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Abstract

Natural Language Processing (NLP) and Information Extraction (IE) systems
can annotate free text with meta-data, thus making it possible to automate
processes within clinical care as well as helping medical research gain insight
into the tremendous amount of data which lies hidden in electronic medical
records. In this thesis we will present an overview of recent developments of
methods and resources used in intelligent and robust systems that can extract
accurate meta-data automatically from unstructured sources. Further we will
evaluate a modern IE system by using its structured output to automatically
diagnosing patients based on their discharge summary. This is done by com-
bining the system with machine learning algorithms.

We will not presume any background knowledge of linguistics or medical sci-
ence from the reader. All essential concepts needed to understand the problem
formulations are thoroughly explained, including the nature of the subject to
be analysed (unstructured clinical text), through the building blocks of NLP
and IE to handling the newly structured information with a computer. We
give a bird’s-eye view of IE in the clinical domain (chapters 1-5) as well as a
worm’s-eye view on a specific system used in a specific experiment (chapters
6-7).

We will conclude that even if the ultimate goals of IE still rests on scien-
tific development and discoveries in the future, there is no need to delay any
project aiming to extract and structure information within clinical records.
We see that it is at least three reasons for this: Firstly, the technology already
available to us may benefit Information Retrieval (IR) systems actively used
today, and aggregating the structured information can give us valuable clues for
initial medical research, for instance when trying to uncover relations between
findings, symptoms and drug use.

Secondly we see that the basic building blocks engineered today is likely
to be key components also in future systems. Even if research in NLP and IE
in the clinical field is scarce, we can today begin to develop new components
handling basic NLP tasks geared towards finding linguistic structure in clinical
texts, providing the future with useful and needed building blocks.

Last, but not the least, we see that perhaps the strongest barrier in this
research field is the lack of annotated free text that can be used to train and
evaluate IE systems. Annotated material is necessary when comparing different
methods and systems for NLP and IE and is also necessary when training new
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NLP and IE modules. Annotating such material is costly, both keeping the
data anonymous and private and annotating with linguistics and semantics are
tedious tasks. But once it is created it could be available for any further studies
within the field. Therefore, we see the urgent need of releasing medical records
now, if we want to see productive IE software in the future.
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Chapter 1

Introduction

The vast amount of information accumulating in all parts of our society is
overwhelming. The health care industry is no exception. The rapid growth of
Electronic Medical/Health Records (EMR/EHR) and the latest development of
sophisticated Natural Language Processing (NLP) techniques and algorithms
in general and Information Extraction (IE) in particular makes it valuable to
investigate old and new NLP methods that can contribute in medical research
and health care. Hospital archives of such records contain a tremendous amount
of information about patients, diseases and other findings, valuable information
that can be used when data-mining causal links between symptoms, illnesses
and diagnoses etc. Much of this information is unfortunately hidden from the
computer. The records are written in an unstructured or semi-structured man-
ner, not suitable for searching, summarizing, statistical analysing or decision
assistance, as it is meant for human eyes.

With Information Extraction technology, it could be possible to i) Extract
mentioned entities within written free text, such as diagnoses, allergies and
symptoms. ii) Filter out or mark entities which are negated (“The patient
tested negative on ...” ), speculated (“The symptoms may be caused by ...”) or
not about the patient (“with a family history of ...”). iii) Find other pieces of
information, such as relations between entities, in what period of time events
occurred, etc. iv) Store this information in a structured manner (a manner
that the computer can read and “understand”), so that it can be served to the
end user when needed, in a desired manner.

Recent developments in Information Extraction and Knowledge Modelling
makes it feasible to begin exploring what is needed to make the computer “un-
derstand” the content of clinical notes and use it for other purposes than what
they initially were meant for, like investigating new and unknown causal rela-
tions between findings and diseases. Making the computer “understand” the
data can also prove useful in fulfilling the ordinary tasks of an EHR system in
a better way, for instance automatically compile summations for given patients
for the clinical personnel. When we say that the computer “understands” the
content of a document, we mean that it structures the information in such a
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way that the computer knows how to handle it, infers new information from
it, and performs new tasks which in other ways is currently not available.

The main topic for this thesis is computational linguistics with respect to
Information Extraction, and the overall theme is “How to extract and structure
information from non-structured sources?”. The focus will be on the utilization
of ontologies in this regard. Ontologies is a formal representation of knowledge
within a domain, consisting of concepts and relations between these concepts.
They can assist us in the area of information extraction because they model
the domain, include the means to uncover relevant entity mentions in the text
and can be used to infer even more information from what we have extracted.

When extracting information it is necessary to constrain oneself to one
domain at a time; it is too big a task to build a system which understands
“everything”. Health care is an interesting example domain for information
extraction for several reasons: The clinical domain is an crucial area because
decent health care concerns all of us; everyone needs to be taken care of by
medical personnel several times in their life. If NLP and IE can help provide
even better health care, this alone is good enough reason to invest in it. From
a technical point of view, there is active, ongoing research in the field (Meystre
et al., 2008), which has led to several key resources that can be exploited, like
ontologies and language technology software built specifically for the clinical
domain. With these resources, we have the ability to investigate how ontologies
may help in a general IE setting.

We will investigate the possibilities of utilizing NLP technologies and med-
ical terminologies to add structure and computational meaning to clinical doc-
uments written in a natural language. This could benefit both existing in-
formation retrieval systems used in the medical domain, and converge to a
robust and sophisticated information extraction system. This system could,
for instance, populate a database with reliable and fruitful data extracted from
patient records and discharge summaries. Instead of trying to impose more
standards and rigid usage of terminologies onto clinical health personnel, one
could develop software capable of “understanding” clinical free text. In this
thesis we will see that, given the right tools, factual information from clinical
documents can be extracted in such a manner that the computer can “under-
stand” and thus reason over the data. We will exemplify this with a system
that can recognize patients with a given diagnosis in our experiments. The
system utilizes IE tools in combination with machine learning techniques (see
chapter 7).

1.1 Goals to Achieve

Throughout this thesis we will explore steps that have already been taken in
the field, so we eventually know what is needed to get equivalent results when
developing similar tools for a new language. One of the main goals of the thesis
is to depict the road available for future development in medical language
processing (MLP). We want to present a clear picture both to researchers
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within computer science and medical health care in what steps are necessary
to develop fruitful technologies for handling and processing clinical free text.
The intended readers, then, include researchers from both fields. Therefore, we
will present the basic building blocks concerning NLP and IE from the ground
up, and try not to presume too much prior knowledge from the reader.

