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The objective of Mimes Brenn is to help PhD students get started with their research as
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the time spent navigating the technological jungle
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MTP Quota: 140 CPUs

How to get access to Idun

1. Ask your supervisor to approve access to the cluster resources.

2. Send an email to your contact person (see below) with subject "User on Idun", and provide the following

information:
« Your username

« Your supervisor's name

« A (very) short description of your work or project

3. Read the Gettit

tartecontdun page.

Contact Persons:

Shareholder

Contact Person

Department of Energy and Process Engineering
(EPT)

Department of Geoscience and Petroleum

Department of Electric Power Engineering (IEL)

Eugen Uthaug

Erlend Vdtevik

Anders Gytri

<

Department of Mechanical and Industrial

Astrid de Wijn

Engineering (MTP)

— e

Department of Computer Science (IDI)

Jan Gronsberg

Erik Houmb
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Agenda

* Presentation of context for the water-cooled power cables
(flexibles)

* Presentation of available data

* Results from two master’s theses
 l|deas for using data for journal paper
« Discussion
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Flexibles

(B[]

(Hannensson, 2016) B
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_——— Rubber Hose

Functions

1. Contain water
2. Transfer electrical current
3. Transfer cooling water

Figure 4.4: Cross-section of the older type of flexsible with central cooling.
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Examples of failures on furnace #2

Furnace #2 damage on hose

#2 “sudden loss of current” Leakage:
T, e - Detected by deviation in delta flow

< Wear on hose

 Leads to unplanned stop - Detected by visual inspection
and loss of production
i~ » About 5 events in dataset
. » Have no early warning of
these events today
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Dominant failure mode on furnace # 1:
Gradual decline in cooling water flow:

Flow og bytte Ovnl, Elektrode EL1 (perioder med stans sensurert)
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AVAILABLE DATA
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Furnace #1

Flow og bytte Ovn1l, Elektrode EL1 (perioder med stans sensurert)
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Furnace #2
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Furnace #5

Flow M™3/h

Flow M~3/h
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RESULTS FROM
MASTERSTUDENTS
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Two master students worked on the
dataset earlier this year.

 Main idea
— Physics-based approach vs. Machine learning for PdM
« Both students only used data from furnace 1
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Havard: Physics-Based Perspective

Havard Holm Bjarnebekk

Modeling Degradation for Prognosis
in a Complex Environment - From a
Physics-Based Perspective

Master’s thesis in Mechanical and Industrial Engineering
Supervisor: Jarn Vatn
Co-supervisor: Tom Ivar Pedersen

June 2021

Master’s thesis
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TIP1

Hypothesis on failure mechanisms

“these findings were
hard to translate into
the available sensor

measurements”

Figure 6.1: Flowchart of the hypothesized mechanism behind degrading flow.
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Slide 16

TIP1 Tom Ivar Pedersen, 11.11.2021



Constructing a new health indicator
based on engeering first principles

Flexsible 104 f low
— PpEsSsSUre HI =
v pressure

New HI

5-.&.,Mww.,ﬂ SRS Sp—— P The new HI “get rid of large jumps in

pressure, but the robustness of the Hl
is not found to improve”
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Summary from Thesis

Difficult to find literature on this specific degradation process.

— “it was not found any physics-based model that could model the flexsibles to a
sufficient degree.”

“An important finding is that equipment that seems to have rather explainable
physical properties can seem to be a good case for physics-based models, but in
reality, they are not. For instance, the flexsible are only made up of three parts. Still,
their function relies on a much larger and complex process, which affects the
interpretability of the connected sensor measurements.”

“Better understanding of the equipment’s functions and physical properties can have
business values on its own.”

— For instance, to remove the root cause of degradation!

Don’t have enough data (sensors) to develop physic-based models
— Stochastic models might be appropriate.
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Hakon:

RAMS

Reliability, Availability,
Maintainability, and Safety

Estimating Remaining Useful Lifetime using
Deep Learning on Water Cooled Power Cables

Hakon Grett Sterdal
July 2021
MASTER THESIS

Department of Mechanical and Industrial Engineering
Norwegian University of Science and Technology
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4 stages for
Machinery
prognostics:

Measured data, such as
vibration signals, are
acquired from sensors to
monitor the health
condition of machinery.

