app	pproaches may not suffice for	
	the	purpose.	
Petri-net (PN) appro	oach	 A deep understanding of dynamic behaviour of mod Better approximation of reality 	del
Bayesian Networks	Networks • ?		

Proposed
approachIntroduction to Bayesian Networks: Literature reviewIntended application

Bayesian Networks (BNs) is not new for reliability assessment.

Title	Authors	Main contributions
Improving the analysis of dependable systems by mapping fault trees into Bayesian networks. 2001	Bobbio, A., Portinale, L., Minichino, M., & Ciancamerla, E.	Introduce how the fault tree can be translated into Bayesian Networks
The use of Bayesian network modelling for main planning in a manu industry.2010	Jones, B., Jenkinson, I., Yang, mpts to use BN fo	Re-estimate the reliability tional data.
Dynamic safety ana systems by mappin Bayesian network. 2013 proach for		
Performance evaluation of subsea BOP control systems using dynamic Bayesian networks with imperfect repair and preventive maintenance. 2013	Cai, B., Liu, Y., Fan, Q., Zhang, Y., Yu, S., Liu, Z., & Dong, X. (2013).	Includes the effect of imperfect repair and preventive maintenance

Bayesian Networks (BN):

 can be easily translated from Boolean approaches, and overcome some restrictions:

□ Involve the probabilistic logic gates and multi-states

- □ Model statistical dependencies, e.g. common cause failure
- The ability to **update the estimation** when new information is given:

Bayes' theorem:

Pr(U | E)Pr(E) = Pr(E | U)Pr(U)

• The variables can be **probabilistic distributed**, then we can outline the effect of uncertainty, e.g. beta distribution.

From Fault Tree to Bayesian Networks: probabilistic gate

Source: Bobbio, A., Portinale, L., Minichino, M., & Ciancamerla, E. (2001)
NTNU Norwegian University of Science and Technology

Introduction to Bayesian Networks: Modelling Proposed Proposed use of Bayesian Networks approach

From Fault Tree to Bayesian Networks: dependencies

In **Bayesian Formalism**, the CCF can be modelled by identifying the relationship between failure causes. The inclusion of dependent CCF could be avoided.

(a) Uncorrelated causes, (b) Correlated cause and (c) Common cause C_2

Norwegian University of Science and Technology

Bayesian Networks (BN):

- can be easily translated from Boolean approaches, and overcome some restrictions:
 - Involve the probabilistic logic gates and multi-states
 - □ Model statistical dependencies, e.g. common cause failure
- The variables can be **probabilistic distributed**, then we can outline the effect of uncertainty, e.g. beta distribution.
- The ability to **update the estimation** when new information is given:

Bayes' theorem:

Pr(U | E)Pr(E) = Pr(E | U)Pr(U)

Bayesian Networks (BN):

- can be easily **translated from Boolean approaches**, and overcome some restrictions:
 - □ Involve the probabilistic logic gates and multi-states
 - □ Model statistical dependencies, e.g. common cause failure
- The variables can be **probabilistic distributed**, then we can outline the effect of uncertainty, e.g. beta distribution.
- The ability to update the estimation when new information is given:

Bayes' theorem:

$$Pr(U|E)Pr(E)=Pr(E|U)Pr(U)$$

Illustrative	Models: updating
example	Result and discussion

The simple example for updating, given the observation.

Joint probability for a set of variables:

Pr(HIPPS, voted, Drift)=Pr(HIPPS|voted)Pr(voted|Drift)Pr(Drift)

Observe the failure!

Proposed
approachIntroduction to Bayesian Networks: Modelling
Intended application

Reliability influence factors (RIFs) are proven to have *theoretical and/or empirical grounded influence* failure. The RIFs will then represent *true likelihood of conditions* that we take into account to the basic events.

Intended use:

In the early design phase	In the later design phase	In the operational phase
Provide an approximate indication of reliability achievement of subsea innovation	Update the reliability estimates with data from full- scale testing.	Update estimates of the reliability based on forecasting and early detection of changes in trends.

Proposed use in the early design :

Allow the flexible inclusion of failure cause that cannot be fully revealed based on historical data.

Illustrative	Models: Assumption
example	Result and discussion

Assumptions for construct BN model

1. Sensor drift can impact the voting results.

2. The discrete value is assigned for each RIFs.

3. The selected RIFs can only influence the magnitude of sensor drift.

4. The sensor drift only has the effect on the dangerous failure (not spurious trip)

Simplified BN model for subsea HIPPS

Illustrative	Models: Data acquisition
example	Result and discussion

The generic RIFs can be found in (Brissaud et al., 2010)

Illustrative	Models for sensor drift
example	Main result

Main results:

- When considering the effect of drift, the PFDavg of HIPPS function during the first functional test interval (8760 hours) is now increasing by 8.97%.
- The states of sensor drift can be continuously updated based on the observation of failures. If no calibration, the PFDavg for the next functional test interval will be increased.

 During the first functional test interval, the most likely configuration is that only the valve is in the faulty state when other parts are functioning, and the probability of MPE is given as 0.004843.

lacksquare Norwegian University of Science and Technology

Conclusion:

- Provides a preliminary study of how Bayesian Networks can be used to model the specific phenomena (sensors drift):
 - Provides 'approximate' reliability estimates that reflects the best knowledge in the situation.
 - Continuously renewed through evidence collection, e.g. early simulation result.
- The proposed approach could be either simple or advanced, depending on the modelling strategy of different development phase.

Further work:

- Propose the new algorithm that adapt the observed data from other applications based on relevance.
- Study the physics behind sensor drift and how it contribute to different types of failures.

Thank for your attention!

J.Zhang, Y. Liu & M.A. Lundteigen Department of Production and Quality Engineering Norwegian University of Science and Technology, Trondheim, Norway

L.Bouillaut

University Paris-Est, IFSTTAR, GRETTIA, F-93166 Noisy-le-Grand, France