Perhaps the ultimate goal for the computer system is to “understand” the
content of clinical text in such a way that it may give correct answers to
questions like “Is there any statistical significant relations between usage of
drug x and symptom y?”. But fruitful systems can be built before we are able to
build such sophisticated machinery. For instance, being able to detect mentions
of named entities in written text, such as diagnoses and medications, makes it
possible for clinical personnel to obtain usable summaries of the patient in care
and serve as an utility to Information Retrieval systems. When the computer
“understands” which medical entities that reported in a clinical record, the
summaries are not restricted to the language used in the record. With a multi-
language medical terminology the summary may as well be written in another
language.

Schemes like this may sound like science fiction, but current projects already
examine how to employ systems with such capabilities. The epSOS project,
which aims to offer seamless healthcare to European patients across geograph-
ical borders and language borders, is developing a multi-language terminology
for this kind of semantic interoperability on a large scale!.

Ana Estelrich gave an example of a use-case in the Semantic Days confer-
ence 2010 (Estelrich, 2010): An Austrian student shows up in a hospital in
Dijon, France. She complains about abdominal pains following a meal. An
x-ray reveals intestinal occlusion and the physician considers keeping the pa-
tient under observation only. The physician runs a search of the patient via
epSOS, which returns the student’s Patient Summary from Austria. Via termi-
nologically based technology, the French physician retrieves a summary based
on a patient record written in German, and discovers that the student has
undertaken an emergency cholecystectomy three years ago and had repeated
sub-occlusive episodes one years ago. Based on this information, instead of
having the student under observation, an abdominal scan is done showing a
peritoneal bridle occlusion, and a laparotomy is performed.

Let this be an illustration of what can be achieved by building systems
that can extract information from clinical reports. We will not use much space
discussing possible future use. Some general use-cases are illustrated in section
2.4 (page 10) so that we have a notion of where this technology comes in handy.
Instead of focusing on use-cases we will investigate how to develop IE systems,
and which resources are needed for developing such systems in the clinical
domain. We will discuss existing technologies, and how these are adapted to
the clinical domain. How much work is needed to develop, for instance, a stable

1With semantic interoperability we mean that the computer is able to transmit unam-
biguous data, for instance by using a shared terminology or ontology. Features like these can
also help for possible language obstacles.
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and accurate POS-tagger? (a component that is helpful, if not necessary, for
developing reliable IE systems) for clinical free text? What kind of resources
does the researcher require before she is able to build systems which perform
such a task?

The need of a survey which investigates this matter is vital to both sides of
the table. An informatics researcher may not be aware of the specific problems
that could arise when entering the medical domain, and a medical researcher
may not be aware of the amount or type of resources that are needed to develop
a robust and reliable IE system. We hope that this thesis will shed some light
on these aspects of IE, and further the process of developing new NLP and IE
components for the clinical domain.

One of the conclusions that are to be drawn in this thesis is that even if full-
scale IE systems lie in the future, there is no reason to delay initial development.
It is fully possible already at this point to begin making the lower-end parts of
the system, like a POS-tagger and spell corrector, which could be fully utilized
in a future information extraction system. The building of the early resources
could also benefit existing information retrieval systems.

1.2 The Route of this Thesis

In the next chapter we will define the problem formulations. The chapter begins
with an overview of the field, and introduces some key terms like FElectronic
Health Records (EHR) and Ontologies, so that the reader is well-prepared for
the presentation of the problem formulations.

In chapter 3 we will see, in general, how we can extract knowledge from a
stream of text. Both the necessary Natural Language Processing (NLP) tasks
and Information Extraction (IE) tasks will be covered, with an eye on recent
developments in these fields for clinical free text.

Chapter 4 describes how we can, and should, handle the information we
extract from clinical notes from a computational perspective. We will answer
questions such as “What does it mean to say that information is computable?”
and “How do we model domain-specific knowledge in a computer?”.

Already existing resources that are available for research and development
of IE in the clinical domain will be presented in chapter 5. This includes
terminologies and ontologies, NLP and IE/IR systems as well as training ma-
terial that can be used for developing new tools. We will examine one tool
in particular, the cTAKES framework, since this is the tool of choice for our
experiments. ¢TAKES, along with the overlaying framework UIMA, will be
discussed in chapter 6.

We will present an experiment done on a previous shared task by using
¢TAKES in chapter 7. This will give us some idea of what an IE system can do
now “Out of the box”. In chapter 8 we answer the research questions stated in
chapter 2. We will conclude by outlining what could be done when developing

2See section 3.1 for POS-tagging.
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an IE system in the clinical domain for new languages, if they are to perform
at the same level as the similar tools developed for the English language.






Chapter 2

NLP and Clinical Records

In this chapter we will define the weighty words used in the thesis title, and
introduce the common background-knowledge needed to understand the prob-
lem formulations (that was not covered in chapter 1). We will discuss how the
term “Electronic Medical Records” is used in the literature, introduce what we
mean by ontologies and briefly explain the concepts of information extraction
and structuring. We will also introduce some general use-cases, which might
give some clues as to what can be achieved with these technologies, before we
end this chapter by spelling out the problem formulations.

2.1 Electronic Medical Records

We want to extract and manage information from free text in electronic clini-
cal notes, including discharge summaries, admission notes, progress notes, etc.
In the clinical setting, documents like these are usually collected in Electronic
Medical Record (EMR) systems or Electronic Health Record (EHR) systems
which are the entities usually referred to in the literature on information ex-
traction in the clinical domain (Meystre et al., 2008). The title of this thesis
uses the EMR formulation, while other papers on the subject of IE in the clin-
ical domain refer to EHR (Meystre et al., 2008). This makes it natural to ask
what the difference is between these terms, if any. It is also sometimes difficult
to understand whether EHR or EMR refer to the systems handling the clinical
records or to the collection of records. We will here treat the terms as referring
to the systems in accordance with how the terms are used in the MITRE
(2006) report (explained below).

