
Choke valve condition monitoring and prognosis: 
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Research object: choke valve

• Function: reduce pressure and control flow rate

• Application: production, injection, artificial lift, storage…

• Installation: Xmas tree, manifold, line heater, FPSO…
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Erosion of choke valves

• Erosive agents:
– Sand

– Barite/Calcite

– Proppants

• Consequences: 
– Body damage

– Leakage

– Less controllability

– …
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Erosion monitoring

• Health indicator: flow coefficient (Cv)

• Erosion can cause Cv deviation from its theoretical 

value

• Evaluate a choke valve’s health state (Cv deviation) 

based on 
– Timestamp

– Raw and theoretical Cv 

– Percent travel

• Prognosis
– Degradation trend analysis

– RUL estimation

• Estimate the Cv deviation for any time, any percent 

travel, in the past and in the future
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Problem definition

• Evaluate a choke valve’s health state (Cv deviation) based on 
– Timestamp

– Raw and theoretical Cv 

– Percent travel

• Prognosis
– Degradation trend analysis

– RUL estimation

• Estimate the Cv deviation for any time, any percent travel, in the past and in the future
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Data overview

• Data collected from 7 chokes of the same type installed at different wells

• Observation time span: 1-2 years

• Effective data length: 200-600 

• Variables include:
– Percent travel (h)

– Pressure drop (dP)

– Flow coefficient: ELF, Sachdeva, FlowCurve

– Date Time
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Choice of the Cv computation method

• ELF, Sachdeva, FlowCurve both are raw Cv

• Computed based on different models from process parameters (pressure drop, flow 

rate…)

• Which one is more reliable?

• Sachdeva is used in the following.
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Methods

• Two stage hybrid model (TSHM)

• Spatio-temporal interpolation
– Kriging

– Inverse distance weighting

– Trend surface analysis 

• Time series analysis
– ARIMA with exogeneous variable

• Stochastic process
– Wiener process
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TSHM

• Two stage hybrid model (TSHM)

• Basic assumption: at any time, the Cv deviations at two different percent travel, are 

linearly dependent

• Stage 1: estimate the initial degradation as a function of percent travel (deterministic)

• Stage 2: modeling of the degradation increments (stochastic)
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TSHM: model structure

• Basic assumption: at any time, the Cv deviations at two 

different percent travel, are linearly dependent

• Notations:
– 𝐻, ℎ: percent travel

– 𝑇, 𝑡: time

– 𝑧𝑡 = 𝐶𝑣𝑆𝑎𝑐ℎ𝑑𝑒𝑣𝑎 𝑡 − 𝐶𝑣𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 ℎ𝑡 is the raw Cv deviation

• Model structure

• 𝑧𝑡 = 𝜙(ℎ𝑡|𝜃𝜙) + 𝑋𝑡 + 𝑔(𝑡, ℎ𝑡|𝜃𝑔)

– 𝜙 ℎ|𝜃𝜙 is the initial degradation, independent of 𝑡

– 𝑋𝑡: “hidden” degradation due to erosion, independent of ℎ, imposes a 

translation effect on 𝜙 ℎ|𝜃𝜙

– 𝑔(𝑡, ℎ𝑡|𝜃𝑔): percent travel-dependent degradation growth accounting for the 

mixed effect between time and percent travel, e.g., the longer a valve 

operates at a small ℎ, the higher the Cv deviation
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TSHM: model identification

• Identification of 𝑋𝑡 is done after the determination of 𝜙 and 𝑔!
– Do not need assumptions on 𝑋𝑡
– Counter example: assume 𝑋𝑡 is a gamma process with mean jump size depending on ℎ and 𝜙 a polynomial, 

then the parameters in 𝑋𝑡 and 𝜙 can be deduced simultaneously via state-space model

– Problem with too many assumptions: 

• Too much subjectivity

• hard to validate

• Main steps:
– Determine the structures of 𝜙(ℎ𝑡|𝜃𝜙) and 𝑔(𝑡, ℎ𝑡|𝜃𝑔)

– Estimate 𝜃𝜙 and 𝜃𝑔 without knowing the distribution of 𝑋𝑡

– Get 𝑋𝑡
– Prognosis 
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Step 1: Determine 𝜙 and 𝑔

• 𝜙 and 𝑔 are considered polynomial. Example:
– 𝜙 ℎ = 𝑐0 + 𝑐1ℎ + 𝑐2ℎ

2 +⋯+ 𝑐𝑝ℎ
𝑝

– 𝑔 𝑡, ℎ𝑡 = 𝑡 ∗ [𝑎1 ℎ𝑡 − ℎmin + 𝑎2 ℎ𝑡 − ℎmin
2… 𝑎𝑞 ℎ𝑡 − ℎmin

𝑞]

