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1. Motivation: MC simulation is a necessity

3

Complex systems 

• High system states number
• Non constant failure (component

aging) and repair rates
• Components dependency: standby,

...
• Complex maintenance strategies:

spare parts, priority, limited
resources,…

• Multi-phase systems (MPS)
• Multi-state systems (MSS)
• Reconfigurable systems
• …

Analytical approaches
become impractical:

• Approximated
representation that does
not fit to the real system

• Extensive time for the
development of the
analytical model

• Infeasible

Simulation is required: a common
paradigm and a powerful tool for
analyzing complex systems, due to
its capability of achieving a closer
adherence to reality. It provides a
simplified representation of the
system under study.
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1. Motivation: example

4

Analytical approaches

Fault tree

Markov chains

C1 C2

S
Only one repair man 
is available with FIFO 
repair strategy C1*

C2*

λC1

λC2

λC1

λC2

C1
C2*

C1*
C2

C1 (1)
C2

C1
C2 (1)

μC1

μC2

μC1

μC2

Non constant repair
rates (e.g. lognormal)

• Markov chains
become impractical.

• Strong complications
for other analytical
approaches

MC simulation
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2. MC simulation principle : definitions
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 MC simulation may be defined as a process for obtaining
estimates (numeric values) for a given system (guided by a
prescribed set of goals) by means of random numbers.

 Monte Carlo is one of Monaco’s four quarters. The name
“Monte Carlo” was given by Nicholas Metropolis after the
Monte Carlo Casinos.

 Random numbers: a set of numbers that have nothing to do
with the other numbers in the sequence. Thus, for any n
random numbers, each appears with equal probability
(independent, identically distributed).
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2. MC simulation principle : history
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 The needle experiment of Comte de Buffon (Buffon's needles, 1733)
(french biologist, 1707-1788) :

D

L ≤ D

What is the probability p, that a needle (length L),
which randomly falls on a wooden floor, crosses one
of the lines (Lathes) (distance D)?

𝑝𝑝 =
2 𝐿𝐿
𝐷𝐷 Π⟹ Π =

2 𝐿𝐿
𝐷𝐷 𝑝𝑝 ≈

2 𝐿𝐿
𝐷𝐷 �

𝑁𝑁
𝑛𝑛

N: number of needles
n: number of needles that are crossing lines

 The real development of the Monte Carlo methods is performed, under the
leadership of Nicholas Metropolis, Stanislaw Marcin Ulam, Enrico Fermi
and John von Neumann during World War II and research towards the
development of nuclear weapons (Manhattan Project). In particular, they
used these probabilistic methods for solving certain types of differential
equation.
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2. MC simulation principle : Steps
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1. Problem analysis and information collection:
• Objective of the study (system oriented problem): reliability, availability, production,

design options,…
• System structure: its elements
• Input parameters: failure and repair rates, processing time, …
• Relationships between input parameters and performance measures
• Rules governing the operation of systems components

2. Model construction. It consists in constructing the model (conceptual) and
implementing it as a computer program:
• General-purpose language: C++, FORTRAN,…
• Special-purpose language: simulation tools.

3. Model verification and validation: make sure that the model conforms to
its specifications and does what it is supposed to do.

4. Simulation experiments. This step is achieved thanks to random numbers.
The evolution of the simulated system within a large number of Histories
allows to statistically assess the established performance measure
(average, variance, confidence interval, ...).
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2. MC simulation principle : determining Π (classic example)
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 Π is a ratio of a circle's circumference to its diameter: Π =
𝐶𝐶
𝐷𝐷

D = 2 𝑟𝑟

𝑟𝑟
D

• The area of circle = 𝚷𝚷 𝒓𝒓𝟐𝟐

• The area of square = 𝟒𝟒 𝒓𝒓𝟐𝟐
𝚷𝚷 = 4 �

Area of circle
Area of square

𝚷𝚷 ≈ 4 �
Number of dots inside the circle

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 number of dots

 Using the hit and miss method (with 𝑟𝑟 = 1):
• Generate two sequences of random numbers: Ri and Rj (i, j= 0,…, N)
•
•
• If