It seems like that those who want to separate the terms EMR and EHR
think that EHR is “something more” than just an ordinary computer system
dealing with clinical records. For instance, according to a report written by
MITRE on major EHR models (MITRE, 2006), the idea behind EHR is to
collect the data belonging to a patient, to prevent so called “information si-
los”! within clinical care institutions. The report states that when the data

nformation silos means that information is hard to share between different departments

7
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is located in information silos, clinical personnel would have to open and log
in to different applications to see all information belonging to one patient, or
worse, the records get faxed or printed and handled like a regular paper record
in the inpatient setting. EHR is supposed to give an integrated access to all
data belonging to a patient, across the different sections within or perhaps also
outside of the clinical health care centre. EHR is thus about sharing informa-
tion across different systems. What kind of patient data that is stored in the
EHR depends on the EHR-model, but it would typically include laboratory,
nursing, radiology and clinical data (MITRE, 2006). That EHR is “something
more” than EMR is also witnessed by a statement made by David Kibbe, the
AAFP’s director of health information technology:

EMR connotes a tool that’s for doctors only and something that
replaces the paper record with a database. EHR connotes more of
a connectivity tool that not only includes the patient and may even
be used by the patient, but also provides a set of tools to improve
work-flow efficiency and quality of care in doctors offices. (Bush,
2003)

We will not use more space discussing the different aspects of EMR and
EHR, but settle with this: We are interested in any documents, fields in for-
mula or other sources of narrative free text written in the clinical domain, i.e.
any information sources which are unstructured. For the experiments in this
thesis we have used the i2b2 2008 shared task data (see section 5.3), which
consists of patient discharge summaries. How to utilize information extraction
tools within the EMR/EHR systems should be investigated further. Such tools
should generally be configured and fine-tuned for each use-case, the structures
of medical records often differ dependent on the source. An example of this can
be seen in 7.1, where we extend an IE tool for reading the i2b2 2008 shared
task documents.

2.2 Ontologies

An ontology is a description of a specific part of reality, in this setting written
in a computer-readable manner. An ontology gives the computer access to
pre-defined knowledge within a domain, to be used for clearer communication
between different computer systems and reasoning over new knowledge that is
being fed to the computer (Hitzler et al., 2009). A simple example is a “family
tree”-ontology, which can define relations such that an uncle is the brother of
a parent, and that a father is a male parent. If the computer then gets the
information “X is the father of Y” and “Z is the brother of X” it can compute
that “Z is the uncle of Y”. With such an ontology, we can also communicate
the fact that “Z is the uncle of Y” in a clear and precise way, by encoding the
relation between Z and Y in a computer-readable manner and with a reference

and in some cases even between different systems within the same department.
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to an ontology which defines such a relation. These aspects are discussed in
chapter 4.

We will see that ontologies can be very useful for locating and structuring
information in free text, provided that the text and the ontology belong to the
same domain. There is at least three important use-cases for an ontology when
extracting information:

1. The textual description of the concept (if provided) may be used when
extracting entities. This usage of ontologies will be further explained in section
3.2. A piece of software that utilizes an ontology for entity extraction will also
be explained in section 6.2 and tested in chapter 7.

2. The ontology gives us the means to single out the concepts in the running
text. By coupling the entity with a concept in the ontology, different systems
can communicate and understand each other, provided that they use the same
ontology or a mapping between the different ontologies in use. We call this
feature Semantic Interoperability, which is briefly discussed in section 4.4.

3. We can also use the knowledge in the ontology to expand the computer’s
knowledge about the text. For instance, if the computer can extract the infor-
mation “patient a has disease y”, and the ontology contains the information
“disease y is a kind of disease x” or “disease x are synonymous with disease
y”, the computer would know that “patient a has disease x”. Such automatic
reasoning are discussed in section 4.3.

We will describe ontologies in more detail in section 4.2, and inspect some
ontologies for the medical domain in chapter 5, and in particular investigate
the SNOMED-CT ontology in section 5.1.

2.3 Information Extraction

Information Extraction (IE) will be described in further detail in section 3.2. In
general we are talking about extracting interesting/relevant information found
in unstructured sources, such as free text, and giving it a form of structure,
for instance storing it in a database. It can be enlightening to look at the task
of IE by distinguishing this with Information Retrieval (IR) (Manning et al.,
2008):

Information Retrieval (IR) is finding material (usually documents)
of an unstructured nature (usually text) that satisfies an informa-
tion need from within large text collections (usually stored on a com-
puter). (Manning et al., 2008, p. 1)

As such, ordinary searches on a web search-engine or in an e-mail client,
as well as in documents in EMR systems in the clinical setting, are called IR.
We type some words (a “query”) and search documents containing the same
or similar words. IR systems become more and more sophisticated, where
queries can be automatically spell-corrected, expanded with synonyms and
alternate spellings (plural forms, etc.) (Manning et al., 2008). In IE we
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are not interested primarily in fetching the correct documents for the end-
user, but rather the information within the documents. An IE system would
extract named entities, relations between entities etc. to create summaries and
statistics about the information within the documents. For instance, from an
IE perspective it makes a huge difference if the document says “The patient
has diabetes” or “The patient does not have diabetes”. In an IR system,
these documents could very well be equally relevant for a string search such as
“diabetes”.

2.4 Use Cases

We will here broadly sketch two scenarios for extraction and structuring in-
formation within clinical records. The first scenario is in the clinical domain,
where we want to exploit information within free text fields of EHR or EMR
documents in order to assist clinicians in their work with their patients. The
other scenario belongs to the field of medical research, where the extracted
information can be aggregated across all patient records within EHR or EMR.
We imagine that one could compute vital statistics that could prove useful
when researching new causal relationships between different findings.

In the clinical setting Velupillai (2012) define three use case scenarios: Ad-
verse event surveillance, decision support alerts and automatic summaries. If
one knows what kind of triggers that might indicate adverse events one could
make a surveillance system which tries to detect these triggers in patient records
automatically. A system for decision support alerts could indicate to the clin-
ician for instance when it detects two medicines that should not be mixed in
the same record, or if clinical findings (for instance analgesic drugs) does not
match medication dosage (for instance pain medication). An information ex-
traction system could also create summation lists based on records belonging
to one patient, and help the clinician by giving an overview of the patient by
means of present and previous diagnoses, allergies and other important medical
conditions.

After structuring the information of interest in clinical notes and records,
the knowledge is ready to be distributed in a uniform manner and treated by
different types of systems (which support the given data-structure and termi-
nology). If the extracted semantic content that is being stored in the computer
system is linked with an ontology translated to different languages, it is —
as we have said — also possible to give summaries and problem lists in the
languages supported by the ontology.

Another type of scenario is the researcher who wants to investigate possible
links between treatments, symptoms, drug usage and diagnoses. By extracting
information about these kinds of entities in clinical records, the computer is able
to report on co-occurrences, possibly gaining new insight into the clinical field.
The scientist could query an IE system, containing numerous records, asking for
how many of them that contain two or more different entities or events. Linking
each event and entity (such as symptoms) with a date may provide even more
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information. With large enough databases, one can begin investigating new
symptoms in accordance with prior prescriptions or procedures, uncovering
unknown side effects or track the general development of patients with a given
diagnose.

