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Research object: choke valve

* Function: reduce pressure and control flow rate
» Application: production, injection, artificial lift, storage...
» Installation: Xmas tree, manifold, line heater, FPSO...

» — Metal Bonnet Seal Ring

Bonnet Packing

Bleed Vent Port

Seat
Seat Gasket




Erosion of choke valves

« Erosive agents:
- Sand
— Barite/Calcite
— Proppants

« Consequences:
— Body damage
— Leakage
— Less controllability
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g 200
« Health indicator: flow coefficient (Cv) o
 Erosion can cause Cv deviation from its theoretical Goo
value 50
« Evaluate a choke valve’s health state (Cv deviation) .
based on ) 10 s % p B
—  Timestamp Percent Travel
— Raw and theoretical Cv w0 —— kernel regression
— Percent travel e Cv data points

&
=1

 Prognosis
— Degradation trend analysis
— RUL estimation
« Estimate the Cv deviation for any time, any percent
travel, in the past and in the future .
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Problem definition

« Evaluate a choke valve’s health state (Cv deviation) based on

— Timestamp
— Raw and theoretical Cv
— Percent travel

 Prognosis
— Degradation trend analysis
— RUL estimation

« Estimate the Cv deviation for any time, any percent travel, in the past and in the future
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Data overview

« Data collected from 7 chokes of the same type installed at different wells
* Observation time span: 1-2 years

 Effective data length: 200-600

 Variables include:

1 409 284
— Percent travel (h)
2 412 287
—  Pressure drop (dP)
—  Flow coefficient; ELF, Sachdeva, FlowCurve 3 383 260
— Date Time 4 612 597
5 612 597
6 612 597
7 612 597
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Choice of the Cv computation method

 ELF Sachdeva, FlowCurve both are raw Cv

« Computed based on different models from process parameters (pressure drop, flow
rate...) .

* Which one is more reliable?

« Sachdevais used in the following.

Cv deviation

—ap - — 1 0 Sachdeva
cood o Ty . EEE FlowCurve

T i T T T i
welll well2 well3 welld wells wellb well7
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Methods

« Two stage hybrid model (TSHM)
e Spatio-temporal interpolation

— Kriging

— Inverse distance weighting

— Trend surface analysis

« Time series analysis
— ARIMA with exogeneous variable

» Stochastic process
—  Wiener process
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TSHM

« Two stage hybrid model (TSHM)

« Basic assumption: at any time, the Cv deviations at two different percent travel, are
linearly dependent

« Stage 1: estimate the initial degradation as a function of percent travel (deterministic)
« Stage 2: modeling of the degradation increments (stochastic)
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TSHM: model structure

« Basic assumption: at any time, the Cv deviations at two
different percent travel, are linearly dependent

 Notations:

H, h: percent travel
T, t: time
z, = CySachdeva(yy . cyTheoretical(p Y js the raw Cv deviation

« Model structure
* zz = ¢p(he|Op) + X¢ +9g(t, he|6y)

¢(h|64) is the initial degradation, independent of ¢

X;: “hidden” degradation due to erosion, independent of h, imposes a
translation effect on ¢ (h|6,)

g(t, ht|8,): percent travel-dependent degradation growth accounting for the

mixed effect between time and percent travel, e.g., the longer a valve
operates at a small h, the higher the Cv deviation

50
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TSHM: model identification

« Identification of X; is done after the determination of ¢ and g!

— Do not need assumptions on X;

— Counter example: assume X; is a gamma process with mean jump size depending on h and ¢ a polynomial,
then the parameters in X; and ¢ can be deduced simultaneously via state-space model

—  Problem with too many assumptions:
Too much subjectivity
hard to validate

* Main steps:
— Determine the structures of ¢ (h¢|64) and g(t, h¢|6,)
— Estimate 64 and 6, without knowing the distribution of X

- GetX;
— Prognosis
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Step 1: Determine ¢ and g

« ¢ and g are considered polynomial. Example:
- ¢(h) =co+ cth+ch? + -+ c,hP
—  g(t,hy) =t * [ay(he — hmin) + @z (Ae — higin)?... ag(he = hinin) 9]
« The choice of model structure, i.e., whether ¢ is a polynomial or a power function, or
how the time and percent travel interacts in the function g, is subjective
« Hyper-parameters: p, g can be tuned via grid search cross validation or assigned

