

Norwegian University of Science and Technology SUBPRO SUBSEA PRODUCTION AND PROCESSING

 \Box N'

The qualification of a digital twin for maintenance models

PhD Candidate: Jie Liu Supervisor: *prof.* Shen Yin Co-supervisor: *prof.* Jørn Vatn

prepared for RAMS seminar Date: 02/03/23

© 2020 SUBPRO/NTNU. Distribution, copying and publishing only with written consent from NTNU

Agenda

- Motivations
- Classification of digital twins
- Proposed framework
 - Fidelity
 - Smartness
 - Real-time
 - Interactions
 - Standards
- Case studies
- Conclusions

Motivation

• Digital twins


- $\circ~$ Useful for maintenance
- Varies classification
- $\circ~\mbox{Few researches}$ for qualification

Physical Asset History Real Time Operational Data FMEA CAD Model FEA Model History Digital Twin Digital Twin Digital Twin Physics Based Models + Statistical Models + Machine Learning

Operational History

Maintenance

Fig 1: A digital twin is an exact, virtual representation of a physical product or process that exactly replicates the real-world system and its behavior. Image credit: Entso-E

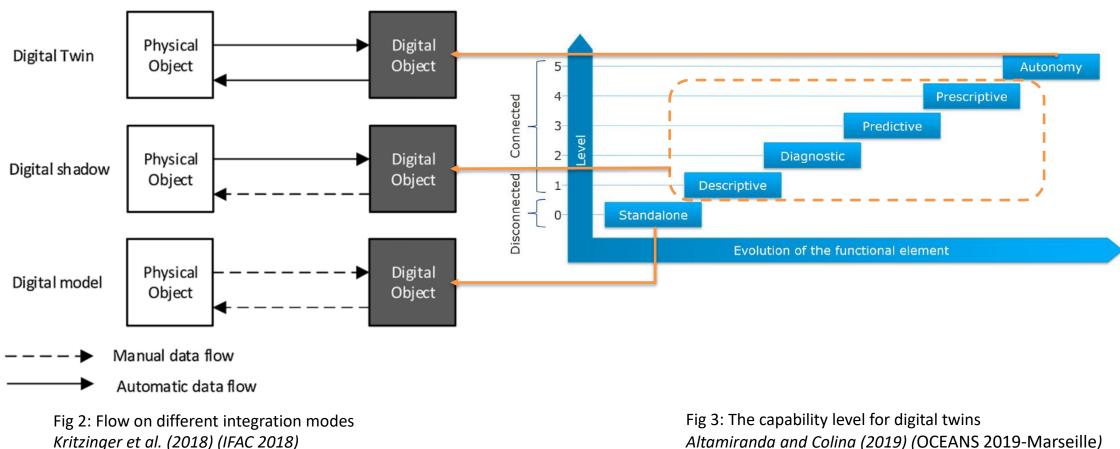
Fleet Aggregate

Data

Definition for digital twins

ISO 23704-2022 General requirements for cyber-physically controlled smart machine tool systems (CPSMT) — Part 1: Overview and fundamental principles

Digital replica of physical assets (physical twin), processes and systems that can be used for various purposes or a fit-for-purpose digital representation of something outside its own context with data connections that enable convergence between the physical and virtual states at an appropriate rate of synchronization


ISO 23247-1:2021 Automation systems and integration — Digital twin framework for manufacturing — Part 1: Overview and general principles

<manufacturing> fit for purpose digital representation of an observable manufacturing
element with synchronization between the element and its digital representation.

Classification for digital twins

Altamiranda and Colina (2019) (OCEANS 2019-Marseille) Cited by DNV in RP-A204 2020.