This scenario is perhaps a possibility in a not-so-distant future, since the
accuracy is less important. Missing an allergy or a diagnosis when retrieving
a summary for a patient may be critical, but in a research setting this might
be bearable, given that the researcher knows about the limits of the system.
As long as most of the extracted information is precise, and most of the infor-
mation within the records is recalled, this might still prove useful as an initial
investigation of causal links between clinical events.

2.5 Problem formulations

This thesis covers many topics, ranging from NLP technologies as used in the
clinical domain, to how to utilize these to extract and store information hidden
in free text parts of electronic records, as well as how to manage and reason
over extracted knowledge. We will, however, narrow the focus down to two
problem formulations.

The most specific problem formulation is how we can utilize ontologies,
taxonomies and/or terminologies in extraction technology. The main focus
in our experiments will be on the SNOMED-CT ontology. We will see what
an ontology is and some of the inner workings of SNOMED-CT (see sections
4.2 and 5.1). Furthermore, we will discuss how we can benefit from both
the computational knowledge within the ontology as well as the text strings
describing the concepts defined within the ontology. We will briefly discuss
how to model domain knowledge in the computer (see section 4.2), and we will
examine a system which utilizes SNOMED-CT for extracting clinical entities
(cTAKES, see section 6.2). We will evaluate the performance of this system
in our experiments.

We also want a broader perspective in our thesis, discussing how to build
an IE system in general. This problem formulation includes questions such
as: What resources do we need? What resources exists today? Successful
development and evaluation of IE tools depends on having access to a large
number of clinical notes. Since no such records written in Norwegian were
available to use in this work, we have focused on similar tools developed for
the English-speaking part of the world. We examined them to get a clear
view on how one could develop similar tools for languages other than English.
We will not look into specific linguistic challenges across languages.. We will
instead see which modules and resources are needed to achieve similar results
for non-English clinical records.






Chapter 3

Extracting and Structuring
Information

The process of Information Extraction (IE) consists in uncovering informa-
tion of interest from a semi-structured or unstructured source in a specific
domain (Hobbs, 2002). This includes extracting Named Entities (NEs), events
and relations between these entities and events. Specifically for the clinical
domain we have entities like diagnoses, symptoms and drugs and events like
procedures and drug usage. The main idea is to capture some kind of structure
in previously unstructured documents. This usually means that we store ex-
tracted information in such a semantically well-defined manner so as to enable
the computer to communicate the information and draw new inferences from
the data.

We will here split the task of Information Extraction into three parts. In
part one, well known Natural Language Processing (NLP) techniques are used
to uncover linguistic elements and structure in the text. This includes detecting
words and sentences, reveal the lexical category of each word and find phrases
and parse trees over each sentence. This is covered in section 3.1, where we
will give a general introduction to each task, followed by a discussion of specific
challenges and approaches in the domain of clinical free text. Part two consists
in extracting semantically well-defined units, such as named entities (objects
with a proper name), events, relations, negated expressions and temporality,
which is discussed in section 3.2. Since the particular methods used in Infor-
mation Extraction are often intimately related to the domain, we will in this
section for the most part investigate methods particularly used in the domain
of clinical free text. The last part deals with storing the extracted information
in a structured manner, with regards to retrievability, semantic interoperability
and logical reasoning. This is discussed in the next chapter.

13
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Tokenizer Sentence- POS- Chunker/
z detector tagger Parser

Figure 3.1: A simple NLP pipeline.

3.1 Natural Language Processing

Before extracting information from documents, it is necessary to process the
text with standard NLP techniques. From an IE perspective, this is often
seen as “pre-processing”. These steps are taken before we actually extract
semantic information from the text (Hobbs, 2002; Meystre et al., 2008). We
will mainly follow the typical route in an NLP pipeline! for processing text
when we introduce the different tasks. The different tasks can be viewed as
modules in a pipeline, following a route similar to the one pictured in figure
3.1 (albeit a minimal one). Unstructured text is served to the first module in
the pipeline, and leaves the last module annotated with linguistic information.
The tokenization process consists in uncovering words and other textual units.
POS-tagging deals with uncovering the lexical categories (verb, noun, etc.) of
each word. Chunking is the task of discovering phrases in the text, and parsing
uncovers the linguistic structure in the text.

We will investigate these tasks, first with a general perspective and then
with a closer examination of the challenges and specifics for the domain of
clinical text. The precision of such pre-processing tasks are crucial for the
further success of information extraction, but proves difficult in the domain of
health care records: As we will see, clinical free text is in many cases harder
for computational processing, as it is disease-ridden with misspellings, bad
grammar and unconventional abbreviations. This needs to be dealt with in a
proper manner. Further, the lack of corpora tagged with information about
tokens, word-senses, POS-tags, correct spellings etc. makes it difficult both to
train a system to uncover such information in clinical texts, and to evaluate
the different solutions.

The line between the “pre-processing” steps and information extraction
steps is not clear. For instance Meystre et al. (2008), in their review of IE
within the clinical domain, treats word sense disambiguation (WSD) as a pre-
processing task, but uncovering the meaning of a word could arguably be an
IE-task as well. We will here handle tokenization, spelling correction, WSD,
sentence and section-detection, POS-tagging and chunking/parsing as typical
“pre-processing” steps. Tasks such as discovering named entities and their
relations, negation detection and handling temporality will be treated as IE-
tasks.

1A pipeline is a modular software framework where the input is treated in a specific
order.
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We will first introduce the typical NLP tasks, and explore what specifically
has been done for the clinical domain. Later we will see how these are im-
plemented in some of the best known systems for processing clinical text (see
section 5.2). In the section Words and Tokens we will see how to identify
and separate the words and punctuations in a running text. Handling spelling
errors and acronyms in the clinical domain will also be discussed. We will see
the importance of detecting sentences and sections. We will further explain
the process of Part of Speech (POS)-tagging, where we identify the lexical cat-
egory and inflectional status for each word. Lastly we will have a quick look
on chunking and parsing of text.

Words and Tokens

The first step in any text processing task, be it indexing documents for search
engines or creating a summary of the text, is to split the stream of text into
tokens. This process, called tokenization, tries to identify the entities a text
is made up of, such as words, numbers, punctuations and names. As straight-
forward as this may seem, the task is not necessarily trivial. For instance, a
tokenizer (the component performing tokenization) should in most cases rec-
ognize “New Orleans” as a single token (a name), not two, despite the fact
that the entity is build up of two words. One would also divide “I’'m” into
several tokens, to convey that it is really two words. Usually one would also
treat “Dr.” as one token, instead of splitting it up in two tokens or neglecting
the period.

