Finite Degradation Structures Future Tool for RAMS Analysis

Liu Yang⁽¹⁾ & Prof. Antoine B. Rauzy^(1,2)

(1) Department of Mechanical and Industrial Engineering Norwegian University of Science and Technology Trondheim, Norway

(2) Chair Blériot-FabreCentraleSupélec / SAFRANParis, France

Agenda

Background

Finite Degradation Structures

Why multi-states?

Definition

State-space

Finite Degradation Calculator

Use Cases

Future Tool for RAMS Analysis

Background

Models for RAMS analysis

Background

Where things start...

Combinatorial (static) Models

which can be composed bottom-up by sub-blocks

Multi-states (dynamic) Models

Not combinatorial

RAMS Models

Summary

	Туре	Theoretical Basis	
Static / Boolean models	Reliability Block Diagram	Boolean algebra	
	Fault Trees		
	Event Trees	(If-then-else)	
Dynamic / multi-states models	Markov Chain	Finite-state	
	Petri Nets	automaton	
	Dynamic Fault Trees (Boolean)	(Priority of events) (if-then-else)	

RAMS Models

Summary

	Туре	Theoretical Basis	
Static / Boolean models	Reliability Block Diagram	Boolean algebra	
	Fault Trees		
	Event Trees	(If-then-else)	Logic relation
Dynamic / multi-states models	Markov Chain	Finite-state	+ Multi-states components + States transition = ?
	Petri Nets	automaton	
	Dynamic Fault Trees (Boolean)	(Priority of events) (if-then-else)	

Solution

Finite Degradation Calculator

Logic relation + Multi-states components + States transition = ?

Agenda

Background

Finite Degradation Structures

Why multi-states?

Definition

State-space

Finite Degradation Calculator

Use Cases

Future Tool for RAMS Analysis

Why having multi-states?

[1] Lisnianski, A., Frenkel, I., & Ding, Y. (2010). *Multi-state system reliability analysis and optimization for engineers and industrial managers*. Springer Science & Business Media.

Agenda

Background

Finite Degradation Structures

Why multi-states?

Definition

State-space

Finite Degradation Calculator

Use Cases

Future Tool for RAMS Analysis

Definition by graphs

Agenda

Background

Finite Degradation Structures

Why multi-states?

Definition

State-space

Finite Degradation Calculator

Use Cases

Future Tool for RAMS Analysis

Combinatorial while having multi-states

Agenda

Background

Finite Degradation Structures

Why multi-states?

Definition

State-space

Finite Degradation Calculator

Use Cases

Future Tool for RAMS Analysis

Finite Degradation Calculator

Finite Degradation Calculator

- (1) **Define** the <u>finite degradation structure</u> of each component
 - (2) Assign the probability distribution of each state of each component --
 - (3) **Mapping** the set of states from component-level to system-level

Manual calculation
Bayesian networks
Markov chains
...

Calculate the reliability function R(t) of a system composed by multi-states components

Agenda

Background

Finite Degradation Structures

Why multi-states?

Definition

State-space

Finite Degradation Calculator

Use Cases

Future Tool for RAMS Analysis

Finite Degradation Calculator

	$\lambda_{A/B}$	$\mu_{A/B}$
VC	1.26E-04	0.002
PIO	2.28E-04	0.002
DY	1.59E-04	0.002
CI-TC	1.20E-04	0.002
CI-GS	3.10E-05	0.002

	$\lambda_{A/B}$	$\mu_{A/B}$
CI-LEU	9.20E-05	0.002
CI-CBI	2.10E-05	0.002
CI-TSRS	2.10E-05	0.002
CI-ADTCC	2.10E-05	0.002

TCC system:

- If at least one of the "red" failures happens, the system is failed.
- If none of the "red" failures happen and at least one of the "yellow" failures happens, the system is degraded.
- Else, the system is working.

Reliability function R(t)?

Finite Degradation Calculator

VC

Finite Degradation Calculator

42

Finite Degradation Calculator

AltaRica+

Use Case 2: Cascading Failure

Agenda

Background

Finite Degradation Structures

Why multi-states?

Definition

State-space

Finite Degradation Calculator

Use Cases

Future Tool for RAMS Analysis

Finite Degradation Calculator

Calculate the reliability function R(t) of multi-states system:

- Allow having multi-states components
- Allow parallel/series relationship between components
- Allow dependencies
 - · ...

1

Finite Degradation Calculator

Finite Degradation Calculator

Calculate the reliability function R(t) of multi-states system

RAMS analysis

- Generate minimal cut sets
- Identify critical states
- Calculate importance measures
- · ...

1

2

f (system failure) = (<u>A = F1 \land <u>B</u> \ge D) \lor <u>C = F</u></u>

Future Tool for RAMS Analysis

Finite Degradation Calculator

AltaRica+

Theoretical Bases

• Cover:

Reliability Block Diagrams, Fault Trees, Event Trees, Markov Chains, Petri Nets, Dynamic Fault Trees, Bayesian Networks.

- Any combination of the models above
- Others...

• Cover:

Reliability Block Diagrams, Fault Trees, Event Trees, Markov Chains, Petri Nets, Dynamic Fault Trees, Bayesian Networks.

Future Tool for RAMS Analysis