Classification for digital twins

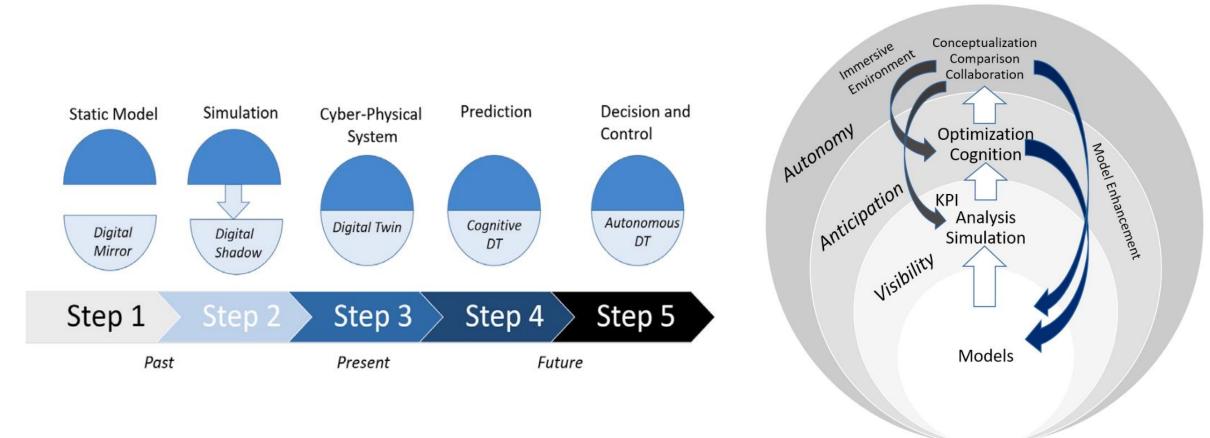


Fig 4.1: numerical representation maturity.

Fig 4.2: Usage hierarchy.

How to characterize a digital twin: a usage-driven classification. Julien and Martin (2021) IFAC 2021

Proposed framework

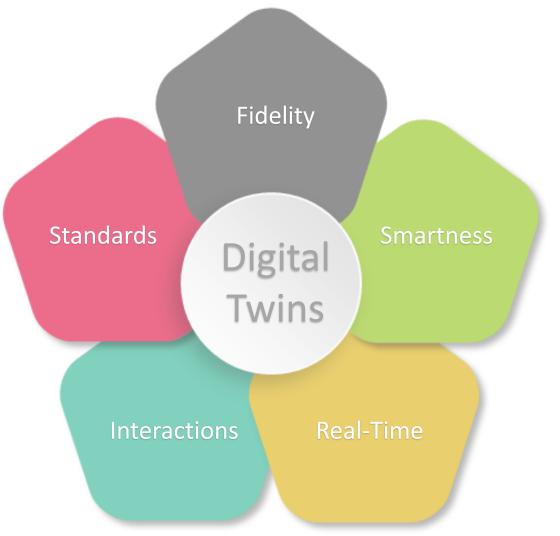


Fig 5: a proposed framework for the qualification of a digital twin for maintenance models.

Fidelity

Fidelity assessment matrix		No. of input parameters			
	sessment matrix	Few	Most	All*	
	Not precise	Very low	Low	Low	
Output accuracy	Precise only for specific working conditions	Low	Low	Moderate	
	Precise for normal working conditions	Low	Moderate	Moderate	L0: Very lo L1: Low
	Precise for all working conditions	Moderate	Moderate	High	L2: Moderate L3: High

Table 1: fidelity assessment matrix for digital twins

*: all parameters are relevant and can be captured.

Fidelity

Smartness

- L0 descriptive
- L1 diagnostic
- L2 predictive
- L3 decision-making

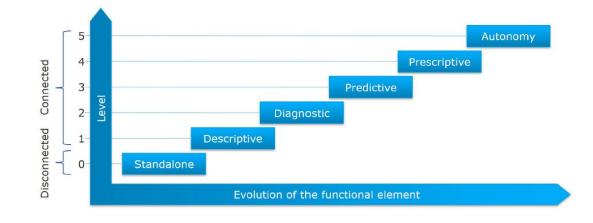
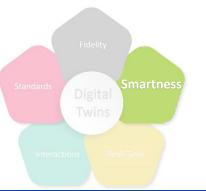



Fig 3: The capability level for digital twins Altamiranda and Colina (2019) (OCEANS 2019-Marseille) Cited by DNV in RP-A204 2020.