A standard approach to tokenization is to simply split the text on given
characters (Jurafsky and Martin, 2008), usually white-space characters and
punctuation?, then use rules to merge tokens back together to create tokens
like “New Orleans” and “Dr.”. Depending on the system, one could remove
white-space and/or punctuation from the stream of tokens handled further in
the NLP pipeline. In Figure 3.2 we see some examples of different tokenization
schemes. In output (a) we split the stream of text on white-space, in (b)
we split on white-space and punctuation, and remove punctuation. Example
(c) is output from the ¢cTAKES system®, where “follow-up” is treated as one
token and “1-2” as three. Some approaches also try to identify the type of
each individual token, with types such as “word”, “number”, “person title”,
“name”, etc.

One of the important things to keep in mind with regards to tokenization,
is the fact that components further down in an NLP pipeline depend on a
uniform stream of tokens. For instance, a POS-tagger will not perform well if
it is used on text that is tokenized differently than from the material it has been
trained on. Therefore, when developing a system for processing clinical text, a
standard scheme of tokenization should be chosen, where everyone involved in

2This approach would not work on text written in languages where words are not sepa-
rated by white-space, such as Chinese.

3An information extraction system for clinical text, discussed in section 5.2 page 54
and section 6.2 page 62.
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input She was given explicit instructions to follow-up in clinic with Dr. Santo
Rabalais 1-2 weeks.

(a) ‘She‘ ‘was‘ ‘given‘ ‘exphcit‘ ‘instructions‘ ‘follow—up‘ ‘clinic‘

| with || Dr. || Santo || Rabalais || 1-2 || weeks. |

(b) ‘ She ‘ ‘ was ‘ ‘ given ‘ ‘ explicit ‘ ‘ instructions ‘ ’ follow ‘ ’ up ‘ ‘ clinic ‘
‘ with ‘ ‘ Dr ‘ ‘ Santo ‘ ’ Rabalais ‘ ‘ weeks ‘

(c) ‘She‘ ‘Was‘ ‘given‘ ‘explicit‘ ‘instructions‘ ‘follow—up‘ ‘clinic‘

‘With"Dr‘B‘San‘coHRabalais ‘BB

Figure 3.2: Example input and outputs with different tokenization schemes.

the same project adhere to the same tokenization scheme. We will also see that
different tokenization strategies influence tasks like detecting and expanding
abbreviations.

Spell-cleaning in the clinical domain

After settling with a specific procedure on how to tokenize the text, it is often
fruitful to process the single tokens further. Correcting misspellings would cer-
tainly improve performance when extracting information. This is particularly
so in health records; Ruch et al. (2003) reports that misspellings in medical
records is about 10%, which is higher than text from other genres. Prioritizing
the development of a spelling cleaner in IE system for the clinical domain is
therefore a good idea. It is worth pointing out that some spelling correction
methods use context-information, such as POS-tags, when cleaning misspelled
words. In cases like these, the spelling correction module needs to be placed
further down in the NLP pipeline.

The classic version of a spelling cleaner is to use the “string-edit-distance”
between a misspelled word and each word in a dictionary. One measures how
many individual edits one needs in order to transform the misspelled word
into each dictionary word, and select the one with fewest edits. Inserting a
new character, deleting an extra character or replacing a character is usually
considered as one “step”, the sum is called Levenshtein score or edit-distance.
Some improvement can be made, for instance: When the replaced character is
closer to the replacement on the keyboard, this could be viewed as less costly
than if the characters are far apart. For instance in the misspelling “lyngs” the
normal edit-distance between the correct spellings “lungs” and “longs” is the
same. We only need to replace one letter, the edit-distance score is accordingly
1. But since the letter “y” is closer to “u” on the keyboard than “o”, replacing
“y” with “u” could generate a lower score than replacing “y” with “0”. The
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correctly spelled word (out of the two alternatives) with lowest edit-distance
score is then “lungs”.

Another useful tool for spelling correction is Metaphone. This algorithm
detects whether two words are similar-sounding by creating a “code” for the
word based on pronunciation. When similar-sounding words are processed by
the algorithm, the same phonetic code is output. With such an algorithm one
can then compute the phonetic encoding of all the words in a dictionary. If one
has a misspelled word one can then retrieve all similar-sounding words from the
lexicon, and use heuristics (such as the edit-distance) to determine which one
of these is most likely correct. For a discussion on the Metaphone algorithm,
compared with the newer Double Metaphone algoritm, see the article The
Double Metaphone Search Algorithm by its inventor Phillips (2000).

Tolentino et al. (2007) made a spell cleaner for clinical text with the help of
a domain specific lexicon* and a more general lexicon®. Their spelling correc-
tion method consists of four stages. Error detection (stage 1) detects spelling
errors by looking up each word token in the dictionaries. If the word is not in
a dictionary it is marked as a spelling error. Word list generation (stage 2) ex-
tracts candidate words, using a range of methods like the Metaphone algorithm
and selecting legal words with any extra character inserted in the misspelled
word. Word list disambiguation (stage 3) sorts the candidate words with the
lowest edit-distance. Since two or more words can be “tied”, several extra
methods are used to give a score. The last step consists of error correction,
basically replacing the misspelled word.

When we know what kind of word or entity we are confronted with, for
instance a diagnosis from the diagnosis section of a record or a drug from a
medication section, it is also possible to restrict the candidate correct words.
For instance, Levin et al. (2007) used the Metaphone algorithm when spell-
cleaning drug names from free text, checking misspelled words in the “medica-
tion” field in patient records against a drug dictionary. One could possibly try
something similar with both medications, allergies and diagnoses given that
these fields are marked in the records.

Word Sense Disambiguation (WSD)

WSD is another important NLP task that contributes to IE. When a word can
have several meanings it seems intuitive that we must discover the correct one
prior to extracting reliable information from the document. Often WSD is done
after POS-tagging; a word which can have several senses can be disambiguated
by knowing the part of speech in itself. The word “dose”, for instance, would
mean “amount of medication” if it is a noun and “giving a patient medication”
if it is a verb. The task of WSD, then, is to assign a sense to an ambiguous
word from a set of possible senses the given word can have.

4The UMLS Specialist Lexicon, as described on page 50.
5WordNet.
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Liu et al. (2001) use an unsupervised technique® by deriving senses from
abstracts and building a corpus automatically. They used the UMLS Metathe-
saurus (described on page 49), MEDLINE abstracts and the Clinical Data
Repository for automatically generating a sense-tagged corpus. They devel-
oped an evaluation set which only consisted of abbreviated terms, since this
could be obtained automatically.

