

Norwegian University of Science and Technology

Performance Assessment of Redundancy Strategies for Systems Subject to Random Shocks

RAMS Seminar April 7, 2022

PhD Candidate: Emefon Dan

Supervisors: Prof. Yiliu Liu and Prof. Jørn Vatn

Outline

- Introduction
- Objective
- Case study
- Modelling Approach
- Performance assessment results
- Summary
- Further considerations

Introduction

- Redundancy means the use of two or more items or components to fulfil a specific performance or functional requirement of a system.
- Essential for achieving high system reliability and availability.
- Additional benefit is load sharing between active components.
- Broadly classified into:
 - Active
 - Passive

Introduction

- Traditional assessment assumes independence.
- Most works that consider dependence mainly focus on failures due to workload.
- In some cases, the system are also subject to random shocks that affect the performance.

Objective

• Assess the performance of two redundancy strategies for a system that is subject to degradation due to workload and random shocks.

Case Study – Subsea Multiphase Pumps [1]

- We consider a subsea multiphase pump (MPP) system with 3 pumps installed.
- The system is used to increase the production from subsea oil and gas wells.
- Based on the forecasted production profile, two pumps are sufficient to meet the required capacity from the system.

Fig. Typical subsea field layout with wells connected to a central manifold, a pump station (in red) and a topside facility

Source: Ekerberg et. al.(2022)[1]

Degradation Mechanism

- Erosion and abrasion due to sand production.
- Sand screens are installed at the wellbore to mitigate wear effects on pumps.
- Continuous sand production erodes the sand screen leading to failure of the sand screen and resulting accidental sand event (shock).
- The sand event has a detrimental impact on the pump performance.

Fig. A transient sand event effect on the MPP performance. *Source: Ekerberg et. al.*(2022)[1]

Assumptions

- We assume that each pump can contribute 60% towards the required production from the system but depends on the state of the pump.
- Each active pump can be in 3 discrete states:
 - Working (W) 60%
 - **−** Degraded (D) − 45%
 - **-** Failed (F) − 0%
- Total output from the system depends on number and state of active pumps.
- Random sand events affects all active pumps. The state of the pump is worse after the event.

Assumptions

- In the active redundancy set-up, all 3 pumps are running from the start and share the load.
- In the passive redundancy, 2 pumps share the load from the start while one pump is on standby.
- Standby pump is activated only when required, total output < 100%.
- There is a fixed probability, of not being able to activate the standby unit on demand.

Modelling Framework

- We assume that transition between discrete states of the pump follows a Markov process with constant transition rates.
 - $\lambda_{\rm w}$ between W and D
 - $-\lambda_d$ between D and F
- The occurrence of random sand events has a constant rate of arrival, λ_s .
- Repair is done on system level and carried out when the total output is below 100.
- There is a deterministic delay before repair.
- Repair is assumed to put the system back in as good as new state.

State transition

Possible transitions (Active)

Unacceptable system Performance Acceptable system Performance Output < 100% Output = 100% 2D1F 1D2F 3D 1W2D 1W2F 1W1D 2W1D 2W1F 3W

3F

Possible transitions (Passive)

Dependence modelling

- To incorporate load sharing into our system model, we apply a dependence function.
- Failure rate with k functioning components is given as:

$$\lambda_0$$
. $g(k)$

 Where g(k) is the dependence function defined as:

$$g(k) = (\frac{1}{k})^c$$

- c is the load sharing factor. Higher values of c means that redundant components benefits more from load sharing.
- Some special cases:
 - c = 0. No load sharing
 - 0 < c < 1. Weak load sharing
 - c = 1. Proportional load sharing
 - c > 1. Strong load sharing

Performance Assessment

Average production:

$$\sum_{j} \theta_{j} . j$$

- Where θ_j is the proportion of time the system spends in states with total output j
- Average Production loss: 100 Average production
- Frequency of shocks:
 - Once in 5 years (less frequent)
 - Once per year (medium)
 - Twice per year (high frequency)
- Monte-carlo simulation with 20000 simulations.
- Mission time: 5 years

PARAMETER	DESCRIPTION	VALUE
λ_W	Transition rate from new to degraded state	2×10^{-4}
λ_D	Transition rate from degraded to failed state	4×10^{-4}
p	Probability of switch failure	0.01
RD	Delay before repair	730

Performance Assessment

Summary

- Two redundancy strategy is assessed:
 - Active with load sharing
 - Passive with cold standby
- System performance depends on the frequency of shocks to the system but also on the degree of load sharing.
- For low frequency of shocks, active redundancy strategy has a better performance than passive redundancy especially when the degree of load sharing is high $(c \ge 1)$
- For high frequency of shocks, the passive redundancy has a better performance

Further works

- Consider a continuous degradation model. How to incorporate load sharing into such model.
- Find the optimal maintenance strategy with this model.

References

- 1. Ekeberg, I., Bibet, P., Knudsen, H., Reimers, Ø., and Torbergsen, E. (2022). Sand management and erosion prediction in subsea multiphase pumps. Journal of the Global Power and Propulsion Society, 6, pp.24-38. https://doi.org/10.33737/jgpps/145322
- 2. Yu, H., Chu, C., Châtelet, Ė. and Yalaoui, F., 2007. Reliability optimization of a redundant system with failure dependencies. Reliability Engineering & System Safety, 92(12), pp.1627-1634.
- 3. Olde Keizer, M. C. A., et al. (2018). "Condition-based maintenance for systems with economic dependence and load sharing." International Journal of Production Economics **195**: 319-327.

Thank you