

Norwegian University of Science and Technology

18th February 2021

Mathematical Modeling for Remaining Useful Life Prediction

RUL prediction using Empirical Wavelet Transform (ongoing work)

PhD. candidate: Bahareh Tajiani

Main supervisor: Prof. Jørn Vatn, MTP Department, NTNU

Co-supervisor: Dr. Rune Schlanbusch, senior researcher, NORCE Norwegian Research Centre

Start date: August 2019

□ Introduction

General Framework

Experimental Vibration Setup and Data Description

□ Feature Extraction and feature selection

□ Modeling

□ Plan for further work

Introduction and Background

- □ Roller bearings as critical components in rotating machinery
- **Condition-monitoring of bearings**
- □ Various parameters for diagnosis purpose (e.g., temperature, pressure, ...), <u>vibration measurements</u>
- □ Mathematical modeling and RUL prediction of roller bearings

Equipment (system, structure, component)

General Framework for RUL Prediction of Bearing

Collecting vibration data

Data collected at RAMS laboratory using two accelerometers

Preprocessing, Feature extraction and feature selection

- Time-domain features
- Frequencydomain features
- Time-frequnecy representation techniques (TFR)

Feature trending and feature selection

- PCA
- Correlation coefficient
- Monotonicity
- Trendability
- Prognosibility

Finding how much time is left until a failure occurs

DNTNU

Experimental Vibration Setup

Fig. 2. Accelerometers, bearing house and motor

Fig. 3. Accelerometers

Fig. 4. System working page

Data Samples

Data Description

- Condition 1: Motor speed of 2975 rpm
- Condition 2: Motor speed of 3040 rpm
- Condition 3: Motor speed of 2000 rpm
- Condition 4: Motor speed of 1500 rpm

Table 1.Datasets

Table 2.Specifications of bearings

		Data collected	Data collected				
		Condition 1	Condition 2	Condition 3	Condition 4	Number of balls	10 balls
		Bearing 1-1	Bearing 2-1	Bearing 3-1	Bearing 4-1	Pitch diameter (B)	70 mm
		Bearing 1-2	Bearing 2-2			Ball diameter	4.7 mm
		Bearing 1-3				Inner diameter (d)	15.9 mm
	Data coto	Bearing 1-4				Outer diameter (D)	34.9 mm
	Data sets	Bearing 1-5					
		Bearing 1-6					
		Bearing 1-7					
		Bearing 1-8					
		Bearing 1-9					

General Framework

Collecting vibration data

Data collected at RAMS laboratory using two accelerometers

Preprocessing, Feature extraction and feature selection

- Time-domain features
- Frequencydomain features
- Time-frequnecy representation techniques (TFP)

Feature trending and feature selection

- PCA
- Correlation
 coefficient
- Monotonicity
- Trendability
- Prognosibility

RUL prediction

Finding how much time is left until a failure occurs

NTNU

Feature Extraction

Empirical Wavelet Transform (EWT)

Empirical Wavelet Transform (EWT)

Empirical Wavelet Transform (EWT)

Step 1 and 2

Empirical Wavelet Transform (EWT)

Step 3

Band-pass filters (Mode frequencies)

Step 4

Fig. 9. Mode frequencies (MFs) of the first sample (healthy bearing)

Feature trending and feature selection

N'I

Correlation Coefficients with linear regression

$$\rho = \frac{\sum_{i=1}^{n} (A_i - \mu_A) (B_i - \mu_B)}{\sqrt{\sum_{i=1}^{n} (A_i - \mu_A)^2 (B_i - \mu_B)^2}}$$

Horizontal		B1	B2	B3	B4	B5	B6	B7	B8	B9
Bandpass1	Sandpass1		0.8759	0.8965	0.9290	0.8723	0.9384	0.8974	0.9789	0.9550
Bandpass2	RMS	0.8816	0.9312	0.6873	0.6668	0.8841	0.5717	0.6942	0.8291	0.6536
Bandpass3		0.8098	0.9275	0.7275	0.6764	0.8247	0.4973	0.7065	0.9052	0.8288
Bandpass4		0.7977	0.7903	0.7385	0.6119	0.8396	0.7431	0.8558	0.9159	0.7934
Bandpass5		0.9010	0.9217	0.8894	0.9594	0.8815	0.9576	0.9176	0.9707	0.9318
Bandpass1		0.7935	0.6754	0.8817	0.8365	0.7528	0.8930	0.7552	0.9322	0.9186
Bandpass2		0.7612	0.7933	0.6173	0.4920	0.7287	0.3802	0.5128	0.7333	0.4600
Bandpass3	Energy	0.5436	0.7883	0.6667	0.4172	0.6799	0.2834	0.5615	0.8108	0.7410
Bandpass4		0.5579	0.5622	0.6735	0.3593	0.7115	0.5740	0.7339	0.8179	0.6753
Bandpass5		0.7488	0.8119	0.8506	0.9033	0.7247	0.9279	0.8078	0.9124	0.8921