•

𝑥𝑥𝑖𝑖 = −1 + 2 𝑅𝑅𝑖𝑖 (distribution range for x)
𝑦𝑦𝑗𝑗 = −1 + 2 𝑅𝑅𝑗𝑗(distribution range for y)

𝑥𝑥𝑖𝑖2 + 𝑦𝑦𝑗𝑗2 ≤ 1 𝑇𝑇𝑡𝑡𝑡𝑛𝑛 𝑆𝑆 = 𝑆𝑆 + 1 (dot inside) 𝑡𝑡𝑇𝑇𝑒𝑒𝑡𝑡 𝑆𝑆 = 𝑆𝑆 (dot outside)

𝚷𝚷 ≈ 4 �
S
𝑁𝑁

Solution with Excel



9

2. MC simulation principle : integral calculus
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Xmin
xxmax

ymax

I = �
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓 𝑥𝑥 𝑑𝑑𝑥𝑥

𝑓𝑓 𝑥𝑥

𝐼𝐼
Area of the rectangle

≈
Number of dots under the curve

Total number of dots

𝑥𝑥𝑖𝑖 = 𝑇𝑇 + (𝑏𝑏 − 𝑇𝑇) 𝑅𝑅𝑖𝑖 (distribution range for x)
𝑦𝑦𝑗𝑗 = 𝑦𝑦𝑚𝑚𝑚𝑚𝑥𝑥 𝑅𝑅𝑗𝑗 (distribution range for y)

𝑦𝑦𝑗𝑗 ≤ 𝑓𝑓(𝑥𝑥𝑖𝑖) 𝑇𝑇𝑡𝑡𝑡𝑛𝑛 𝑆𝑆 = 𝑆𝑆 + 1 𝑡𝑡𝑇𝑇𝑒𝑒𝑡𝑡 𝑆𝑆 = 𝑆𝑆

𝑰𝑰 ≈ 𝑦𝑦𝑚𝑚𝑚𝑚𝑥𝑥 � (𝑏𝑏 − 𝑇𝑇) �
S
𝑁𝑁

Solution with Excel

 Using the hit and miss method (with 0 ≤ f(x) ≤ Ymax ):
• Generate two sequences of random numbers: Ri and Rj (i, j= 0,…, N)
•
•
• If

•

Example: 
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3. Random Numbers Generator (RNG)
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 The generation of random numbers R uniformly distributed in [0,1) can be
obtained physically by throwing a coin or dice, spinning the roulette,…

 Monte Carlo simulations is based on computer generation of pseudo random
numbers: the closest random number generator that can be obtained by
computer algorithm.

 In 1940's, von Neumann proposed to have the computer directly generate the
random numbers by means of an appropriate function: find the next number
Xi+1 from the preceding one Xi. He proposed the middle-square method: obtain
Xi+1 by taking the central digits of the square of Xi (Example: 57721566492 =
33317792380594909291).

 Linear congruential generators (LCG) : 𝑋𝑋𝑛𝑛+1 = 𝑇𝑇 � 𝑋𝑋𝑛𝑛 + 𝑐𝑐 mod 𝑚𝑚

𝑅𝑅𝑛𝑛+1 =
𝑋𝑋𝑛𝑛+1
𝑚𝑚

Algorithm generates 
integers between 0 and 
m, map to zero and one. 

a, c >= 0 , m > X0 , a, c 

)2mod()65539( 31
1 nn XX ×=+

 Example: RANDU generator (1960’s IBM)
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4. Probability distributions simulation: principle
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 Any given distribution can be generated from uniform random numbers
on [0,1]: U(0, 1).