Real-time

	Lovala	Dense	Examples			
	Levels	Range	Time unit	S	$\ln(t)$	
	LO	$\ln(t) \ge 15$	Year,	3.15 * 10 ⁷ ,	17.27	
	L1	$10 \le \ln(t) < 15$	Month, Week, Day,	2.59 * 10 ⁶ , 6.05 * 10 ⁵ , 8.64 * 10 ⁴ ,	14.77 13.31 11.37	
	L2	$0 \le \ln(t) < 10$	Hour, Quarter, Minute, Second,	3.6 * 10 ³ , 900, 60, 1,	8.19 6.80 4.09 0	
Fidelity Digital Twins	L3	$\ln(t) < 0$	Millisecond, Microsecond, Nanosecond,	10 ⁻³ , 10 ⁻⁶ , 10 ⁻⁹ ,	-6.91 -13.81 -20.72	

Interactions

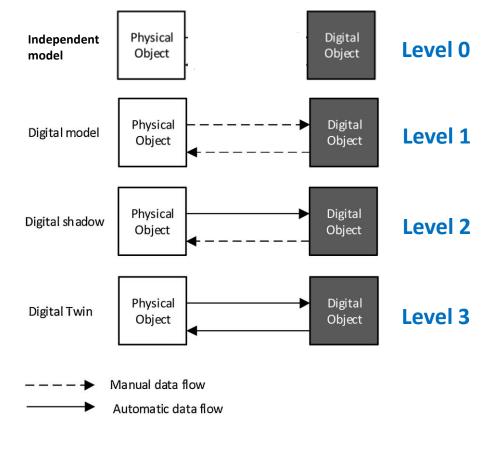


Fig 7.1: interaction level of digital twins

Standard

- Followed standards
- Enabled standards indicator

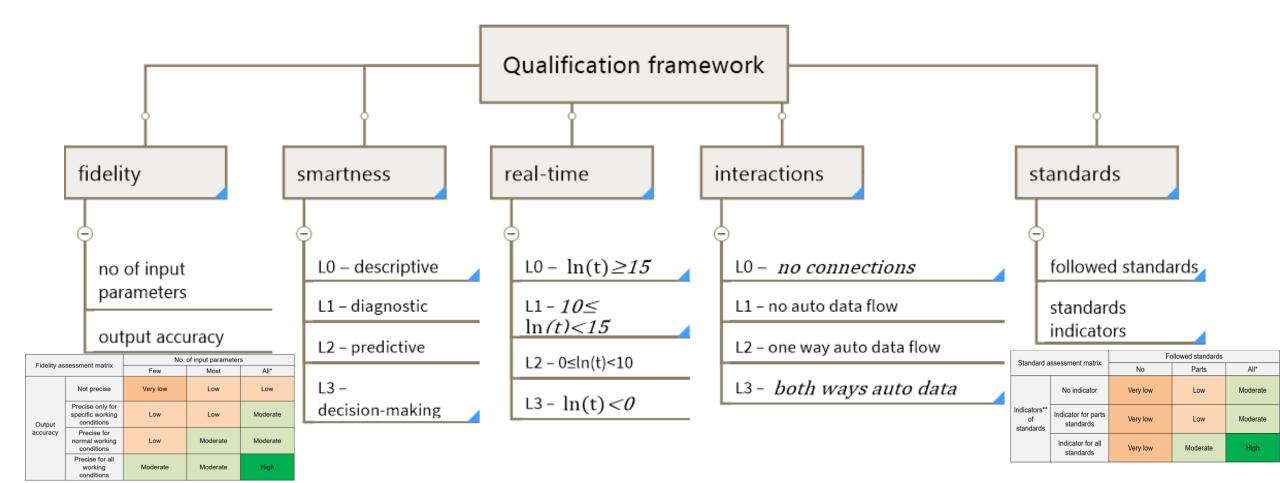
Table 2-1 DNV documents

Document code	Title	
DNV-RP-0317	RP-0317 Assurance of sensor systems for digital twins	
DNV-RP-0497	Data quality assessment framework	
DNV-RP-0510	Framework for assurance of data-driven algorithms and models	
DNV-RP-0513	Assurance of simulation models	
DNV-RP-A203	Technology qualification	
DNV-RP-G108	Cyber security in the oil and gas industry based on IEC 62443	
DNV-RP-O101	Technical documentation for subsea projects	
DNV-RU-SHIP Pt.6 Ch.11	n.11 Digital features	