Feature trending and feature selection

NTNU

Degradation Trajectories

Fig. 11. Selected degradation trajectories. The blue line is the first EWT passband and the red line is the fifth EWT passband

Health stage division

Simple Algorithm:

- 1. Pick the first RMS window of size $n (P_1, P_2, \dots, P_{n-1}, P_n)$
- 2. Fit a linear regression model on n-size RMS values (RMS = wt + b)
- 3. Calculate the gradient of the fitted linear regression model ($w = \frac{\sum t_i RMS_i \frac{\sum t_i RMS_i}{n}}{\sum t_i^2 \frac{(\sum t_i)^2}{n}}$)

 $STP = P_n$

Else

n = n + 1

1. Repeat from step 2

Health stage division

Fig. 11. Starting degradation point of RMS degradation paths

General Framework

Collecting vibration data

Data collected at RAMS laboratory using two accelerometers

Preprocessing, Feature extraction and feature selection

- Time-domain features
- Frequencydomain features
- Time-frequnecy representation techniques (TFR)

Feature trending and feature selection

- PCA
- Correlation
 coefficient
- Monotonicity
- Trendability
- Prognosibility

RUL prediction

Finding how much time is left until a failure occurs

NTNU

Modeling

□ Wiener process with linear drift

$$X_t = X_0 + \eta t + \sigma_B B(t)$$

- $X_0 = 0$
- X has random independent increments
- X_t is continuous-time non-monotonic stochastic process following Normal distribution with mean ηt and variance $\sigma_B^2 t$.
- "First Passage Time (FPT)" distribution: Inverse Gaussian Distribution

$$\mu = \frac{\omega - y_t}{\eta}$$
$$\lambda = \frac{(\omega - y_t)^2}{\sigma_B^2}$$

Bayesian Approach for RUL prediction

Numerical Solution

$$\Pr(\operatorname{RUL}(t|y_t,\mu_n,\kappa_n,\alpha_n,\beta_n) \le \tau) = \int_0^\infty \int_{-\infty}^\infty F_{IG}(\tau|\nu,\lambda) f_N\left(\mu\left|\mu_n,\frac{1}{\kappa_n\eta}\right) f_{GA}(\eta|\alpha_n,\beta_n) d\mu d\eta\right)$$

 \Box $F_{IG}(\tau | \nu, \lambda)$: CDF of Inverse – Gauss distribution

•
$$\mu = \frac{\omega - y_t}{\eta}$$

•
$$\lambda = \frac{(\omega - y_t)^2}{\sigma_B^2} = (\omega - y_t)^2 \eta$$

 $\Box \quad f_N\left(\mu \middle| \mu_n, \frac{1}{\kappa_n \eta}\right): \text{PDF of Normal distribution}$

- \Box $f_{GA}(\eta | \alpha_n, \beta_n)$: PDF of Gamma distribution
- □ Calculating PDF and CDF of RUL for every sample

Numerical Solution

Fig. 12. 3D line plot of CDF and PDF of RUL at different samples. The mean values are connected by red dots

Further work

- Prognostics performance metrics
 - Accuracy

$$score = \frac{1}{n} \sum_{i=1}^{n} A_i$$
$$A_i = \begin{cases} \exp\left(-\ln(0.5) \times \frac{Er_i}{5}\right) & Er_i \le 0\\ \exp\left(+\ln(0.5) \times \frac{Er_i}{20}\right) & Er_i > 0 \end{cases}$$
$$Er_i = \frac{ActRUL_i - \widehat{RUL_i}}{ActRUL_i}$$

• Prediction error: The root mean square relative error (RMSRE) of predicted and real lifetime

$$RMSE = (\frac{1}{n} \sum_{i=1}^{n} (\frac{L_i - \hat{L}_i}{L_i})^2)^{1/2}$$

- Cumulative relative accuracy
- Prognostics horizon
- Convergence
- $\circ \alpha \lambda$ accuracy

Further work

• Monotonicity, trendability and prognosability

$$Monotonicity = mean(\left|\frac{positive \ diff(x_i) - negative \ diff(x_i)}{n-1}\right|)$$
$$Trendability = min(\left|corrcoef(x_i, x_j)\right|) \ i, j = 1, 2, ..., m$$
$$Prognosability = exp(-\frac{std(failure \ values)}{mean(|failure \ value \ - \ starting \ value|)})$$

Thank you!