0 1

1

Z

P(Z ≤ z) = U(z) 
= z

0

1

X

P(X ≤ x) = F(x)
= P(Z ≤ z)

x
X= F-1(Z)

 Principle: generating samples (x1, x2, ..., xn) of a random variable X (time to
failure, to repair, …) obeying any distribution F(x) from a sample (z1, z2, ...,
zn) of the variable Z equally distributed between 0 and 1 by performing the
transformation: xi = F-1 (zi).

 If the inversion of the distribution function cannot be performed explicitly,
a numeric solution of the equation F(xi) = zi can be exploited. In addition,
other simulation methods exist (rejection method,…).



12

4. Probability distributions simulation: some useful distributions
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 Uniform distribution: U(a, b)

𝑿𝑿 = 𝑏𝑏 − 𝑇𝑇 � 𝒁𝒁 + 𝑇𝑇Simulation:

 Exponential distribution: Exp(λ) 𝐹𝐹 𝑥𝑥 = 1 − 𝑡𝑡−𝜆𝜆𝑥𝑥

Example. Determine the MTTF and MTTR for a component with λ = 1E-4/h and μ=1E-1/h
(solution with Excel).

Simulation: 𝑍𝑍 = 1 − 𝑡𝑡−𝜆𝜆�𝑋𝑋

ln(1 − 𝑍𝑍) = −𝜆𝜆 � 𝑋𝑋

𝑋𝑋 = −
ln(1 − 𝑍𝑍)

𝜆𝜆

Z and 1-Z have the
same distribution

𝑿𝑿 = −
ln(𝒁𝒁)
𝜆𝜆
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4. Probability distributions simulation: some useful distributions
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 Weibull distribution: W(λ, β)
Failure rate

𝐹𝐹 𝑥𝑥 = 1 − 𝑡𝑡−
𝑥𝑥
𝜂𝜂

𝛽𝛽

Simulation: 𝑍𝑍 = 1 − 𝑡𝑡−
𝑋𝑋
𝜂𝜂

𝛽𝛽

ln(1 − 𝑍𝑍) = −
𝑋𝑋
𝜂𝜂

𝛽𝛽

𝑋𝑋 = 𝜂𝜂 −ln(𝑍𝑍)
1
𝛽𝛽

Scale 
parameter (η)

Shape 
parameter (β)

 Log Normal distribution: LN(μ, σ) or LN(m, EF)

𝑓𝑓 𝑥𝑥 =
1

𝑥𝑥𝜎𝜎 2Π
𝑡𝑡−

ln (𝑥𝑥)−𝜇𝜇 2

2𝜎𝜎2

𝜇𝜇 = ln (𝑚𝑚) −
𝜎𝜎2

2

𝜎𝜎 =
ln (𝑞𝑞5%)

1.64

)2cos()]ln(2[ 2
2
1

1 zz πν −=

𝑋𝑋 = 𝑡𝑡 𝜎𝜎 𝜈𝜈+𝜇𝜇

𝑍𝑍1 𝑍𝑍2

Average

Error
factor

Remark – Marvin book: 𝐹𝐹 𝑥𝑥 = 1 − 𝑡𝑡− 𝜆𝜆𝑥𝑥 𝛼𝛼
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5. Simulation History
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History 1

time

Work

Failure

Time To Failure (TTF)

Time To Repair (TTR)

History 2

time

Work

Failure

TTF and TTR are
generated
randomly according
to their respective
distribution
probabilities

t1 t2

Reliability:      R(t1) = 1;        R(t2) = 0
Availaibility:  A(t1) = 1; A(t2) = 0.5;
Mean unavailability:   Q(0, t2)=(TTR1/t2+ (TTR2+σ)/t2)/2 
Mean failure number:  W(0, t2)=(1+ 2)/2= 1.5
MTTF = (TTF1,1+TTF2,1)/2 
…

TTR1,1 TTR1,2

TTR2,1 TTR2,2

σ

TTF1,1 TTF1,2

TTF2,1 TTF2,2

The results accuracy
depends on the number
of stories: to obtain an
accurate result, it is
necessary to perform a
large number of stories.
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6. Output analysis and accuracy
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 Statistical analysis of the simulated data sample of size n (number of histories or
replications).

n histories

n independent observations: 
xi : i = 1,…,n.

