# Prognostics and health management of safetyinstrumented systems

- Approaches of degradation modeling and decision-making

PhD candidate: Aibo Zhang

Main supervisor: Prof. Yiliu Liu Co-supervisors: Prof. Anne Barros



February 10th, 2021

# Outlines







**Research questions** 



- 3.1 Degrading performance
- 3.2 Redundant structure modeling
- 3.3 Decision-making approach



Concluding remarks

# **Research motivation**

Aibo Zhang PhD defense

Research motivation

Research questions

Concluding remarks

Risk?





Deepwater Horizon oil spill,2010





Aibo Zhang PhD defense

# Layer of protection



# Example of safety barriers in process industry



High-Integrity Pressure Protection System



Aibo Zhang PhD defense

# Safety-instrumented systems (SISs)



Aibo Zhang PhD defense

# Performance measurement – Binary states

Time

Time

PFD<sub>avg</sub>: average probability failure on demand in each test interval is used to quantify the reliability of SIS.

Research motivation



τ





Research questions

### Aibo Zhang PhD defense

Research motivation

Research questions

Contribution

Concluding remarks

۲

•



Testing and maintenance policy

2. Decision-making for the upcoming tests with collected information.





\* IEC61508 Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems (E/E/PE, or E/E/PES) IEC61511 Functional safety - Safety instrumented systems for the process industry sector

Aibo Zhang PhD defense

Research

motivation

Research questions

Contribution

Concluding remarks

**NTNU** 

Prognostics and health management (PHM)

PHM can used for\*:

- 1. evaluating the reliability of systems of their life cycle;
- 2. determining the possible occurrence of failures and risk reduction;
- 3. highlighting the residual useful lifetime(RUL) estimation.





\*Haddad, Gilbert, et al. "An options approach for decision support of systems with prognostic capabilities." IEEE Transactions on reliability 61.4 (2012): 872-883. \*Ibrahim, Mesfin Seid, et al. "Machine Learning and Digital Twin Driven Diagnostics and Prognostics of Light-Emitting Diodes." *Laser & Photonics Reviews* 14.12 (2020): 2000254. 9

Aibo Zhang PhD defense

Research motivation

Research questions

Contribution

Concluding remarks



# Benefits and challenges

Benefits

- Advance warning of failures and maintain the required function;
- 2. Aviod unnecessary tests;
- 3. Optimized maintenance;
- 4. Logistic support and cost reduction.

1. Degradation modeling;

Challenges

- 2. Redundancy structure in degradation modeling;
- Time dependent measurement of SISs;
- 4. Decision-making within the required SIL.

\* Article I :

Zhang, Aibo, et al. "Prognostic and health management for safety barriers in infrastructures: Opportunities and challenges." *ESREL 2018*.

Aibo Zhang PhD defense

# Influencing factor of SIS





Aibo Zhang PhD defense

# **Time-dependent Performance**



Research questions

Contribution

Concluding remarks



Binary state VS time-dependent performance



Aibo Zhang PhD defense

Research motivation

Research questions

Contribution

Concluding remarks



Æ



- Continuous aging
- The required performance



Redundancy structure

Research questions and objectives

- Same damage
- Only the activated ones



Evaluation criteria

- Condition-based maintenance
- Economics



- Continuous aging on time-dependent SISs degrading performance;
- Hybrid effects of continuous aging and random demands;

Decisionmaking

- Assessment method considering the effectiveness of collected information in tests
- Balancing SIS performance and economic targets in decision-making

# Contribution

# Contribution

— Degrading performance

Objective: Continuous aging on time-dependent SISs degrading performance

Method: Stochastic process

# Output:

Article III:

Zhang, Aibo, et al. "A degrading element of safety-instrumented systems with combined maintenance strategy" *ESREL* 2019.

Article IV:

Zhang, Aibo, et al. "Optimization of maintenances following proof tests for the final element of a safety-instrumented system." *Reliability Engineering & System Safety* (2020).

