March 24, 2022

Lead Time Modeling for Optimization of an Alarm Threshold

PhD. candidate: Bahareh Tajiani

Main supervisor: Prof. Jørn Vatn, MTP Department, NTNU

Agenda

- Introduction
- Objective
- Deterministic Lead Time
- Stochastic Lead Time
- Modeling and Some Results
- Further Work

Introduction

- Lead time: Time between placing an order and receiving the order/time from when a maintenance action is ordered until it is carried out.
- Lead time depends on many factors such as delivery time of an item, maintenance team availability, ...
- Most literature works focus on deterministic lead time
- In reality, lead time is stochastic variable

Objective

The objective is to find an appropriate alarm threshold
(m) to minimize the expected cost

Deterministic Lead Time - Assumptions

- The system is continuously monitored without any uncertainty:
 - Gradual degradation (aging) : Wiener process
 - Failure if $X(t) \ge L$
 - When $X(t) \ge L$, we place a request to replace the component with a new one

Deterministic Lead Time Modelling

$$C(m) = \frac{C_R + C_F \cdot F(T_L | \alpha_m, \beta_m) + C_U \cdot \int_0^{T_L} f(t | \alpha_m, \beta_m) (T_L - t) dt}{\frac{m}{\mu} + T_L}$$

- C_R : replacement cost
- C_F : Failure cost
- C_U : Cost of per hour downtime
- $F(t; \alpha_m, \beta_m)$ and $f(t; \alpha_m, \beta_m)$ are the CDF and PDF of RUL
- MTBR in denominator is mean time between renewals
- $\alpha_m = \frac{L-m}{\mu}$
- $\beta_m = \frac{(L-m)^2}{\sigma^2}$

Case study: Bearings

Stochastic Lead Time - Assumptions

- The system is continuously monitored without any uncertainty:
 - Gradual degradation (aging) : Wiener process
 - Failure if $X(t) \ge L$
 - When $X(t) \ge L$, we place a request to replace the component with a new one
 - $T_L \sim Weibull$ (2,5)

Stochastic Lead Time - Modelling

$$C(m) = \frac{C_R + C_F \cdot \int_0^\infty F(T_L | \alpha_m, \beta_m) \ g(T_L | m) \ dT_L + C_U \cdot \int_0^\infty \int_0^{T_L} f(t | \alpha_m, \beta_m) \ g(T_L | m) \ (T_L - t) dt \ dT_L}{\int_0^\infty \left(\frac{m}{\mu} + T_L\right) g(T_L | m) \ dT_L}$$

Case study: Bearings

Ideas for Further Work

- Gradual degradation (aging) with Wiener process
- Random shock with homogeneous Poisson process (HPP) with intensity ρ
- Magnitude of the random shocks is random (gamma distribution)
- Deterministic lead time

$$C(m) = \frac{C_R + C_F \cdot \int_0^\infty F(T_L | \alpha_m, \beta_m) g(T_L | m) dT_L + C_U \cdot \int_0^\infty \int_0^{T_L} f(t | \alpha_m, \beta_m) g(T_L | m) (T_L - t) dt dT_L}{\int_0^\infty \left(\frac{m}{\mu} + T_L\right) g(T_L | m) dT_L}$$

What can we do instead to derive the cost function?

- Numerical integration of the stochastic process (PK8207!)
- y(t+dt) = y(t) + S
- $f(y|t+dt) = \int_{-\infty}^{\infty} f(y-s|t) g(s) ds$
- $f(y|t + dt, and shock) = \int_0^\infty f(y s|t) h(s) ds$
- $f(y|t + dt) = (1 \rho dt) f(y|t) + \rho dt \int_0^\infty f(y s|t) h(s|t) ds$

Probability mass shuffling

Random shock, possible cases

Case A: Shock occurs below the maintenance limit (M)

- A.1 Low magnitude, degradation level remains below M
- A.2 Medium magnitude, degradation level lies between M and L
- A.3 Large magnitude, degradation level goes above L

Imperfect Repair, possible cases

Case B: A shock occurs while we are waiting for a renewal (the degradation level is above M)

- B.1 low magnitude of shock, degradation level remains below L
- B.2 large magnitude, degradation level goes above L

Thank you!