Point estimation

�𝑋𝑋 =
1
𝑛𝑛 �

𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖 𝑆𝑆2 =
1
𝑛𝑛 �

𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖 − �𝑋𝑋 2

Sample mean Sample variance

Confidence interval estimation

Confidence interval quantifies the
confidence (probability) that the true
(but unknown) statistical parameter
falls within an interval whose
boundaries are calculated using point
estimates.

𝑷𝑷𝒓𝒓 �𝑿𝑿 − 𝒆𝒆 ≤ 𝝁𝝁 ≤ �𝑿𝑿 + 𝒆𝒆 = 𝟏𝟏 − 𝜶𝜶
Central limit theorem

𝑷𝑷𝒓𝒓 �𝑿𝑿 − 𝒛𝒛𝟏𝟏−𝜶𝜶𝟐𝟐
⋅
𝒔𝒔
𝒏𝒏
≤ 𝝁𝝁 ≤ �𝑿𝑿 + 𝒛𝒛𝟏𝟏−𝜶𝜶𝟐𝟐

⋅
𝒔𝒔
𝒏𝒏

= 𝟏𝟏 − 𝜶𝜶 �𝑿𝑿 ± 𝒛𝒛𝟏𝟏−𝜶𝜶𝟐𝟐
⋅
𝒔𝒔
𝒏𝒏

Quantiles of the
standardized normal 

distribution Accuracy is 
proportional to 𝟏𝟏

𝒏𝒏

Example: find the confidence
interval for MTTF at a
confidence of 90 % (slide 12).

Brukernavn
Presentasjonsnotater
It might be interpreted as: with probability 1-alpha we will find a confidence interval in which the value of parameter mu will be between the stochastic endpoints (lower and upper bounds). It does not mean that there is 1-alpha probability that the value of parameter mu is in the interval obtained using the currently computed values of the sample mean and standard deviation. 
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7. Example
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 Consider a periodically tested component: once occurred, the failures of
such component remain hidden until the next periodic test. Failures and
repairs follow exponential distributions with rates 2.5E-3/h and 0.1/h,
respectively. The duration between two successive periodic tests is 1000
h.

1. Establish 3 histories, each having a duration of 4500 hours, using the following
random numbers according to their order of appearance:

- History n°1 : 0.0235177 ;  0.13534 ;  0.082085 ;  0.00674 ;  0.006738.
- History n°2 : 0.28650 ;  0.00674 ;  0.093014 ;  0.36788 ;  0.0024788 ;  0.000045.
- History n°3 : 0.0024788 ;  0.36788 ;  0.0235177.   

2. Compute the mean availability of the component.
3. Compute its availability and reliability at t = 3000 h. 
4. Compute the MTTF. 
5. Estabilsh the confidence interval for the MTTF (confidence = 90 %). What can

you deduce ? 
6. Compute the MUT and MDT of the component. 



W

F

States 

Test 1
(1000)

Test 2
(2000)

Test 3
(3000)

Test 4
(4000)

 
   

Restoration completed
(2020)

RT11= 20 hTTF1 = 1500 h 

DT11= 520 h

UT11 = 1000 h 

3020

RT12= 50 h

DT12= 1030 h

4050

U

 TTF: Time To first Failure
 RT: Repair Time
 DT: Down Time 
 UT: Up Time  

History 1: 

17

A1: histories 
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 TTF1 = - Ln(0.0235177)/2.5E-3 = 1500 h

 RT11 = - Ln(0.13534)/0.1 = 20 h

DT11 = time required for failure detection + repair time =      2000 -1500 + 20 = 520 h

 UT11 = - Ln(0.082085)/2.5E-3 = 1000 h

 RT12 = - Ln(0.00674)/0.1 = 50 h

 DT12 = time required for failure detection + repair time =    4000-3020 + 50 = 1030 h

 UT*12 = - Ln(0.006738)/2.5E-3 = 2000 h. 