Aibo Zhang PhD defense

Research motivation

Research questions

Contribution

Concluding remarks



# Degrading performance

1. Time dependent state: working, degraded and failed;



Aibo Zhang PhD defense

Research motivation Research questions

Contribution

Concluding remarks





- 2. Periodic proof test with interval  $\tau$ ;
- 3. Different maintenance strategies are taken based on the state of component
- Failed state: corrective maintenance (AGAN)
- Degraded state: imperfect preventive maintenance  $(\omega_b L)$
- Working state: no maintenance



Research questions:

- System performance ?
- Conditional PFD(t)
- $\omega_a L, \omega_b L$  ?

Aibo Zhang PhD defense

Research motivation

Research

questions

Contribution

Concluding

remarks

NTNU

# Degrading performance

Degradation process : homogenous Gamma degradation process Maintenance : only at proof test date

- A(t)=Pr (X(t)<L)
- The conditional A(t) : A(t)=Pr  $(X(t) < L | X(\tau) = \mu)$

$$PFD_{avg} = \frac{1}{\tau} \int_0^{\tau} [1 - A(t)] dt$$



- Degradation level X(*t*) accumulates with time;
- A(t) reduces ;
- PFDavg increases with time.





Research motivation Research questions

Contribution

Concluding remarks





Conclusion:

- System PFD<sub>avg</sub> increases with time even working at tests.
- PFD<sub>avg</sub> is more susceptible to the degree of degradation initiating a PM;
- The theoretical basis for the updating testing interval given SIL.

# Contribution

---- Redundant structure

**Objective**: Hybrid effects of continuous aging and random demands

Method: Stochastic process + Poisson process

Output:

Article II:

Zhang, Aibo, et al. "Performance analysis of redundant safety-instrumented systems subject to degradation and external demands". *Journal of Loss Prevention in the Process Industries* (2019). Article VI:

Zhang, Aibo, et al. "Optimal activation strategies for heterogeneous channels of safety instrumented systems subject to aging and demands." *Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability* (Under revision).

Aibo Zhang PhD defense

Research motivation Research questions

Contribution

Concluding remarks



Degradation process of single unit:

Continuous aging;

Redundancy structure — 1002 configuration



System reliability of such a 1002 by time t is the probability that total degradation of at least one unit is less than the threshold *L*, as,

 $R_{S}(t) = \Pr(\{Z_{1}(t) < L_{1}\} \cup \{Z_{2}(t) < L_{2}\})$ 



Aibo Zhang PhD defense

Research motivation Research questions

Contribution

Concluding remarks







- 1. Degradation processes of one unit:
  - Continuous aging process: homogeneous gamma process
  - Random demands: Poisson process with rate  $\lambda_{de}$
  - Demand damage: Gamma distribution
- 2. For 1002, random demands will have same damage effects on two units.
- 3. Two components are dependent due to the same damage caused by random demands.

Aibo Zhang PhD defense

### Research motivation Research questions

Contribution

Concluding remarks



# Performance analysis

# 1002 System performance: R(t) and conditional PFDavg



- System is quite reliable at beginning;
- System reliability will be overestimated if only the aging process is considered.
- System conditional PFD<sub>avg</sub> increases with time.
- Considering aging and damage caused by random demands can make the system reliability and PFD<sub>avg</sub> stricter than only aging process.

Aibo Zhang PhD defense

Research motivation Research questions

Contribution

Concluding remarks









Research motivation Research questions

Contribution

Concluding remarks



# **Performance analysis**



- 1. R(t) is quite high at beginning;
- 2. System R(t) and MTTF reach a minimum value when p=0.5, a maximum value with p=0.
- 3. The optimal strategy: one unit as standby until the primary one failed.

Aibo Zhang PhD defense

Research motivation Research questions

Contribution

Concluding remarks





2003 configuration peformance

 $p_1 = \Pr(\text{Activating unit 1})$  $p_2 = \Pr(\text{Activating unit 2}|p_1)$ 



Dominant activation paths with  $(p_1, p_2)$ 



- 1. System MTTF reaches the minimum when  $p_1 = 0$ , also when  $(p_1, p_2) = (1, 0)$  and  $(p_1, p_2) = (1, 1)$ ;
- 2. System performance reaches the worst state while keeping the fixed combinations for all demands;
- 3. For 2003 configuration, demands should be arranged equally to each unit.