Abbreviations in clinical notes

With abbreviations we typically mean acronyms (BP for blood pressure), short-
ening of words (pt for patient), contraction of phrases (t/d/a for tobacco, drugs
or alcohol) and symbols (etoh for alcohol). Other ways of shortening words,
terms or phrases could also be included, like writing “2/2” instead of “sec-
ond to”. The importance of revealing the words behind abbreviations before
automatically extracting information should be self-evident.

Resolving abbreviations and acronyms is in itself a case of WSD, and is
also of major importance for the overall quality of IE. The reported amount of
abbreviations in clinical notes is huge, Xu et al. (2007) reported that 17.1%
of the word tokens in a set of admission notes were abbreviations. The sheer
amount is not the only problem with abbreviations in clinical notes; they are
often ambiguous, i.e. different terms can have the same abbreviations. Different
departments within the domain of health care, such as the laboratory or the
general practitioners, often use different sets of abbreviations.

Xu et al. (2007) and Wu et al. (2011) have investigated abbreviations in
the clinical domain and how to detect these with machine learning techniques.
Xu et al. examined ten admission notes where abbreviations were annotated
by a domain expert, whereas Wu et al. did a larger project with 70 discharge
summaries annotated for abbreviations.

Xu et al. performed a comprehensive study of abbreviations in clinical free
text. They grouped them into four types, listed in Table 3.1 with examples
and frequency rate: Acronyms, shortened words, contractions and a last group
“Other” for all other forms of shortenings. The frequency ratios — which were
calculated one the basis of one hundred example abbreviations randomly se-
lected from the material — tells us that most abbreviations are acronyms and
shortened words.

We think that Xu et al. (2007) have done three important things in their
work with abbreviations; they have investigated several abbreviation detection
methods, analysed the abbreviations found in the clinical notes thoroughly
and analysed the coverage of abbreviations in some of the most well-used ter-
minologies for the medical domain. They developed a machine learned decision
tree for detecting abbreviations, which performed well on the selected material.
The decision trees looked at features for each token, such as word formation
(length, type of characters, etc.), document frequency and whether the word

6 A unsupervised technique means that we are not giving ready-annotated material to
the computer. This is explained in more detail in the POS-tagging section below.
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Abbr. Type Examples Frequency
Acronym BP-Blood Pressure 50 %
Shortened Words | Pt-Patient Sx-Symptoms 32 %
Contraction t/d/a-tobacco,drugs or alcohol | 9 %
Others etoh-alcohol 9%

Table 3.1: Different types of abbreviations and their frequencies as reported
by Xu et al. (2007).

exists in a dictionary. Their abbreviation detection method examined each
token in the running text. For the best technique they investigated, 91.4% of
the tokens selected as abbreviations were actual abbreviations (330/361), and
of all the abbreviations in the clinical notes, the technique spotted 80.3% of
them (330/411).

Xu et al. (2007) also report that their error analysis uncovered mistakes
when detecting abbreviations due to how the text was tokenized; when an
abbreviation were separated into several tokens their system could not detect
the whole abbreviation but at best only each part. As examples they introduce

“S. Aureus” and “ex tol”. “S. Aureus” is here tokenized as “ D Aureus |,

so their abbreviation detection techniques did not uncover “S. Aureus” as a
targeted abbrev1at10n (but it did find “S” and Aureus”). Something similar

happened to * ”

Token Normalization

When treating tokens one should also consider normalizing them before bring-
ing them further in the NLP pipeline. Often the same word may take different
forms, for instance “patient” and “Patient” are spelled differently (with or
without a capital P), but in most cases we want to treat these as the same
word. The computer will treat “Patient” and “patient” as two distinct words,
unless explicitly told otherwise. The normal approach here is to simply reduce
all letters in a text to lowercase. We could instead lowercase only the first letter
in the first word in every sentence, so that we can keep upper cased letters in
proper names, etc (Manning et al., 2008).

The removing of diacritics could also improve further processing, for in-
stance by converting “i” in a text to “i”, thus treating “naive” and “naive” as
the same word. It is unknown how much this could benefit the clinical setting;
in a quick experiment with 612 discharge summaries” we discovered that no
words contained either “i”, “€”, “é” nor “¢”. For languages such as English
and Norwegian, where such diacritics have a marginal status (Manning et al.,
2008), performing this normalizing step is perhaps not so important.

Often we want to lemmatize the word-tokens, which means reducing the
words into their base-form (i.e. their lemma, canonical form or dictionary

"From the i2b2 2008 shared task, see section 5.3.
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form). This can be necessary for instance when mapping terms from free text
to an ontology. Run, runs, ran and running are, for example, forms of the
same lexeme run. A similar (but more crude) method is stemming, which uses
several generic rules to chop of parts of a word in order to reduce it to a base
form. While lemmas correspond to the lexicon-form of a word, the result of
stemming two different words could result in the same stem. As an example,
“stocks” and “stockings” could both be stemmed to “stock” (Jurafsky and
Martin, 2008). A reverse technique is also sometimes employed, whereby the
token is expanded into several inflected variants. We see an example of this in
the cTAKES system (see section 5.2).

Sentences and Sections

After tokenization is done, it is valuable to identify sentences and sections in
the documents. Finding sentences is often necessary before performing POS-
tagging, and must be done before finding phrases and building parse trees.
The simplest way to split a running narrative text into sentences is to split the
text at punctuation — periods, question marks and exclamation points — but
problems occur with the period because it is not only used to mark the end of
sentences (Jurafsky and Martin, 2008). Different approaches to disambiguating
periods based on machine learning are used, for instance a Maximum Entropy
classifier (Guergana et al., 2008).

Finding the different sections of the document (section segmentation) is
also convenient, if not necessary, when uncovering the information within it. It
seems intuitive that some sections of a clinical record are more important than
others. For instance would sections named “Primary diagnosis” and “History
of present illness” seem more important than sections named “Comments”
and “Family history”. Even if we do want to extract information from the
latter sections, it seems important not to relate, for instance, diagnoses found
in “Family history” to the patient the record belongs to. The work of Cho
et al. (2003) contains a lot of references to work in section segmentation in
general, and describes an algorithm developed for medical reports in particular.
Childs et al. (2009) developed a rule based system for uncovering obesity and
comorbidities in order to meet challenge described by Uzuner (2008), where
discovering the different sections of clinical discharge summaries was a main
ingredient.