Table 2-2 External standard

Document code	Title		
ANSI/ISA 101.01	Human-machine interfaces		
API RP 17N	Recommended practice on subsea production system reliability, technical risk, and integrity management		
IEC 61508 series	Functional safety of electrical/electronic/programmable electronic safety-related systems		
IEC 62443 series	Industrial communication networks - Network and system security		
IEC 81346-1	Industrial systems, installations and equipment and industrial products: Structuring principles and reference designation, Part 1: Basic rules		
IEC 81346-2	Industrial systems, installations and equipment and industrial products: Structuring principles and reference designation, Part 2: Classification of objects and codes for classes		
IEEE 1633	IEEE Recommended Practice on Software Reliability		
ISO 14224	Petroleum, petrochemical and natural gas industries - Collection and exchange of relial and maintenance data for equipment		
ISO 15926 series	Industrial automation systems and integration-Integration of life-cycle data for process plants including oil and gas production facilities		
ISO 8000	Data quality		
ISO 8601	Data elements and interchange formats - Information interchange - Representation of dates and times		
ISO/DIS 23247	Automation systems and integration - Digital Twin framework for manufacturing. Part 1 - drafts published 2020		
IS <mark>O/IEC 270</mark> 01	Information technology - Security techniques - Information security management systems Requirements		
ISO/IEC/IEEE 12207	Systems and software engineering - Software life cycle processes		

NTNU


Standard

Standard assessment matrix		Followed standards			
		No	Parts	All*	
	No indicator	Very low	Low	Moderate	
Indicators** of standards	Indicator for parts standards	Very low	Low	Moderate	L0: Very low L1: Low
	Indicator for all standards	Very low	Moderate	High	L2: Moderate L3: High

* only relevant standards are considered.