# Contribution

— Decision-making approach

**Objective**: Assessment method considering the effectiveness of collected information in tests Balancing SIS performance and economic targets in decision-making

Method: Markov process

Output:

Article V:

Zhang, Aibo, et al. "Study of testing and maintenance strategies for redundant final elements in SIS with imperfect detection of degraded state". *Reliability Engineering & System Safety* (2020).

Aibo Zhang PhD defense

## Research motivation Research

questions

Contribution

Concluding remarks



Status

Working

Notation

W

Discrete degradation — 1001 configuration

# Imperfect degraded state revealing

Degradation is not observed directly

Inaccurate threshold setting for the state

Subjective errors



Aibo Zhang PhD defense

Research motivation Research questions

Contribution

Concluding remarks



# Discrete degradation — 1001 configuration

 $\alpha$  = Pr(Degradation is detected in a proof test|Degradation has occurred)

Testing and maintenance matrix:

- PM for the degraded state
- CM for the failed state

$$A = \begin{pmatrix} 1 & 0 & 0 \\ \alpha & 1 - \alpha & 0 \\ 1 & 0 & 0 \end{pmatrix}$$



1. When  $\alpha$ =1, the degraded state will be repair, PFD(*t*) keeps the same in each test interval.

2. When  $\alpha$ =0, no degraded state will be repair, PFD(*t*) increases each test interval.

Aibo Zhang PhD defense

Research motivation Research questions

 $W_1D_2$ 

 $D_1W_2$ 

 $W_1W_2$ 

Contribution

Concluding remarks



# Discrete degradation — 1002 configuration

 $F_1F_2$ 

 $D_1D_2$ 

 $F_1D_2$ 





| Strategy I      | Simultaneous<br>testing | PM and CM for the degraded and failed state, respectively.                                               |
|-----------------|-------------------------|----------------------------------------------------------------------------------------------------------|
| Strategy<br>II  | Staggered<br>testing    | <ul> <li>PM and CM for the tested unit</li> <li>No action on the other</li> </ul>                        |
| Strategy<br>III | Staggered<br>testing    | <ul> <li>•PM and CM for the tested unit</li> <li>•When CM, perform a replacement on the other</li> </ul> |

Simultaneous

testing

Aibo Zhang PhD defense

Research motivation Research questions

Contribution

Concluding remarks



# Discrete degradation — 1002 configuration



- 1. System PFDavg independents with  $(\alpha_1, \alpha_2)$  in first test interval  $(0, \tau)$ .
- 2. System PFDavg keeps a constant value with  $\alpha_1 = \alpha_2 = 1$ .
- 3. System PFDavg increases with time when  $\alpha_1 \neq 1$ ,  $\alpha_2 \neq 1$ .



Aibo Zhang PhD defense

Research motivation Research questions





# One-time installation cost per unit



Discrete degradation — 1002 configuration

Aibo Zhang PhD defense

Research motivation Research questions

Contribution

Concluding remarks



Discrete degradation — 1002 configuration

Selection procedure for optimal testing and maintenance strategy





# Concluding remarks

Aibo Zhang PhD defense

Research motivation Research questions

Contribution

Concluding remarks

# Conclusions

- 1. The proposed stochastic process-based degradation model provide an advantage of calculating the conditional system performance based on the collected information in tests;
- 2. Quantitative degradation models are proposed for single-unit and redundant structure systems, to address several factors, as aging, operational history and configuration;
- 3. A performance-based maintenance framework is proposed to evolve the maintenance scheme.
- 4. Algorithms are proposed to coordinate system performance and maintenance cost, which provides the quantitative references in the decision-making step of PHM on SISs.



Aibo Zhang PhD defense

# Acknowledgements

# Research motivation

Research questions

Contribution

Concluding remarks



• Supervision team: Yiliu, Anne, Elias, and Tieling(UOW);

- Co-authors in these publications;
- RAMS colleagues and friends;
- Families.

Thank you!