« Parameters: 84 = ¢, ...cp, 05 = a; ...a, can be estimated once model structure and
hyper-parameters are determined
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Step 2: Estimate 64 and 6,

Differentiating the raw observations z:
AX =AMz —Ap(8g) —Ag(6,)
 Let u = E[X], the residuals (with mean 0) are
r =AX—u =Az —Ap(0y) —Ag(6,) — 1
- Toinfer 84 and 6,, we can minimize a loss function associated with » when u is known

1
L(rip) = (me)
i=1

« Two options when u is unknown:
— Option 1: estimate u together with 6,and 6,(1st estimator)
— Option 2: ignore u and minimize a loss function of AX (2nd estimator)

» Robust estimation: use the 2" estimator with s = 1 (L1 loss, sum of absolute residuals)
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Step 2: hyper-parameter tuning

 The more complex the polynomial, the smaller the loss, but also the more difficult it is to
ascribe physical meaning to it.

* Use grid search CV to determine the best p and g

« Schema:
— Split the data into train and test sets (no shuffling)
— Construct the searching space: P =[1,2,3,...],Q = [1,2,3, ...]
— Forp,qinP,Q:
Use training set to estimate parameters Bgai" and ggrain

Compute the loss function on the test set with 65*™ and 67"
Obtain the average loss over all partitions of train/test split
— Best p and g: minimize the average loss

T Y BT

1 2 3 4 5 6 7 8 9 10
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THSM: applied to valve 3

« ¢ and g are considered polynomial.
* (p, g) are tuned as (2,0): translation effect on the initial degradation ¢
« ¢(h) =4.18h— 0.20h* — 12.67
 Hidden degradation X;: Excess kurtosis and heavy tailed
« Follows a student t distribution (Cramér—von Mises, p-value=0.18)
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THSM: applied to valve 3

* Interpolation: not smooth in the t axis
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THSM: applied to valve 2

« ¢ and g are considered polynomial.

* (p, q) are tuned as (2,0): translation effect on the initial degradation ¢

« ¢(h) =—-2.83h— 0.06h* + 105.24

 Hidden degradation X;: Excess kurtosis and heavy tailed
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THSM: applied to valve 2

* Interpolation: not smooth in the t axis
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THSM: pros and cons

* Features:
— Percent travel and degradation: treated separately
— Fast
— Intuitive and easily understandable

* Drawbacks
— Linear relation in the H axis: too strong an assumption
— Data sparsity at certain locations: increased uncertainty

— Sampling bias due to changes in the percent travel
Valve 3: 19 < h < 22
Valve 2: no data collected between 35 and 40
Valve 5: h increases from 25 to 60, data unbalance
— Non-smooth interpolation surface
— Unable to derive the standard deviation for the interpolated points

— Degradation trend may be masked by noise/large jumps
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Kriging applied to valve 3

* Hyper-parameter tuning:

Anisotropy scaling factor: 50
0.002 (time span: 380--0.76 100 |
days) 0]
Variogram: spherical g 201
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Spatio-temporal interpolation

* Observed Cv deviation: z;(hq, ty), z5(hy, t3) ...z (hy, t,)

« Degradation evaluation for the past: find z(h,t) fort < t,,h € H
* Prognosis: estimate z(h,t) fort > t,,h € H

* The percent travel H forms the 1D spatial dimension

« The time T forms the 1D time dimension
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First Law of Geography

« “Everything is related to everything else, but near
things are more related than distant things.”--
Waldo R. Tobler.

https://www.e-education.psu.edu/maps/I2_p2.html
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Inverse distance weighting

« The assigned values to unknown points are calculated with a weighted average of the
values available at the known points.

« z;:values at (x;,y;)
* w;: weights
« d;: Euclidean distances between (x;, y;) and (x,y)

« p: exponent that controls the weighting of z; on z
— small p tends to yield estimated values as averages of z; in the neighborhood
— large p tends to give larger weights to the nearest points and increasingly down weights points farther away.
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Spatio-temporal IDW

IDW adapted to interpolate spatio-temporal data, with time as an additional dimension

(dl)p
(h,t) = Pz, W = ———
z(h, t Ei Wi Z: W Zk(dik)p
d; =+/(h; — h)? + c2(t; — t)?