 UT12 : we only keep from UT*12 the part included in the history duration:           

4500 – 4050 = 450 h

18
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W

F

States 

Test 1
(1000)

Test 2
(2000)

Test 3
(3000)

Test 4
(4000)

4  
(    
s1050

RT21= 50 h

 TTF2 = - Ln(0.2865)/2.5E-3 = 500 h

 RT21 = - Ln(0.00674)/0.1 = 50 h

DT21 = 1000 -500 + 50 = 550 h

 UT21 = - Ln(0.093014)/2.5E-3 = 950 h

 RT22 = - Ln(0.36788)/0.1 = 10 h

TTF2 = 500 h 

DT21= 550 h

UT21 = 950 h 

2010 4410

UT22 = 2400 h 

History 2: 

500  

RT22=DT22= 10 h DT23 =   

 DT22 = 0+ 10 = 10 h

 UT22 = - Ln(0.0024788)/2.5E-3 = 2400 h  

 RT23 : - Ln(0.000045)/0.1 = 100 h

 DT*23 = 590+ 100= 690 h

DT23 :  4500 – 4410 = 90 h

19
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W

F

States 

Test 1
(1000)

Test 2
(2000)

Test 3
(3000)

Test 4
(4000)

 
   

RT31= 10 h
TTF3 = 2400 h 

DT31= 610 h

UT31 = 1490 h 

3010

History 3: 

UT*31 = 1500 h 

 TTF3 = - Ln(0.0024788)/2.5E-3 = 2400 h

 RT31 = - Ln(0.36788)/0.1 = 10 h

DT31 = 3000 -2400 + 10 = 610 h

 UT*31 = - Ln(0.0235177)/2.5E-3 = 1500 h

UT31 =  4500 – 3010 = 1490 h

20
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A2. Mean availability : Aavg [0, 4500 h]

= [(TTF1+UT11+UT12)/4500 + (TTF2+UT21+UT22)/4500 + (TTF3+UT31)/4500]/3 

= [(1500 + 1000+ 450)/4500 + (500 + 950 + 2400)/4500+ (2400 + 1490)/4500]/3

=  0.792  

Aavg [0, 4500 h]    

A3: 
 Availability at t = 3000 h : A (3000) = (1 + 1 + 0) /3 = 2/3 = 0,667
 Reliability at t = 3000 h : R (3000) = (0 + 0 + 0) /3 = 0

A4: MTTF = (TTF1+TTF2+TTF3)/3 = (1500 + 500 + 2400)/3= 1466,667 h. 

A5: confidence interval (CI) at 90 % for the MTTF :   

[ ])3/(64.1),3/(64.1 sMTTFsMTTF ⋅+⋅−

hMTTFTTF
i

i 0298.7763/)(
3

1

2 =−= ∑
=

σ
with : 

[ ]hh 454.2201,880.731

CI =  

CI =  

This interval is very wide. This is due to
reduced number of stories (3) (non-
representative sample): it is therefore
necessary to significantly increase the
number of histories.

21
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A6: MUT et MDT :

MUT =  [(UT11+UT12)/2 + (UT21+UT22)/2 + UT31]/3 

MDT =  [(DT11+DT12)/2 + (DT21+DT22+DT23)/3 + DT31]/3

= [(1000+ 450)/2+ (950 + 2400)/2+ 1490]/3
= 1296.66667 h.  

= [(520+ 1030)/2+ (550 + 10+90)/2+ 610]/3
= 533.889 h.   

22
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7. MC simulation and uncertainty propagation

23

 Monte Carlo method is generally used to perform uncertainty study. This
technique has become the industry standard for propagating
uncertainties. It provides an efficient and straightforward way for this
purpose.

 Uncertainty propagation shows how the uncertainty of input parameters
(failure rate, for instance) spreads onto the output of the model at hand.

1. Construct a probability density function (pdf) for each input parameter (pdf
reflects state of knowledge about the value of the parameter).

