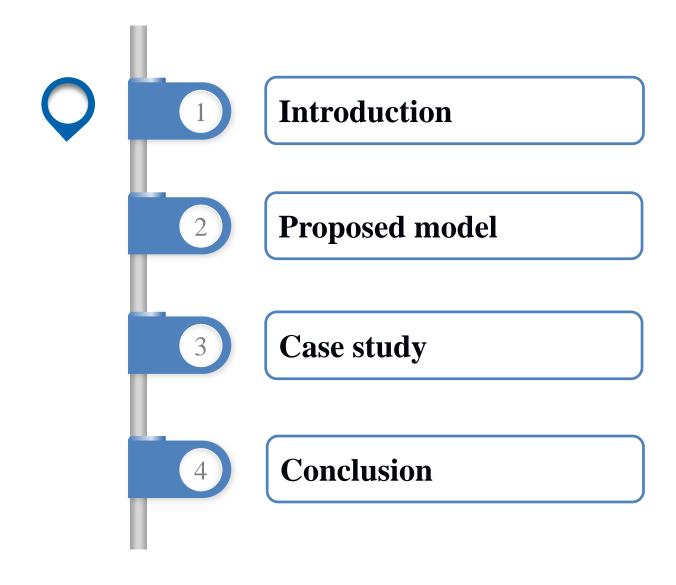
Reliability Assessment for Subsea HIPPS Valves with Partial Stroke Testing

Shengnan Wu

Co-authors: L. Zhang & S. Liu Y. Liu & A. Barros & M.A. Lundteigen

China University of Petroleum-Beijing
Norwegian University of Science and Technology
2016.09.27

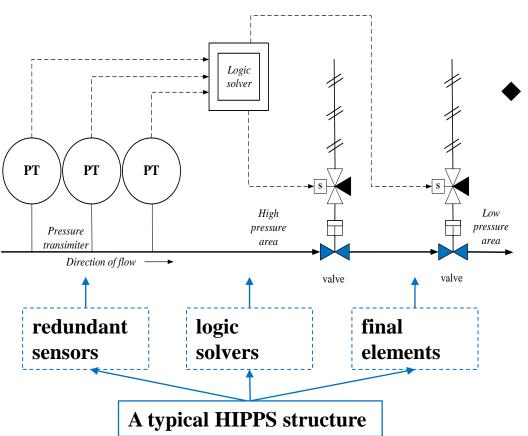
Contents



1.1 Background

What is the HIPPS?

high-integrity pressure protection system



- What kind of function can it perform?
 - Prevent pressure build-up
 - Avoid loss of containment
 - Prevent hazardous events
 - Mitigate the consequences

1.1 Background

Requirements from standards

- <u>IEC 61508</u>
- IEC 61511

HIPPS valves as the last safety barriers are always operated in low demand mode.

- ◆ Safety integrity level (SIL)
- ◆ Average probability of failures on demand (PFDavg)
- ◆ Regular proof testing (PT) of all SIS functions

SILs for low-demand SISs

SIL	$\mathbf{PFD}_{\mathbf{avg}}$
SIL4	10 ⁻⁵ to 10 ⁻⁴
SIL3	10 ⁻⁴ to 10 ⁻³
SIL2	10 ⁻³ to 10 ⁻²
SIL1	10 ⁻² to 10 ⁻¹

1.1 Background

Why do we choose the partial stroke testing(PST)?

- PST
- Advantages

- ◆ PST of HIPPS valves, as a supplement to PT and partially operate a valve and reveal several types of dangerous failures
- > Perform without any extra production disturbances
- Avoid the loss of production and reduce economic loss
- > Reduce wear of the valve seat area and sticking seals
- > PFDavg is reduced if without changing the PT interval

1.2 Research Status

There have been a high number of PFDavg approaches that encounter the influence of PT and PST