» z;:values at (h;, t;)

* w;: weights

* . scaling factor

* Model structure is determined by ¢ and p, which can be tuned by grid search CV

25 @ NTNU




IDW applied to valve 3

* Hyper-parameter tuning: ¢ = 0.002,p = 5
« Left: THSM, right: IDW
« IDW is a deterministic method and cannot provide a measure of uncertainty.

Percent Travel Percent Travel
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Spatial correlation and variogram

« The theoretical variogram 2 y(s4, s,) is a function describing the degree of spatial
dependence of a spatial random field or stochastic process, Z(s)

2y(sy,82) =Varl[Z(sy) — Z(s;)]

« If the spatial random field has constant mean:
2

2y(s,8;) =E [(2(51) - Z(Sz)) ]

« If the covariance function of a stationary process exists it is related to variogram by:
2 )/(Sl, SZ) = C(Slisl) + C(SZJSZ) - ZC(SLSZ)
« where
Clx,y) = Cov(Z(x), Z(y))

° Variogram IS a measure of dISSImIIarIty over a distance. it shows how two data points are correlated from a

spatial perspective, and provides useful insights when trying to estimate the value of an unknown location using collected sample data from
other locations.
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Variogram explained

« Sill: the variance in which spatial data pairs lose
correlation.

— As the distance between two data points increases, it will .
be less likely that those two data points are related to one . ol .
another.

* Nugget: the nonzero intercept of the variogram.

— Itis an overall estimate of error caused by measurement
inaccuracy and environmental variability occurring at fine
enough scales to be unresolved by the sampling interval. ) range (a)

 Range: a distance in which the spatial variability
reaches the sill. lag distance (h)

https://aegis4048.github.io/spatial-simulation-1-basics-of-variograms

variance (y)

nugget (cy)

— ltis the distance beyond which observations are no longer
correlated
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Variogram models

The empirical variograms
are approximated by
theoretical models to ensure
validity (e.g., conditionally
negative definite function),
which will then be used for
kriging.
Common bounded models:

— Spherical

— Exponential

— Gaussian
Unbounded models:

— Linear
—  Power

12 Nuggel Effeet 12 Spherieal

12 Exponantial

1 1
Distance. foet Cistance, foet

Gatissian 17 Hole Effect
I

Disban ci, Mt

12 Dampened Hole Effect

Distance, feat

Clayton V. Deutsch, in Encyclopedia of Physical Science and Technology (Third Edition), 2003
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Spatio-temporal covariance function

« Since H forms the 1D spatial dimension and T forms the 1D time dimension, a more
“correct” model would be spatio-temporal covariance function

 The random field Z(h, t) can be described by
2y(h;t) =Var[Z(thg + h;tg +t) — Z(hg; to)]
« Or equivalently by its covariance function
C(hy, hy;ty, t3) = y(hy;ty) +y(hysty) —y(hy — hys by — t3)
« However, due to data sparsity (only one measurement per day), the empirical spatio-
temporal variogram cannot be estimated.

« Time is treated as the 2"d spatial dimension, with an anisotropy scaling factor.
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Trend and Anisotropy

* Anisotropy:

An isotropic phenomenon is a process that is not directionally dependent. In spatial studies, this process is
considered to evolve similarly in all the directions in space.

On the contrary, anisotropy refers to a process that varies differently according to the direction of interest. Often,
it denotes a characteristic of a random process that shows higher autocorrelation in one direction than another.

Time and percent travel: different autocorrelation

e Trend:

31

Cv deviation increases in percent travel

Cv deviation increases in time

Can be described by a deterministic function
Incorporate external variables
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Ordinary kriging

Assumption: data are intrinsically stationary
Z(s) =u+e(s)
* Interpolation at the target position s:

Z'(s0) = ) wi Z(s:)
i=1

« The estimator is unbiased (E[Z*(sy) — Z(s¢)] = 0), and the weights w; are determined
by minimizing the estimation variance

o2 = E[(2'(so) - Z(50))]
 Subjected to
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Universal kriging