Section 2: HI construction

From the measured data,
HIs are constructed using
signal processing
techniques, Al techniques,

Lok by b b 4/ etc., to represent the health
A e ey llideg by ol g .
M *R‘“Mf“‘h:’ r“‘n'4| o) condition of machinery.

Section 3: HS division

Vibration signal

No fault ) Severe fault According to the varying
( o degradation trends of Hls,
S the lifetime of machinery
is divided into two or more
“\—im"h“_i"ii—/ Unhealthy stage , R different HSs.
{rer gt 5

Section 4: RUL prediction

In the HS which presents
obvious degradation
trends, the RUL is
predicted with the analysis
of degradation trends and a
pre-specified FT.

tior frot

Figure 3.1: Overview of the stages in a prognostic program, given by [LEI, 2018]
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Results

Results for 7 day prediction

Model MSE
Feedforward 7 days 0.0545
LSTM 1 layer 7 days 0.0103
LSTM 4 layers 7 day 0.0123

Linear Regression 7 day | 0.0388
LASSO Regression 7 days | 0.0273
Random Forest 7 day | 0.0246
Mean 7 days 0.709
Previous value 7 days 1.568

LSTM = Long Short-Term M
MSE = Mean Squared Error

emory
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4-layered LSTM model for 7 day ahead prediction (200 nodes)

Predicted

7 7
v \/m’\! u\,\/\‘/w —— Actual

WM
6 M

5.5
0 50 100 150

Figure 6.4: Example of the predictions of the 4-layered LSTM model for 7 days ahead prediction,
compared to the actual flow values. Illustrated on one of the degrading flexibles
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Uncertainty based on dropout inference

Figure 6.6: Example of the same model shown in 6.4, but with the upper and lower limit of the
calculated uncertainty by dropout inference.

“the uncertainty fluctuates
heavily, (...) The reason for this
is obscure, and it is difficult to
assess the general confidence
of the network for the test
dataset”
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Summary

* “itis possible to model the degrading behavior of the flexible using data-driven
approaches. Without the use of expert domain knowledge or applying physical laws,
to the model.”

* “Further work with tuning hyperparameters, exploring alternative architectures or
including more data is likely to improve the performance even further.”
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IDEAS FOR USING THIS DATA
FOR PAPER
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Ideas for using data

« Have started discussion with Xingheng for trying to use
this data for paper on degradation modelling or
maintenance optimization

 Plan to use data from furnace 1

* Model degradation as a stochastic process (Wiener
process)

®@NTNU
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Degradation
iIncrements:

Almost
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Some

unit-to-unit
variance?
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Optimization of maintenance policy
with partial and perfect repair.

e Cost:

— Cost of partial repair
— Cost of renewal

— Probability and cost of
downtime

— Planned production
stops (maint. windows)

— Degradation process

L S S R R




Important factors for
optimization model

» Degradation process

— What affects the rate of ! . E
degradation? N — IR,
- time, cooling water flow, é T\
temperature, el.current, |
peaks of el. current, furnace ° R ——— :
position, type of cable, debris | \m”"'*"”" Nl T ey,
in cooling water, maintenance W W‘ W .\\’W
actions, no of partial repair,
unit to unit variability ... |
— Long term effect of partial
repair?
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Important factors for
optimization model

» Number of flexibles —
that can be changes W T T T W
In one maintenance |

window? e
— Personnel wﬁw WW \\FW\W
— Spares

— Location
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Next steps

« Data exploration * Fit a simple Wiener
— (Plotting and PCA?) model for RUL-

+ Remove noise prediction
(Kalman filter?)  Build a simple MC

» Find effect of partial sim for maintenance
repair optimization

 Estimate costs

®@NTNU



Questions or
comments?
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