# Gamma process

Properties of homogeneous gamma process  $\Gamma(t; \alpha; \beta)$ :

An homogeneous gamma process with shape parameter  $\alpha$  and scale parameter  $\beta$ , is a stochastic process X(t); t > 0,  $\alpha$ ;  $\beta > 0$ 

- 1. X(0) = 0;
- 2. X(t); t > 0 is a stochastic process
  with independent increments;
- for s < t, the distribution of the random variable X(t) X(s) is the gamma distribution</li>



1 the increment degradation X for t - s, X(t - s) follows a Gamma PDF

$$\begin{split} \Delta X(t-s) \sim \Gamma(\alpha(t-s),\beta) &= f_{\alpha(t-s),\beta}(x) \\ &= \frac{\beta^{\alpha(t-s)}}{\Gamma(\alpha(t-s),0)} x^{\alpha(t-s)-1} e^{-\beta x}, \alpha, \beta > 0 \end{split}$$

2 total degradation X(t) at time t is less than x,  $F_X(x, t)$ , can be derived as:

$$F_X(x,t)(t) = P\{X(t) < x\} = \int_0^x f_{\alpha t,\beta}(z) dz = \frac{\gamma(\alpha t, x\beta)}{\Gamma(\alpha t)}$$

**3** the mean and variance of X(t) are  $\frac{\alpha}{\beta}t$  and  $\frac{\alpha}{\beta^2}t$ , respectively.

# System reliability and conditional PFDavg-1002 (Article II)

 $R_{S}(t) = \Pr(\{Z_{1}(t) < L_{1}\} \cup \{Z_{2}(t) < L_{2}\})$ 

In this example, such a 1002 SIS needs to meet SIL3. Here, we take different thresholds L in Fig9 as an example. Values of the two variables are at first set as  $\lambda_{de} = 2.5 \times 10^{-5}$ , and  $\xi = 4$  respectively. Similar to Eq. 18, we can connect reliability and average PFD in a test interval

$$PFD_{avg} = 1 - \frac{1}{t - t_0} \int_{t_0}^t \frac{R(u)}{R(t_0)} du$$
(21)

The average value of  $PFD_1(t)$  in the first proof test interval $(0, \tau)$  can be obtained then

$$PFD_{avg} = \frac{1}{\tau} \int_0^{\tau} PFD_1(t) dt = 1 - \frac{1}{\tau} \int_0^{\tau} R(t) dt$$
(13)

Using the survivor function of the system R(t) in (11), we can get

$$PFD_{avg} = 1 - \frac{1}{\tau} \int_0^\tau R(t)dt$$
  
=  $1 - \frac{1}{\tau} \int_0^\tau \{ [1 - (1 - \frac{\gamma(\alpha t, L\beta)}{\Gamma(\alpha t)})^2] \cdot e^{-\lambda_{de}t} + \sum_{k=1}^\infty \int_0^L [1 - (1 - \frac{\gamma(\alpha t, (L-y)\beta)}{\Gamma(\alpha t)})^2] \frac{\rho^{k\xi} \cdot y^{k\xi - 1} \cdot e^{-\rho y}}{\Gamma(k\xi)} dy \cdot \frac{e^{-\lambda_{de}t} (\lambda_{de}t)^k}{k!} \} dt$   
(14)

A proof-test will be executed at time  $\tau$ . If the subsystem is functioning at  $\tau$ with unknown degradation level,  $PFD_2(t)$  becomes the conditional probability of failure with  $t > \tau$  given functioning by  $\tau$ 

$$PFD_2(t) = Pr[T < t|T > \tau, t > \tau] = 1 - Pr[T > t|T > \tau, t > \tau]$$
$$= 1 - \frac{Pr[T > t \cap T > \tau, t > \tau]}{Pr[T > \tau]} = 1 - \frac{R(t)}{R(\tau)}$$
(15)

The PFD<sub>avg</sub> in the second test interval $(\tau, 2\tau)$  is then:

$$PFD_{avg} = \frac{1}{\tau} \int_{\tau}^{2\tau} PFD_2(t)dt$$
$$= \frac{1}{\tau} \int_{\tau}^{2\tau} [1 - \frac{R(t)}{R(\tau)}]dt$$
$$= 1 - \frac{1}{\tau} \int_{\tau}^{2\tau} \frac{R(t)}{R(\tau)}dt$$
(16)