Proposed formulation	Influence factors	Limitations	Authors
Establish generalized formulations using multi-phase Markov models	Regular partial, full proof tests and repair time	Degradation effect is not considered	Innal, Lundteigen, Liu, and Barros (2016)
Develop approximate generalized expressions by mathematics	Regular partial, full proof tests and CCFs	Degradation effect and postpone repair is not considered	Jin and Rausand (2014)
Develop generalized expressions by multi-objective genetic algorithm to optimize design and test policy of SIS	CCF, diagnostic coverage, lifecycle cost and spurious trip rate	Degradation effect is not considered and postpone repair is not considered	Torres- Echeverría, Martorell, and Thompson (2012)

1.3 Motivation

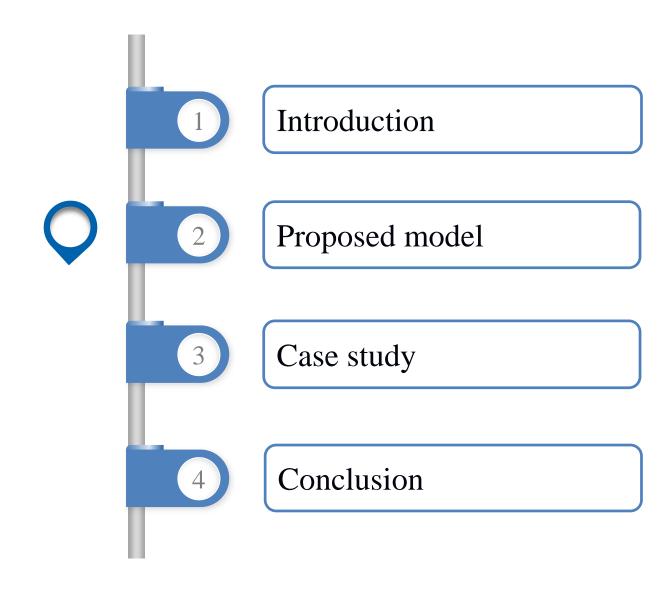
The existing literatures focus to a large extent on the reliability assessment of SIS based on assumptions that are questionable in a subsea context, for example:

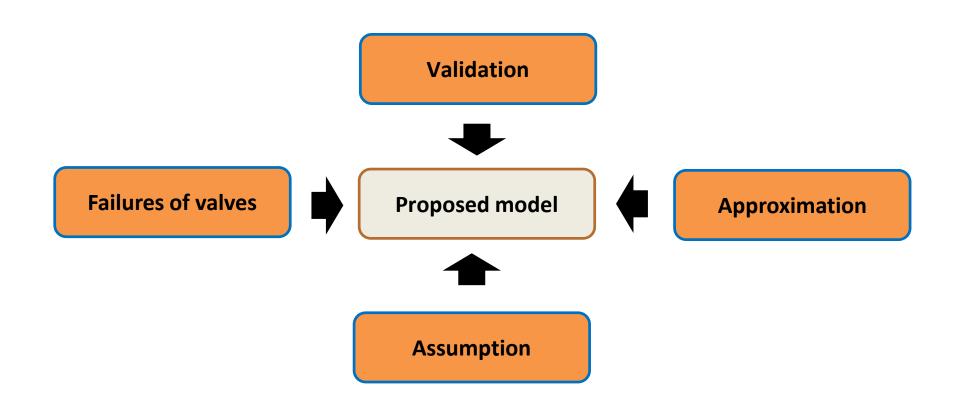
- ◆ The failure rates are generally assumed to be constant.
- The time to repair a revealed DU-failures has been considered to be negligible.

In order to overcome these limitation, new approximate PFDavg formulations are developed by taking into account:

- Non-constant failure rate
- Postpone repair

Contents





2.1 Failures of valves

For valves, dangerous undetected(DU) failures are considered here.