** indicators of followed standards.

Summary of framework

Case study – digital twin model

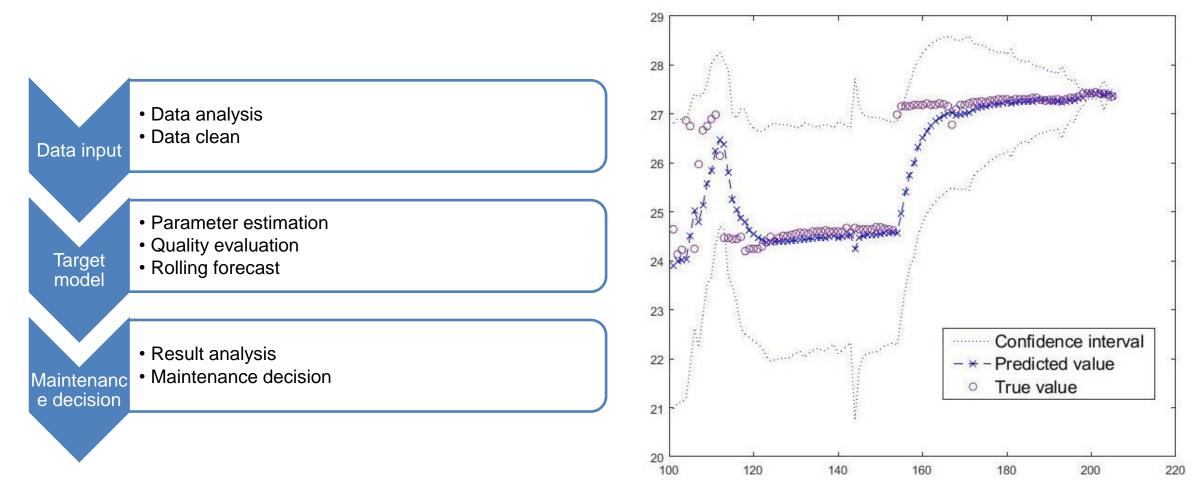


Fig 8: Model structure for Choke valves degradation predictions

Fig 9: Output of the choke valve degradation predictions model

Case study – evaluation results

ltem	Current level	Best practice
Fidelity	L2: moderate (normal working conditions/most parameters)	L3: high (all working conditions/all parameters)
Smartness	L0: descriptive	L2: predictive
Real-time	L1: $10 \le \ln(t) < 15$ Eg: Day/week/month	L1:10 $\leq \ln(t) < 15$ Eg: Day/week/month
Interaction	L0: no connection	L2: 1 way auto data flow
Standards	L1: Low (parts standards/no indicator) DNV-RP-O501	L2: Moderate (all standards/all indicators) DNV-RP-O501 NORSOK Standards U-001 DNVGL-RP-A204 ISO 23247-1:202

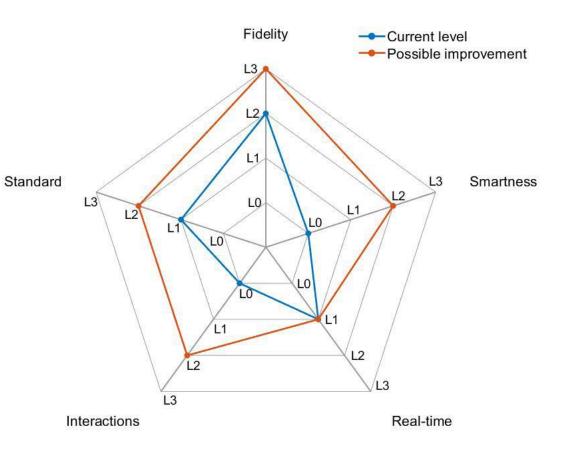
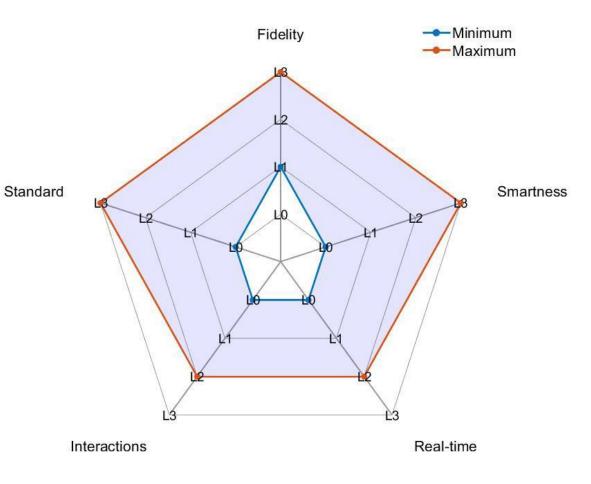
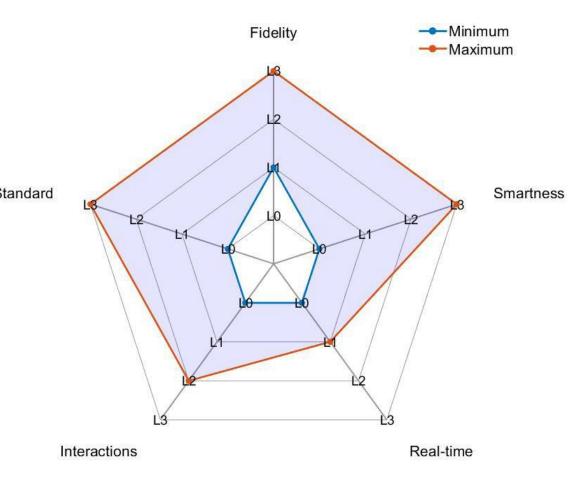


Fig 10: Evaluation results of case study according to proposed criteria

Case study – Corrective maintenance

ltem	Minimum	Best practice	
Fidelity	L1: moderate (specific working conditions)	L3: high (all working conditions/all parameters)	
Smartness	L0: descriptive	L3: predictive	
Real-time	LO: $\ln(t) \ge 15$ Eg: year	L2: $0 \le \ln(t) < 10$ Eg: Hour/ Quarter/Minute / Second	
Interaction	L0: no connection	L2: 1 way auto data flow	
Standards	L0: Low (don't consider any standard)	L3: High (all standards/all indicators)	