• The choice of model structure, i.e., whether 𝜙 is a polynomial or a power function, or 

how the time and percent travel interacts in the function 𝑔, is subjective

• Hyper-parameters: 𝑝, 𝑞 can be tuned via grid search cross validation or assigned

• Parameters: 𝜃𝜙 = 𝑐0…𝑐𝑝, 𝜃𝑔 = 𝑎1…𝑎𝑞 can be estimated once model structure and 

hyper-parameters are determined
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Step 2: Estimate 𝜃𝜙 and 𝜃𝑔

• Differentiating the raw observations 𝑧: 

Δ𝑋 = Δ𝑧 − Δ𝜙(𝜃𝜙) − Δ𝑔(𝜃𝑔)

• Let 𝜇 = 𝐸 𝑋 , the residuals (with mean 0) are

𝑟 = Δ𝑋 − 𝜇 = Δ𝑧 − Δ𝜙(𝜃𝜙) − Δ𝑔(𝜃𝑔) − 𝜇

• To infer 𝜃𝜙 and 𝜃𝑔, we can minimize a loss function associated with 𝑟 when 𝜇 is known

𝐿 𝑟1:𝑛 = ෍

𝑖=1

𝑛

𝑟𝑖
𝑠

1
𝑠

• Two options when 𝜇 is unknown:
– Option 1: estimate 𝜇 together with 𝜃𝜙and 𝜃𝑔(1st  estimator)

– Option 2: ignore 𝜇 and minimize a loss function of Δ𝑋 (2nd  estimator)

• Robust estimation: use the 2nd estimator with 𝑠 = 1 (L1 loss, sum of absolute residuals)
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Step 2: hyper-parameter tuning

• The more complex the polynomial, the smaller the loss, but also the more difficult it is to 

ascribe physical meaning to it.

• Use grid search CV to determine the best p and q

• Schema:
– Split the data into train and test sets (no shuffling)

– Construct the searching space: 𝑃 = [1,2,3, … ], 𝑄 = [1,2,3, … ]

– For 𝑝, 𝑞 in 𝑃, 𝑄:

• Use training set to estimate parameters 𝜃𝜙
𝑡𝑟𝑎𝑖𝑛 and 𝜃𝑔

𝑡𝑟𝑎𝑖𝑛

• Compute the loss function on the test set with 𝜃𝜙
𝑡𝑟𝑎𝑖𝑛 and 𝜃𝑔

𝑡𝑟𝑎𝑖𝑛

• Obtain the average loss over all partitions of train/test split

– Best p and q: minimize the average loss
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THSM: applied to valve 3

• 𝜙 and 𝑔 are considered polynomial.

• (p, q) are tuned as (2,0): translation effect on the initial degradation 𝜙

• 𝜙 ℎ = 4.18ℎ − 0.20ℎ2 − 12.67

• Hidden degradation 𝑋𝑡: Excess kurtosis and heavy tailed

• Follows a student t distribution (Cramér–von Mises, p-value=0.18) 
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THSM: applied to valve 3

• Interpolation: not smooth in the t axis
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THSM: applied to valve 2

• 𝜙 and 𝑔 are considered polynomial.

• (p, q) are tuned as (2,0): translation effect on the initial degradation 𝜙

• 𝜙 ℎ = −2.83ℎ − 0.06ℎ2 + 105.24

• Hidden degradation 𝑋𝑡: Excess kurtosis and heavy tailed
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THSM: applied to valve 2

• Interpolation: not smooth in the t axis



20

THSM: pros and cons

• Features:
– Percent travel and degradation: treated separately 

– Fast

– Intuitive and easily understandable

• Drawbacks 
– Linear relation in the H axis: too strong an assumption

– Data sparsity at certain locations: increased uncertainty

– Sampling bias due to changes in the percent travel

• Valve 3: 19 < ℎ < 22

• Valve 2: no data collected between 35 and 40

• Valve 5: ℎ increases from 25 to 60, data unbalance

– Non-smooth interpolation surface

– Unable to derive the standard deviation for the interpolated points

– Degradation trend may be masked by noise/large jumps 
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Kriging applied to valve 3

• Hyper-parameter tuning:
– Anisotropy scaling factor: 

0.002 (time span: 380--0.76 

days)

– Variogram: spherical 

(sill=6.21, nugget=0.25, 

effective range =2.12)
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Spatio-temporal interpolation

• Observed Cv deviation: 𝑧1(ℎ1, 𝑡1), 𝑧2(ℎ2, 𝑡2)… 𝑧𝑛(ℎ𝑛, 𝑡𝑛)