Two types of DU failure modes of valves

Failures of detected by PST

 Fail to close due to sticking in open position

Remaining failures of only detected by PT

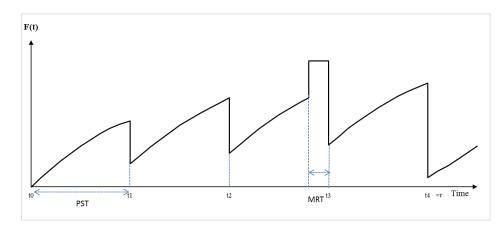
<u>Leakage in closed</u>
 <u>position</u>

2.2 Assumption for PFDavg formulas

- **♦** Failures of components assume Weibull distribution
- ◆ Mean repair time (MRT) is considered to be non-negligible.
- All components are initially in a perfect state.
- ◆ All PSTs are performed simultaneously for the valves.
- ◆ The testing time is recognized to be negligible compared with a PST interval.
- The effect of DD failure is not ignored
- **♦** Common cause failures (CCFs) have been excluded.

2.3 Approximation formulas

PFDavg formulas for DU failures



Unavailability with PST interval(τ_i), proof testing interval(τ) and MRT

$$PFD_{avg} = PFD_{avg,PT} + PFD_{avg,PST} + PFD_{avg,MRT}$$

- PFD_{avg,PT} refers to the PFD_{avg} for the DU-failure detected by PT in a proof test interval.
- PFD_{avg,PST} refers to the PFD_{avg} for the DU-failure detected by PST in a partial test interval.
- PFD_{avg,MRT} refers to the PFD_{avg} for the DU-failure detected by PT in a repair.

2.3 Approximation formulas

Non-constant failure rate function

Weibull distribution
$$z(t) = \frac{f(t)}{R(t)} = \frac{f(t)}{1 - F(t)} = \alpha \lambda^{\alpha} t^{\alpha - 1}$$

$$\mathcal{Z}(0,\tau) = \frac{1}{\tau} \int_0^\tau z(t) dt = \frac{1}{\tau} \int_0^\tau \alpha \lambda^\alpha t^{\alpha - 1} dt = \lambda^\alpha \tau^{\alpha - 1}$$

$$\mathcal{U}_{DU}\left(0,\tau\right) = \mathcal{U}_{ST}\left(0,\tau_{PST}\right) + \mathcal{U}_{PT}\left(0,\tau\right) = \theta_{PST} \cdot \mathcal{U}_{DU}\left(0,\tau\right) + (1-\theta_{PST}) \cdot \mathcal{U}_{DU}\left(0,\tau\right)$$

$$heta_{PST} = rac{2 P_{ST} \left(0, au
ight)}{2 P_{DU} \left(0, au
ight)}$$

 $\theta_{PST} = \frac{\%_{PST} (0, \tau)}{\%_{PST} (0, \tau)}$ Partial stroke testing coverage

- λ is a scale parameters, α is a shape parameter
- $\mathcal{U}(0,\tau)$ is average failure rate in the proof test interval $(0,\tau)$
- $\mathscr{L}_{ST}(0,\tau_{PST})$ and $\mathscr{L}_{T}(0,\tau)$ are average failure rate in PST and PT interval, respectively

2.3 Approximation formulas

Formulas for 1001 configuration

Basic formulas for development

$$PFD_{avg} = \frac{1}{\tau} \int_0^{\tau} \Pr(T_{DU} \le t) dt = \frac{1}{\tau} \int_0^{\tau} 1 - e^{-\frac{z_{DU}(t)}{\alpha}t} dt$$

$$PFD_{avg,MRT} = \frac{\Pr(T_{DU} \le \tau) gMRT}{\tau}$$

Approximation PFDavg	PT	PT +MRT	PST	
The proposed	$PFD_{avg} =$	$PFD_{avg} = \frac{2 g_{DU}(0,\tau) \cdot \tau}{\alpha + 1}$	$PFD_{avg} = \frac{\theta_{PST} \cdot 2 h_U(0, \tau) \cdot \tau_{PST}}{\alpha + 1}$	
formulas	These expressions are identical to the formulas in Lundteigen and Rausand (2008), Rausand (2014) and Jin and Rausand (2014) for			
Verification	1001 systems.			
α=1	2	$\frac{1}{2} + \lambda \cdot MKI$	$\frac{-137}{2} + \frac{77}{2}$	