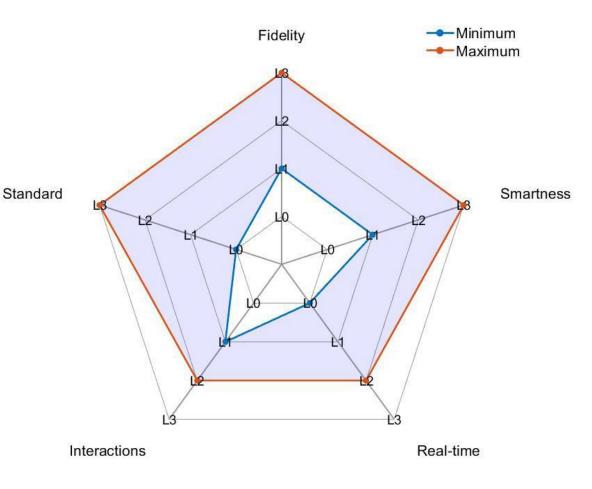

Fig 11: requirements for DTs used for corrective maintenance

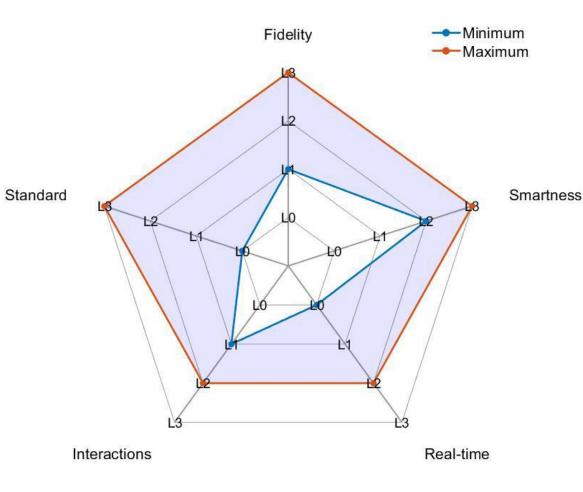
Case study – Preventive maintenance

ltem	Minimum	Best practice	
Fidelity	L1: Moderate (specific working conditions)	L3: High (all working conditions/all parameters)	
Smartness	L0: descriptive	L3: predictive	S
Real-time	LO: $ln(t) \ge 15$ Eg: year	L1:10 $\leq \ln(t) < 15$ Eg: Day/week/month	
Interaction	L0: no connection	L2: 1 way auto data flow	
Standards	L0: Low (don't consider any standard)	L3: High (all standards/all indicators)	

Case study – condition-based maintenance

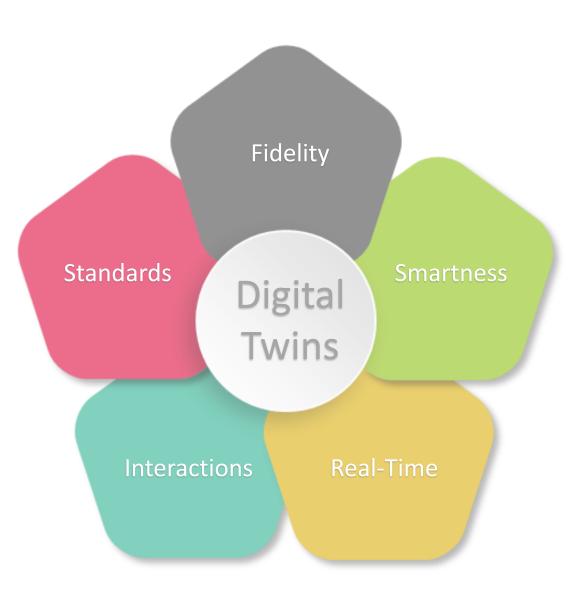
ltem	Minimum	Best practice
Fidelity	L1: Moderate (specific working conditions)	L3: High (all working conditions/all parameters)
Smartness	L1: diagnostic	L3: predictive
Real-time	LO: $\ln(t) \ge 15$ Eg: year	L2: $0 \le \ln(t) < 10$ Eg: Hour/ Quarter/Minute / Second
Interaction	L1: manual data flow	L2: 1 way auto data flow
Standards	L0: Low (don't consider any standard)	L3: High (all standards/all indicators)