2. Generate one set of input parameters by using random numbers according to
pdfs assigned to those parameters.

3. Quantify the output function using the above set of random values. The obtained
value is a realization of a random variable (X).

4. Repeat steps 2 to 3 n times (until a sufficient number, e.g. 1000) producing n
independent output values. These n output values represent a random sample
from the probability distribution of the output function.

5. Generate statistics from the obtained sample for the output result: mean,
standard deviation σ, confidence interval, etc.

 Steps:
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7. MC simulation and uncertainty propagation: IEC 61508 standard

24

 Route 2H: the IEC 61508 standard (clause 7.4.4.3.3) stipulates that “If
route 2H is selected, then the reliability data uncertainties shall be taken
into account when calculating the target failure measure (i.e. PFDavg or
PFH) and the system shall be improved until there is a confidence greater
than 90 % that the target failure measure is achieved”.

 The confidence on the obtained SIL according to the value of PFDavg or PFH
may be established by checking that the upper limit of the confidence
interval is encompassed in the corresponding required SIL zone. Also, a
direct measure is the evaluation of the cumulated density function (cdf) at
the target performance measure (PFDmax, PFHmax): Pr 𝑿𝑿 ≤ 𝑷𝑷𝑷𝑷𝑷𝑷𝒎𝒎𝒎𝒎𝒎𝒎 .
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7. MC simulation and uncertainty propagation: probability
distributions

25

Probability 
distribution for the 
variable x

Probability density function (pdf) and its 
main properties

Comments and propositions to handle uncertainties

Uniform (a, b)

𝑓𝑓 𝑥𝑥 = �
1

𝑏𝑏 − 𝑇𝑇
𝑖𝑖𝑓𝑓 𝑇𝑇 ≤ 𝑥𝑥 ≤ 𝑏𝑏

0 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑟𝑟𝑜𝑜𝑖𝑖𝑒𝑒𝑡𝑡
𝑀𝑀𝑡𝑡𝑇𝑇𝑛𝑛 = 𝑀𝑀𝑡𝑡𝑑𝑑𝑖𝑖𝑇𝑇𝑛𝑛 = ⁄(𝑇𝑇 + 𝑏𝑏) 2
𝑀𝑀𝑇𝑇𝑑𝑑𝑡𝑡 = any value in [a, b]

𝑆𝑆𝑇𝑇𝑑𝑑 = ⁄(𝑏𝑏 − 𝑇𝑇) 12

- This distribution expresses a big lack of knowledge about the
parameter value (non-informative). The source of data provides an
interval [a, b].

- Simulation: 𝑥𝑥 = 𝑇𝑇 + 𝑟𝑟𝑇𝑇𝑛𝑛𝑑𝑑 � (𝑏𝑏 − 𝑇𝑇) , where rand is a number
uniformly distributed between 0 and 1. MATLAB use directly the
function unifinv (rand, a, b).

Triangular (a, b, c)

𝑓𝑓 𝑥𝑥 =

2 𝑥𝑥 − 𝑇𝑇
𝑏𝑏 − 𝑇𝑇 � 𝑐𝑐 − 𝑇𝑇

𝑖𝑖𝑓𝑓 𝑇𝑇 ≤ 𝑥𝑥 ≤ 𝑐𝑐

2 𝑏𝑏 − 𝑥𝑥
𝑏𝑏 − 𝑇𝑇 � 𝑏𝑏 − 𝑐𝑐

𝑖𝑖𝑓𝑓 𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑏𝑏

0 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑟𝑟𝑜𝑜𝑖𝑖𝑒𝑒𝑡𝑡
𝑀𝑀𝑡𝑡𝑇𝑇𝑛𝑛 = ⁄(𝑇𝑇 + 𝑏𝑏 + 𝑐𝑐) 3

𝑀𝑀𝑇𝑇𝑑𝑑𝑡𝑡 = 𝑐𝑐

𝑆𝑆𝑇𝑇𝑑𝑑 = (𝑏𝑏 − 𝑇𝑇)2+(𝑐𝑐 − 𝑇𝑇)(𝑐𝑐 − 𝑏𝑏) /18

- The distribution is more precise than the Uniform distribution. The
source of data provides, beside a and b, an estimation of the most
likely value of the parameter: c. Using the Mean value, one may
compute c (if not available).