• Degradation evaluation for the past: find 𝑧(ℎ, 𝑡) for 𝑡 < 𝑡𝑛 , ℎ ∈ 𝐻

• Prognosis: estimate 𝑧(ℎ, 𝑡) for 𝑡 > 𝑡𝑛 , ℎ ∈ 𝐻

• The percent travel 𝐻 forms the 1D spatial dimension

• The time 𝑇 forms the 1D time dimension
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First Law of Geography

• “Everything is related to everything else, but near 

things are more related than distant things.”--

Waldo R. Tobler.

https://www.e-education.psu.edu/maps/l2_p2.html
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Inverse distance weighting

• The assigned values to unknown points are calculated with a weighted average of the 

values available at the known points.

𝑧 𝑥, 𝑦 =෍

𝑖

𝑤𝑖 𝑧𝑖 , 𝑤𝑖 =

1
𝑑𝑖

𝑝

σ𝑘
1
𝑑𝑘

𝑝 ,

• 𝑧𝑖: values at 𝑥𝑖 , 𝑦𝑖
• 𝑤𝑖: weights

• 𝑑𝑖: Euclidean distances between 𝑥𝑖 , 𝑦𝑖 and (𝑥, 𝑦)

• 𝑝: exponent that controls the weighting of 𝑧𝑖 on 𝑧
– small 𝑝 tends to yield estimated values as averages of 𝑧𝑖 in the neighborhood

– large 𝑝 tends to give larger weights to the nearest points and increasingly down weights points farther away.
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Spatio-temporal IDW

• IDW adapted to interpolate spatio-temporal data, with time as an additional dimension

𝑧 ℎ, 𝑡 =෍

𝑖

𝑤𝑖 𝑧𝑖 , 𝑤𝑖 =

1
𝑑𝑖

𝑝

σ𝑘
1
𝑑𝑘

𝑝 ,

𝑑𝑖 = ℎ𝑖 − ℎ 2 + 𝑐2 𝑡𝑖 − 𝑡 2

• 𝑧𝑖: values at ℎ𝑖 , 𝑡𝑖
• 𝑤𝑖: weights

• 𝑐: scaling factor

• Model structure is determined by 𝑐 and 𝑝, which can be tuned by grid search CV



26

IDW applied to valve 3

• Hyper-parameter tuning: 𝑐 = 0.002, 𝑝 = 5

• Left: THSM, right: IDW

• IDW is a deterministic method and cannot provide a measure of uncertainty.
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Spatial correlation and variogram 

• The theoretical variogram 2 𝛾 𝒔1, 𝒔2 is a function describing the degree of spatial 

dependence of a spatial random field or stochastic process, Z(s)

2 𝛾 𝒔1, 𝒔2 = 𝑉𝑎𝑟 𝑍 𝒔1 − 𝑍 𝒔2
• If the spatial random field has constant mean:

2 𝛾 𝒔1, 𝒔2 = 𝐸 𝑍 𝒔1 − 𝑍 𝒔2
2

• If the covariance function of a stationary process exists it is related to variogram by:

2 𝛾 𝒔1, 𝒔2 = 𝐶 𝒔1, 𝒔1 + 𝐶 𝒔2, 𝒔2 − 2𝐶 𝒔1, 𝒔2
• where

𝐶 𝑥, 𝑦 = 𝐶𝑜𝑣 𝑍 𝑥 , 𝑍 𝑦

• Variogram is a measure of dissimilarity over a distance. It shows how two data points are correlated from a 
spatial perspective, and provides useful insights when trying to estimate the value of an unknown location using collected sample data from 
other locations.
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Variogram explained 

• Sill: the variance in which spatial data pairs lose 

correlation. 
– As the distance between two data points increases, it will 

be less likely that those two data points are related to one 

another.

• Nugget: the nonzero intercept of the variogram. 
– It is an overall estimate of error caused by measurement 

inaccuracy and environmental variability occurring at fine 

enough scales to be unresolved by the sampling interval.

• Range: a distance in which the spatial variability 

reaches the sill.
– It is the distance beyond which observations are no longer 

correlated

https://aegis4048.github.io/spatial-simulation-1-basics-of-variograms
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Variogram models 

• The empirical variograms 

are approximated by 

theoretical models to ensure 

validity (e.g., conditionally 

negative definite function), 

which will then be used for 

kriging.