Kriging with unknown mean or external drift
Z(s) = u(s) + €(s)
The trend can be linear, quadratic...
Universal kriging: trend modeled as a function of the coordinates
Kriging with external drift: trend defined via auxiliary variables
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Kriging applied to valve 3

* Hyper-parameter tuning:

Anisotropy scaling factor: 50
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Compare model performances by rolling forecasting

. Train/test split:

_ Fit a model Data[l:k] Table 4: Case study 1: forecasting errors
—  Use the fitted model to predict data[k+1:k+m], TSHM Kriging
where m is the prediction length MAE RMSE MARE RK? | MAE RMSE MARE &2
—  Let k move forward 1] 016 050 0003 094] 023 063  0.004 091
. Example: valve 3. 21 026 069 0005 08| 040 087  0.005 0.82
31 020 072 0007 087 048 096 0008 078
— Total data length: 210 A 035 080 0009 084|058 107 0010 071
— Prediction start at k, = 100, prediction length m = 5 041 090 0012 079 069 120 0012 0.63
5. Inverse Distance Weighting Trend surface analysis
—  Overall performance is averaged over 105 U024 062 0003 091135 160 013 0.10
predictions 2 040 0.83 0006 0.83| 143 1.67 014 033
. 31 047 092 0011 080 148 171 0.14 029
* Metrics: 1] 057 103 0015 074 1.51 1.75 0.15 024
— mean absolute error (MAE), 5 067 113 0024 067 | 156 179 0.16 0.8
_ root mean squared error (RMSE), ARIMAX _ Wiener process _
. . 1] 118 1.42 0.13 052 050 118 0004 0.67
—  median absolute relative error (MARE), 9| 142 167 015 033] 080 152 0008 0.44
— R-squared (R2) 3] 155 1.80 016 021 096 1.6  0.015 031
1] 1.63  1.89 017 011 .02 1.67 0025 0.30
51 170 197 018 000 119 1.81 0.045 016
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Summary of the two methods

Two stage hybrid model Kriging

Basic assumption Linear dependence in percent travel First law of geostatistics

Additional assumptions  Structure of ¢ (initial degradation) and g = Second order stationarity of the random
(need to specify how the operationtime  field

and percent travel interacts) Structure of the trend function
Hyper parameters Polynomial orders of ¢ and g Variogram type, anisotropy scaling factor
Type Deterministic ¢ and g Stochastic
Stochastic in forecasting
Uncertainty Only in forecasting Over the random field
Running time Fast Slow (for hyper-parameter tuning if the data
is large)
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pen Mo Visuslization
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Variogram model. spherical
Anisatropy: 0.5

Functionalities

— Cvand Cv deviation overview

— Degradation trend estimation

— Uncertainty quantification

— 3dinteractive visualization
Programming language: Python

Methods:
— Two stage hybrid model

— Kriging
Working mode: offline. Data should be
manually imported.

Full documentation will come by the end
of September.

Standard deviation

Baseline Cv: Cd28demo csv
" csv
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Toolbox: input file

Choke travel (% or °) _|Choke Cv

100 428

 Theoretical Cv 32 4274;1;
— Percent travel as the first column, from 0 to 100 36 417

— Corresponding Choke Cv as the second column 81 408
 Observed Cv (ELF, Sachdeva or Flowcurve) ;i 23?

— Time, percent travel and Cv as the first, second and
third columns

|Time (Choke 1 Percent TravelChoke 1 Percent Travel - Choke 1 Flow Coefficient - Sachdeva (IFM.WellChkPerf.PDM.Day)-avg

2020-06-14722:00:00Z 0 0
2020-06-17722:00:00Z 20.98048615 23.26839193
2020-06-18T22:00:00Z 20.89753161 22.0464681
2020-06-21T22:00:00Z 20.91711355 21.95760091
2020-06-23T722:00:00Z 21.0205885 22.0242513
2020-06-24T22:00:00Z 21.02232761 23.35725911
2020-06-28T22:00:00Z 20.3707406 23.37947591
2020-06-29T22:00:00Z 20.36745929 21.60213216
2020-06-30T22:00:00Z 20.36589345 21.57991536
2020-07-01T22:00:00Z 20.36501546 21.66878255
2020-07-02T22:00:00Z 20.36238757 21.53548177

38 @ NTNU