- Simulation: MATLAB does not include this law. So, one can use the
following:

𝑀𝑀 =
𝑐𝑐 − 𝑇𝑇
𝑏𝑏 − 𝑇𝑇

𝑅𝑅 = 𝑟𝑟𝑇𝑇𝑛𝑛𝑑𝑑

𝑥𝑥 = �
𝑇𝑇 + 𝑐𝑐 − 𝑇𝑇 � 𝑏𝑏 − 𝑇𝑇 � 𝑅𝑅 , 𝑖𝑖𝑓𝑓 𝑅𝑅 ≤ 𝑀𝑀

𝑏𝑏 − 𝑏𝑏 − 𝑐𝑐 � 𝑏𝑏 − 𝑇𝑇 � 1 − 𝑅𝑅 , 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑟𝑟𝑜𝑜𝑖𝑖𝑒𝑒𝑡𝑡
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Lognormal (μ, σ)

f x =
1

xσ 2π
� exp

−(ln x − µ)2

2σ2

where: x > 0; −∞ < µ < ∞; σ > 0

Mean = exp µ +
σ2

2

Std = exp µ +
σ2

2
� exp(σ2) − 1

Median = x50 = exp µ

x95 = exp µ + 1.645 σ

x05 = exp µ − 1.645 σ

EF =
x50
x05

=
x95
x50

= exp 1.645 σ

- The lognormal distribution is used frequently in safety and reliability
studies to model uncertainty. The distribution is skewed to the right,
it allows therefore a pessimistic value of x.

- The source of data provides the average value of x or its point
estimate (�x) and an uncertainty range (EF: error factor): e.g., EF= 10.
In that case, we may assume that �x = x50. By doing so, one can
derivate μ and σ using equations that give the Mean and EF.

- The source of data provides the average value of x or its point
estimate (�x) and an estimation of the standard deviation σ (e.g. λ =
1E–4 ± 1E–5). In that situation, one can derivate μ and σ for the
lognormal distribution using equations that give the Mean and Std.

- The source of data provides the average value of x or its point
estimate (�x), lower and upper bounds (xL, xU). One could assume that
these bounds x05 and x95, respectively. The problem been over-
determined, the use of two among the three available (the most
accurate) value gives μ and σ for the lognormal distribution.

- Simulation: MATLAB use the function logninv (rand,μ,σ), by
implementing a numeric approach.

Gamma (α, β)

𝑓𝑓 𝑥𝑥 =
𝑥𝑥𝛼𝛼−1

𝛽𝛽𝛼𝛼Γ(𝛼𝛼)
� exp −

𝑥𝑥
𝛽𝛽

where: 0 < 𝑥𝑥 < ∞; 𝛼𝛼 > 0; 𝛽𝛽 > 0

𝑀𝑀𝑡𝑡𝑇𝑇𝑛𝑛 = 𝛼𝛼𝛽𝛽

𝑀𝑀𝑇𝑇𝑑𝑑𝑡𝑡 = 𝛽𝛽 𝛼𝛼 − 1 𝑓𝑓𝑇𝑇𝑟𝑟 𝛼𝛼 ≥ 1

𝑆𝑆𝑇𝑇𝑑𝑑 = 𝛽𝛽 𝛼𝛼

- The Gamma distribution can be a posterior distribution obtained
using a Bayesian approach.

- All information provided above, especially for the lognormal
distribution, may be used to compute α and β, once the Mean and
Std are available or calculated.