• Common bounded models:
– Spherical

– Exponential

– Gaussian

• Unbounded models:
– Linear

– Power Clayton V. Deutsch, in Encyclopedia of Physical Science and Technology (Third Edition), 2003
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Spatio-temporal covariance function 

• Since 𝐻 forms the 1D spatial dimension and 𝑇 forms the 1D time dimension, a more 

“correct” model would be spatio-temporal covariance function

• The random field 𝑍(ℎ, 𝑡) can be described by 

2 𝛾 ℎ; 𝑡 = 𝑉𝑎𝑟 𝑍 ℎ0 + ℎ; 𝑡0 + 𝑡 − 𝑍 ℎ0; 𝑡0
• Or equivalently by its covariance function

𝐶 ℎ1, ℎ2; 𝑡1, 𝑡2 = 𝛾 ℎ1; 𝑡1 + 𝛾 ℎ1; 𝑡1 − 𝛾 ℎ1 − ℎ2; 𝑡1 − 𝑡2
• However, due to data sparsity (only one measurement per day), the empirical spatio-

temporal variogram cannot be estimated.

• Time is treated as the 2nd spatial dimension, with an anisotropy scaling factor.
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Trend and Anisotropy

• Anisotropy:
– An isotropic phenomenon is a process that is not directionally dependent. In spatial studies, this process is 

considered to evolve similarly in all the directions in space.

– On the contrary, anisotropy refers to a process that varies differently according to the direction of interest. Often, 

it denotes a characteristic of a random process that shows higher autocorrelation in one direction than another. 

– Time and percent travel: different autocorrelation

• Trend: 
– Cv deviation increases in percent travel

– Cv deviation increases in time

– Can be described by a deterministic function

– Incorporate external variables
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Ordinary kriging

• Assumption: data are intrinsically stationary

𝑍 𝒔 = 𝜇 + 𝜖 𝒔

• Interpolation at the target position 𝑠0:

𝑍∗(𝒔𝟎) = ෍

𝑖=1

𝑛

𝑤𝑖 𝑍(𝒔𝒊 )

• The estimator is unbiased (𝐸 𝑍∗ 𝒔𝟎 − 𝑍 𝒔𝟎 = 0), and the weights 𝑤𝑖 are determined 

by minimizing the estimation variance

𝜎𝐸
2 = 𝐸 𝑍∗ 𝒔𝟎 − 𝑍 𝒔𝟎

2

• Subjected to

෍

𝑖=1

𝑛

𝑤𝑖 = 1
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Universal kriging

• Kriging with unknown mean or external drift

𝑍 𝒔 = 𝜇(𝒔) + 𝜖 𝒔

• The trend can be linear, quadratic…

• Universal kriging: trend modeled as a function of the coordinates

• Kriging with external drift: trend defined via auxiliary variables
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Kriging applied to valve 3

• Hyper-parameter tuning:
– Anisotropy scaling factor: 

0.002 (time span: 380--0.76 

days)

– Variogram: spherical 

(sill=6.21, nugget=0.25, 

effective range =2.12)



Compare model performances by rolling forecasting

• Train/test split:

– Fit a model Data[1:k]

– Use the fitted model to predict data[k+1:k+m], 
where m is the prediction length

– Let k move forward

• Example: valve 3. 

– Total data length: 210

– Prediction start at 𝑘0 = 100, prediction length 𝑚 =
5.

– Overall performance is averaged over 105 
predictions

• Metrics: 

– mean absolute error (MAE), 

– root mean squared error (RMSE), 

– median absolute relative error (MARE), 

– R-squared (R2)
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Summary of the two methods 

Two stage hybrid model Kriging

Basic assumption Linear dependence in percent travel First law of geostatistics

Additional assumptions Structure of 𝜙 (initial degradation) and 𝑔
(need to specify how the operation time 

and percent travel interacts)

Second order stationarity of the random 

field

Structure of the trend function

Hyper parameters Polynomial orders of 𝜙 and 𝑔 Variogram type, anisotropy scaling factor

Type Deterministic 𝜙 and 𝑔
Stochastic in forecasting

Stochastic 

Uncertainty Only in forecasting Over the random field

Running time Fast Slow (for hyper-parameter tuning if the data 

is large)
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Toolbox

• Functionalities
– Cv and Cv deviation overview

– Degradation trend estimation

– Uncertainty quantification

– 3d interactive visualization

• Programming language: Python

• Methods:
– Two stage hybrid model

– Kriging 

• Working mode: offline. Data should be 

manually imported.

• Full documentation will come by the end 

of September.
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Toolbox: input file

• Theoretical Cv
– Percent travel as the first column, from 0 to 100

– Corresponding Choke Cv as the second column

• Observed Cv (ELF, Sachdeva or Flowcurve)
– Time, percent travel and Cv as the first, second and 

third columns