Fig 11: requirements for DTs used for condition-based maintenance

Case study – Predictive maintenance

ltem	Minimum	Best practice
Fidelity	L1: Moderate (specific working conditions)	L3: High (all working conditions/all parameters)
Smartness	L2: predictive	L3: predictive
Real-time	LO: $\ln(t) \ge 15$ Eg: year	L2: $0 \le \ln(t) < 10$ Eg: Hour/ Quarter/Minute / Second
Interaction	L1: manual data flow	L2: 1 way auto data flow
Standards	L0: Low (don't consider any standard)	L3: High (all standards/all indicators)



Conclusions

SUBPRO

- Evaluation criteria for DTs
 - Fidelity
 - Smartness
 - Real-time
 - Interactions
 - Standards
- Qualification of DTs
- Improvement of DTs

Reference

Altamiranda, E. and Colina, E. (2019). A system of systems digital twin to support lifetime management and life extension of subsea production systems. IEEE conference: <u>OCEANS 2019-Marseille</u>, DOI: <u>10.1109/OCEANSE.2019.8867187</u>,

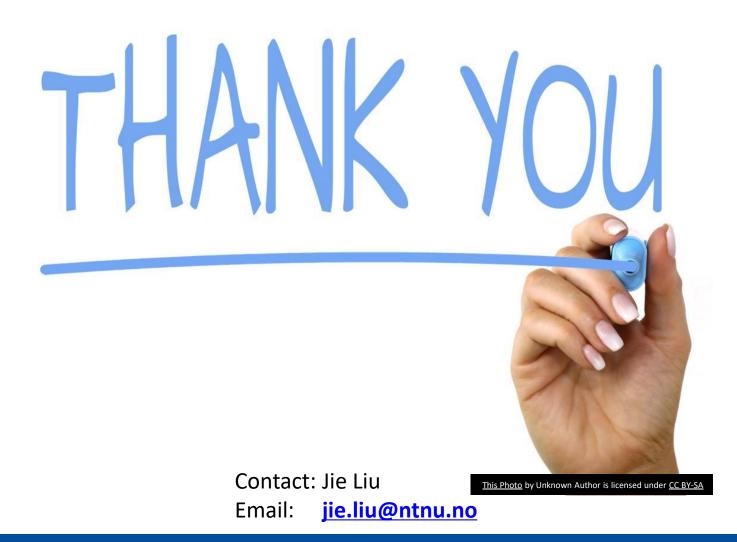
link: https://ieeexplore.ieee.org/document/8867187

DNV-RP-A204 (2020). *Qualification and assurance of digital twins*. Recommended practice, DNV Link: https://www.dnv.com/oilgas/download/dnv-rp-a204-gualification-and-assurance-of-digital-twins.html

Kritzinger, W., Karner, M., Traar, G., Henjes, J., and Sihn, W. (2018). Digital twin in manufacturing: A categorical literature review and classification.

16th IFAC Symposium on Information Control Problems in Manufacturing INCOM 2018: Bergamo, Italy, 11–13 June 2018

DOI: <u>10.1016/j.ifacol.2018.08.474</u>


Link: https://www.sciencedirect.com/science/article/pii/S2405896318316021

Julien, N. and Martin, E. (2021). *How to characterize a digital twin: a usage-driven classification.* <u>17th IFAC Symposium on Information Control Problems in Manufacturing INCOM 2021: Budapest, Hungary, 7-9 June 2021</u> <u>DOI: 10.1016/j.ifacol.2021.08.106</u>

Link: https://www.sciencedirect.com/science/article/pii/S2405896321008557