POS tagging

Part of Speech (POS) tagging is the process of labelling a running sequence of
tokens with a set of POS-tags. A POS-tag typically identifies lexical categories
(verb, noun, etc.) and inflectional features (present or past tense, etc.) of
word-tokens. Punctuations are also often tagged. POS-tagging is therefore
intimately related to the tokenization process. Given a string of tokens as
input, and a set of category-tags, a tagger tries to assign the best tag for each
token. Often it is not given by the morphological structure of the word itself
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what category it belongs to. The word “dose” could be either a verb (giving
a patient medication) or a noun (the amount of medicine the patient should
take). We need to reveal the context of the word (i.e. look at surrounding
words) in order to identify what lexical category it belongs to.

‘She‘ ’vvas‘ ’ given‘ ‘explicit‘ ‘instructions‘ D
PRP VBD VBN JJ NNS

Figure 3.3: Example output from POS-tagging.

Knowing the POS-tag of each word is a valuable resource when further
extracting information from any text, and is often necessary before parsing or
chunking. It is also often used when extracting named entities from the text.
Therefore, a POS-tagger is important in any information extraction system.

The part of speech of the word is typically defined either as the syntactic-
morphological behaviour of the lexical item (e.g. a determiner often precedes
a noun, a present tense verb often ends with ’ed’) or in some semantic term
(e.g. verb is often a type of event, process or action). There are varying
granularity of the tags in different settings, and hence different sizes of the set
of POS-tags. For instance, the Brown Corpus contains 87 simple tags, while
the Penn Treebank (PTB) tagset is reduced to 36+12 (the final twelve being
tags for punctuation and currency). The varying granularity typically stems
from decisions such as whether the tag should reflect inflection of the word or
include some syntactical information. In some cases a word can have it own
set of tags, for instance in the tagset for the Brown Corpus 'have’ has it own
base-form tag, but not in PTB (Jurafsky and Martin, 2008).

It is common to divide the lexical categories into open and closed classes.
The open class of words — nouns, verbs, adjectives and adverbs — is the main
bearer of meaning in text. This is a dynamic set of words, and when new
terms are coined, they often belong to one of these classes. On the other hand,
the closed classes consist of a static set of words often devoid of any meaning,
and it is rare to see new members of this class. (Some examples of closed
classes includes prepositions, articles and conjunctions.) This information can
be valuable in POS-tagging; when a tagger discovers a new word, we know that
it is unlikely that the word belongs to one of the closed lexical categories. When
using a statistical approach to POS-tagging, this can be indirectly learned from
the training material, while rule based POS-tagging approaches may have rules
like “If the word is unknown, do not consider tagging it as something in the
closed classes”8.

The tagging of a sequence of tokens is often done either by a rule-based pro-
cedure, with several rules describing what tag a word should get, or a stochastic
one like a Hidden Markov Model (HMM). In a rule-based approach linguistic
experts write rules for how to assign POS-tags. A typical approach is to assign
all possible POS-tags for running words in the text (according to a dictionary),

80ne would probably never see a rule like this explicitly stated.
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and then use rules for disambiguating word-tokens which are assigned several
POS-tags (Jurafsky and Martin, 2008).

A stochastic approach to POS-tagging involves computing statistics over
large amounts of texts hand-annotated with correct tags, called a gold-standard.
The input is a sequence of tokens, and the task is to assign a sequence of
POS-tags. The tagger uses probabilities to assign POS-tags. We have most
likely never seen this exact sequence of tokens before, so we must compute the
probabilities differently than by looking at the whole sequence at a time.

By looking at how frequent a word is assigned different POS-tags® in the
hand-annotated texts, we can compute the statistical correlation between words
and POS-tags. Also, by looking at sequences of POS-tags in the annotated
material, we can use these to compute the probability of the different sequences
of POS-tags that can be applied to the running word-tokens. We can then
combine these probabilities in order to compute the most probable sequence of
POS-tags given a sequence of tokens.

A typical example of a stochastic model used in POS-tagging is the Hidden
Markov Model (HMM) (Jurafsky and Martin, 2008). A HMM uses a combi-
nation of emission probabilities and transition probabilities. Emission proba-
bilities express the probability of seeing a word w assigned to a POS-tag T'
(P(w|T)). Transition probabilities represent the probability of seeing a POS-
tag T;41 after a POS-tag T;. We can compute these probabilities with the
gold-standard. When seeing a new sequence of tokens we could then, for all
possible sequences of tags compute which one of those are most likely according
to emission and transition probabilities!?.

POS tagging in the clinical domain

While there are plentiful of resources with tagged data available for training a
tagger, the accuracy of the tagger drops when used on domain-specific texts like
EHRs (Coden et al., 2005). This is probably due to a number of reasons, for
instance spelling errors and bad grammar in clinical notes. The biggest source
of degrading performance is possibly all the unknown words. For instance the
accuracy of the TnT tagger on known tokens in the NEGRA corpus is 97.7%,
this figure drops to 89% on unknown words. The figures are similar for the
Penn Treebank corpus (Brants, 2000).

Since many words used in the clinical domain are rare or non-existing in
corpora with general text, it is natural to assume that tagging accuracy will
drop. Accuracy and reliability is of the essence when extracting information,
and it is therefore important to have a good POS-tagger when making an IE
system. How can we obtain this for clinical text? When using a stochastic
approach, it seems that the best bet is to use tagged in-domain text. This is,
however, not always an option, since making such a corpus is costly and when
it first is made it is difficult to obtain for other scientific purposes because of

90r how frequent a POS-tag is assigned to different words.
10An algorithm (Viterbi) exists where we do not need to compute this for all possible
sequences of POS-tags to find the most likely sequence.
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Training material ‘ Accuracy

TB2 88%
MED 92%
TB2+MED 93%
TB2-+Lexicon 88.82%

Table 3.2: Reported accuracy figures in Coden et al. (2005), evaluations on
MED

the need of keeping clinical documents confidential (Uzuner et al., 2007). To
resolve this critical aspect of POS-tagging text in the clinical domain, Coden
et al. (2005) tested different strategies of mixing general training material with
both a small set of tagged clinical notes and a domain lexicon.

Coden et al. wanted to see how one could boost a tagger trained primarily
on out-of-domain content, both with and without using in-domain training
material. They used a subset of the Penn Treebank (TB2) as the general
training material, and a corpus of clinical documents (MED) to train and
evaluate the different settings. The classifier was an HMM working on tri-
grams. When they used a lexicon in addition to TB2 for training their POS-
tagger, they manipulated the emission probabilities of the stochastic model.