2.3 Approximation formulas

Formulas for 1002 configuration

Addition assumptions:

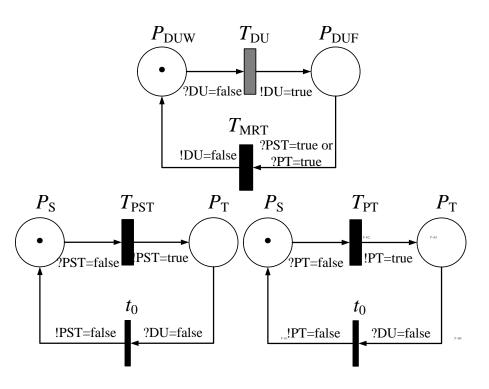
- 1. DU failures of only one HIPPS valve are discovered by a test
- 2. DU failures for both valves are discovered by a test

$$PFD_{avg1,MRT} = \frac{\int_0^{MRT} (1 - e^{\frac{-z_{DU}(t)}{\alpha}t}) dt}{\tau}$$

Approximation PFDavg	PT	PT +MRT
The proposed formulas	$PFD_{avg} = \frac{(\% - (0, \pi) \cdot \pi)^2}{\text{These expression a}}$ $(2014).$	$PFD_{avg} = \frac{(\%_{DU}(0,\tau) \cdot \tau)^2}{2\alpha + 1} +$ re identical to the formulas in Rausand
Verification $\alpha=1$	$\frac{(\lambda \tau)^3}{3}$	$\frac{\lambda \tau}{2} + \lambda \cdot MRT$

2.4 Validation for proposed model

Methods: Petri nets approach

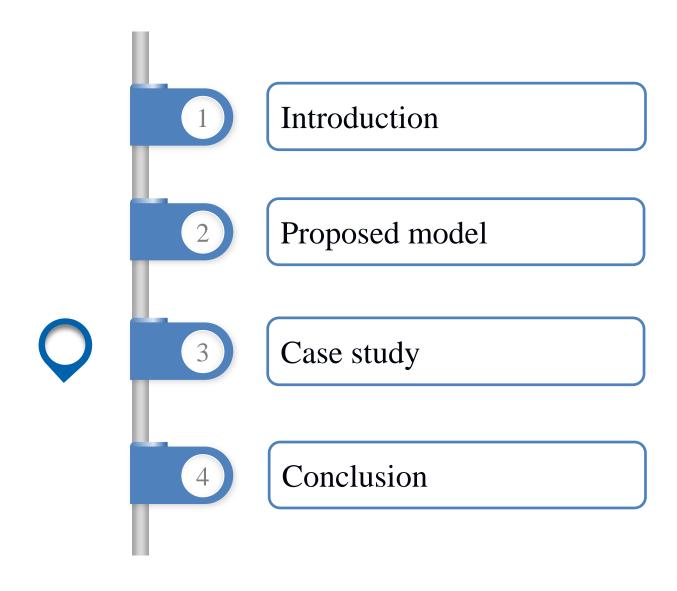


PFD_{avg} for comparison between approx. formula and Petri net simulation

PST interval	PFDavg		
	Approx. formula	Petri net	
720h	1.91E-04	1.50E-04	
2190h	2.31E-04	1.72E-04	
2920h	2.51E-04	2.33E-04	
4380h	2.92E-04	2.69E-04	
Without PST	4.13E-04	3.67E-04	

Petri net model for PST and PT

Contents



3. Case study

3.1 Contribution from PST

In the case study, we consider 1001 and 1002 HIPPS valves.