- Simulation: MATLAB use the function gaminv(rand,α,β), by
implementing a numeric approach.
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Chi-square (k):
𝜒𝜒𝑘𝑘2

f x =
x
k
2−1

2(k2) Γ(k
2)
� exp −

x
2

where: 0 < x < ∞

k ∈ N (degree of freedom)

Mean = k

Mode = max(k − 2, 0)

Std = 2k

- The χ2 distribution is a special case of the gamma distribution where β = 2
and α =k/2.

- For n observed failures over a cumulated observation time T, it is
established that the failure rate (λ) follows the distribution χ2n2 /2T. In
that condition:

Mean =
k

2T
=
α
T

=
n
T

the point estimate of λ: �λ .

Std = 2k
2T

= 1
T

k
2

= 1
T

α = 1
T

n. Therefore, if the Mean and Std are

provided, one can easily derivate parameters for the gamma distribution (α=n
and β=1/T) and vice versa.

Simulation: x = 1/(2T) . chi2inv (rand, 2n).  

Beta (α, β)
𝑓𝑓 𝑥𝑥 =

Γ(𝛼𝛼 + 𝛽𝛽)
Γ(𝛼𝛼) ⋅ Γ(𝛽𝛽)

� 𝑥𝑥𝛼𝛼−1(1 − 𝑥𝑥)𝛽𝛽−1

where: 0 ≤ 𝑥𝑥 ≤ 1; 𝛼𝛼 > 0; 𝛽𝛽 > 0

𝑀𝑀𝑡𝑡𝑇𝑇𝑛𝑛 =
𝛼𝛼

𝛼𝛼 + 𝛽𝛽

𝑀𝑀𝑇𝑇𝑑𝑑𝑡𝑡 =
𝛼𝛼 − 1

𝛼𝛼 + 𝛽𝛽 − 2
𝑓𝑓𝑇𝑇𝑟𝑟 𝛼𝛼 > 1; 𝛽𝛽 > 1

𝑆𝑆𝑇𝑇𝑑𝑑 =
𝛼𝛼𝛽𝛽

(𝛼𝛼 + 𝛽𝛽)2 ⋅ (𝛼𝛼 + 𝛽𝛽 + 1)

- The Beta distribution can be a posterior distribution obtained using a 
Bayesian approach (only for  0 ≤ 𝑥𝑥 ≤ 1). 

- If the bounds of x are more accurate or out of that range [𝑥𝑥𝐿𝐿, 𝑥𝑥𝑈𝑈] ≠ [0, 1], 
the Mean and Std become: 

𝑀𝑀𝑡𝑡𝑇𝑇𝑛𝑛 = 𝑥𝑥𝐿𝐿 + (𝑥𝑥𝑈𝑈 − 𝑥𝑥𝐿𝐿) ⋅
𝛼𝛼

𝛼𝛼 + 𝛽𝛽

𝑆𝑆𝑇𝑇𝑑𝑑 = (𝑥𝑥𝑈𝑈 − 𝑥𝑥𝐿𝐿) ⋅
𝛼𝛼𝛽𝛽

(𝛼𝛼 + 𝛽𝛽)2 ⋅ (𝛼𝛼 + 𝛽𝛽 + 1)

- If the Mean and Std are provided, the solving of the above equations 
gives α and β for the Beta distribution. 

- If Std is not available, one may use the approximation: Std =(𝑥𝑥𝑈𝑈 − 𝑥𝑥𝐿𝐿)/6).
- Simulation: x = 𝑥𝑥𝐿𝐿+ (𝑥𝑥𝑈𝑈 − 𝑥𝑥𝐿𝐿)·betainv (rand, α,β). 
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Paper: H. Jin, M. A. Lundteigen & M. Rausand

Uncertainty assessment of reliability estimates for safety instrumented systems

Excel solution

Log-normal :
Median = 3E-7
EF=2 

Log-normal :
Median = 0.1
EF=2 

Uniform :
a = 1.5
b=2 

- Compute the PFDavg
- Establish the confidence interval at 90 %
- Compute the confidence to comply with the different SILs (1, 2, 3, 4)
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