Parameters for HIPPS valves

Property	Paramete rs	Value
Scale parameters	λ	4×10 ⁻⁴
Shape parameters	α	2
PSTC	$\Theta_{ ext{PST}}$	65%
PT interval	τ	8760h

PFDavg of valves with PST

PST interval	configurations		
	1001	1002	
720h	1.91E-04	5.43E-08	
2190h	2.31E-04	5.95E-08	
2920h	2.51E-04	6.48E-08	
4380h	2.92E-04	8.00E-08	
Without			

- $igoplus PFD_{avg}$ for 1001 and 1002 is approximately reduced by 47% and 74%, respectively with 4380h of a PST interval .
- **♦** Optimize partial testing strategies for the intervals

3. Case study

3.2 Contribution from parameters

 PFD_{avg} of valves with PST at different λ and α given PST interval 2190h

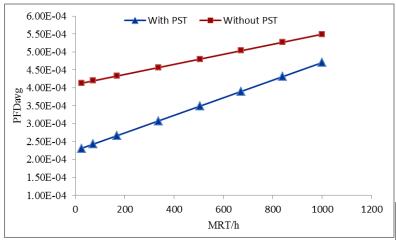
		1001	100	o2		
λ			1001			1002
1×10 ⁻⁶	α	With PST	Without PST	With PST	Without PST	
2×10 ⁻⁶	1	1.00E-02	1.76E-02	8.23E-05	4.13E-04	
4×10 ⁻⁶	1.5	1.49E-03	2.64E-03	2.12E-06	1.09E-05	
010-6	2	2.31E-04	4.13E-04	5.95E-08	3.06E-07	
8×10 ⁻⁶	2.5	3.70E-05	6.63E-05	1.75E-09	8.95E-09	
1×10-5	3	6.06E-06	1.09E-05	5.33E-11	2.69E-10	

- lacklosh The values of PFD_{avg} decrease by performing PST compared with PT under different values of parameters.
- **◆** Make decision for choosing the parameters based on SILs.

3. Case study

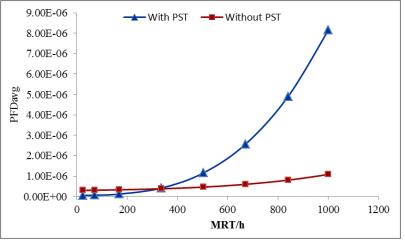
3.3 Contribution from non-negligible repair time

PFD_{avg} with both PST and PT under different MRT for 1001 and 1002 HIPPS valves

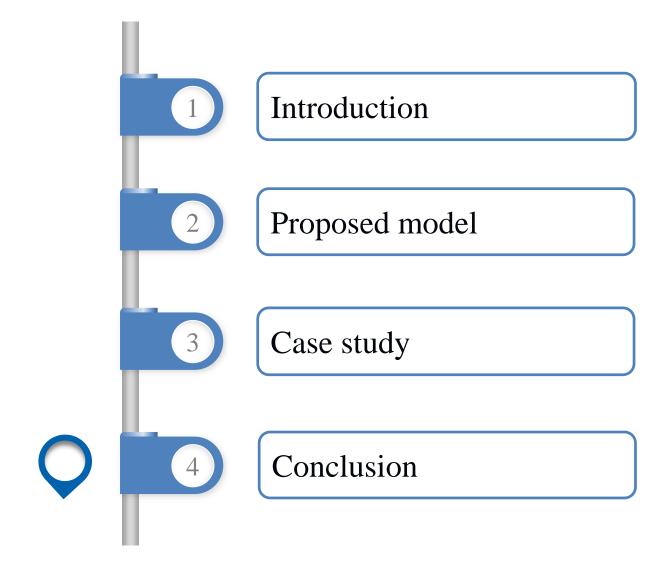


◆ PFD_{avg} is increasing with the growth of MRT.

◆ Effect over the repair time becomes large if manager do not anything for the fault channel.



Contents



4. Conclusion

4.1 Conclusion

- **♦** Investigate reliability of a low-demand HIPPS valves with both PT and PST.
- **♦** Propose a new model considering the effect of postpone repair associated with PST.
- ◆ Develop approximation formulas by introducing the non-constant failure rate and partial stroke testing coverage.
- **♦** Validate approximation by Petri net simulation.
- **♦** Provide an method to make decision for PST and MRT strategies.

4. Conclusion

4.2 Further Research

- **Common cause failures**
- **♦** Non-period PST intervals
- **♦** Effects of minor repairs after PT and PST

Thank you for your attention!