When they trained the classifier with TB2 and evaluated on MED, they
got an accuracy around 88%. Using MED to train the classifier, the accuracy
was 92%. Training on both TB2 and MED, they reached an accuracy of 93%.
Since tagged clinical documents is difficult to obtain, they also tried to train
the tagger using TB2 plus a lexicon of the 500 most frequent words from a
collection of clinical documents (minus stop words) together with the POS-
tagged PTB-material. They then achieved an accuracy of 88.82%.

Their experiments give us important clues as to how we can achieve good
results for POS-tagging in the clinical domain. The utopian setting is having
access to a large amount of in-domain texts annotated with POS-tags. If this is
not obtainable, using a smaller in-domain corpus together with a bigger general
corpus seems like the next best thing. If none of these are available, one can
train a POS-tagger using a lexicon of the most frequent words from the clinical
domain, which gains a small improvement.

Another, rule-based, approach of POS-tagging clinical data has been de-
veloped by Dwivedi and Sukhadeve (2011). They worked on a collection on
homoeopathy texts, including books, medical reports and prescriptions, and
manually annotated 125 sentences for evaluating their system. In a step-by-
step manner, their system analyses a sentence and finds phrases, followed by
the clauses and finally the remaining modifiers. This is done with 485 gram-
mar rules with the stemmed versions of the words. This system, then, actually
“parses” or chunks the input text, and assigns POS-tags accordingly. In their
final evaluation of the system, they achieved an accuracy of 88.93%, similar to
the result of using a stochastic tagger trained on general purpose corpora plus
a domain-specific lexicon. But be aware that these systems were evaluated on
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S
/\
NP VP
DT NP V/\Np
tk‘le JJ/\NN kicLed DT/\NP
1it‘tle gi‘rl tl‘le JJ/\NN
bl‘ue ba‘\ll

Figure 3.4: A syntactically parsed tree.

different data-sets.

Since it appears to be less work developing a domain-specific lexicon and
use this with freely available state-of-the art stochastic taggers, this seems to
be the best choice when tagged in-domain resources are unavailable or scarce.
On the other hand, if the rules used to capture POS-tags also identify useful
syntactical structures, using a rule-based method may be worthwhile.

Phrases and Chunking

The last step before IE is to discover linguistic structure in each sentence. This
includes tasks like parsing and chunking. Parsing is the process of creating some
hierarchical linguistic structure for the input text. This can involve everything
from morphological structure, to syntactical and semantic structure (Jurafsky
and Martin, 2008). Morphological structures can be useful in order to uncover
when one is to link the word-tokens in the running text to semantic entities,
by using all inflection variants of the word. Syntactic structure might be useful
for identifying which parts of the text are likely to reveal valuable information.
Syntactic structure also reveals important clues about entities mentioned in
the text, such as whether the entity in question is an object or a subject of
the verb. We will not cover parsing here, since most of the investigated IE-
system (see section 5.2) tends to rely on detecting flat syntactical chunks of
text instead of building hierarchical analysis.

Finding the chunks of a text is usually called chunking or shallow pars-
ing. Detecting noun phrases (NPs) is especial helpful when uncovering entity
mentions which we are trying to detect in the information extraction process.
Chunking generally consists of finding noun phrases, verb phrases and in some
cases preposition phrases and adjective phrases. These phrases lack any hier-
archical structure, but are instead segments within sentences corresponding to
the open Part of Speech classes (Jurafsky and Martin, 2008). A typical exam-
ple of a chunked sentence is given in figure 3.5. We can see this in contrast
with the syntactically parsed tree in figure 3.4. As for the noun phrases (NPs)
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[N p The little girl] [V P kicked] [N p the blue ball] .

Figure 3.5: A chunked sentence.

The [ little girl] [ kicked] the [ blue ball].

Figure 3.6: A semantic chunked sentence.

the chunk equals the same text span as the highest NP-nodes in the tree, while
the VP-chunks equal the highest V-node.

As with POS-tagging, chunking could both be based on rules or machine-
learning. When using machine-learning, detecting the phrases is done in a
similar manner as tagging POS-tags, but we use tags which identify the begin-
ning of a phrase, inside a phrase or outside a phrase instead.

Chunking in the clinical domain

Bashyam and Taira (2007) argue that since it is difficult to obtain grammat-
ically correct sentences in the clinical domain — sentences are often partial
and often lack strict punctuation — there are disadvantages of using chunk-
ing methods based on syntax. They propose instead a semantic chunker, and
define a semantic phrase to be “a sequential set of word tokens which can be
effectively replaced by a single word belonging to the same semantic category
as the phrase” (Bashyam and Taira, 2007). We can see an example of this in
figure 3.6. The only visible difference in the end-result we can find here, is
that we lose the determiner “the” from the NP chunks.

They treat chunking as a sequential classification task, where they label
the start, end, inside of and outside of chunks, as well as single-token chunks.
Support Vector Machines (SVMs), which is a stochastic tool for supervised
machine-learning, were used to build the (model for the) classifier. After tak-
ing the typical NLP steps described above (tokenizing, POS-tagging, sentence
and section segmentation, etc.) they had a domain-expert annotate anatomy
phrases within 1250 sentences of radiology reports. From their test set of 423
phrases, their system correctly identified 350 of these (Bashyam and Taira,
2007).

One interesting aspect of the work of Bashyam and Taira (2007) is that
they focused on finding anatomy phrases. This could perhaps serve as a good
starting point for detecting clinical entities (see section 3.2). For instance the
SNOMED-CT ontology (see section 5.1) defines terms describing body struc-
tures. Knowing that a phrase is an anatomy phrase, one could then focus on
the Body structures part of SNOMED CT when coupling phrases with named
entities. This should be further studied when developing clinical named entity
recognizers.
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v [The] [patient]| [ [did] [not | [feel]| [xp [any]|[chest] [pain]|[,][but]
[Np ‘Dr. ‘ ’ Joe H [vp ‘conﬁrmed H [Np ‘myocardial ‘ ‘ infarction ‘]B

Figure 3.7: A tokenized and chunked sentence, ready for information extrac-
tion.

Summary

Within all major fields of NLP there have been undertaken research of how
to do the different tasks within the clinical domain, and we have here briefly
discussed some of this work. We have seen that the language in clinical notes
differ from general text, both regarding grammar and vocabulary. We see that
more annotated textual material are needed for the further improvement of
the different tasks, as well as investments into annotating such texts with word
senses, full forms of abbreviations, POS-tags, phrases and parse-trees.

Some methods do not rely on annotated material, but this comes at the cost
of accuracy. This includes using a lexicon in addition to general tagged data, or
making a rule-based system for POS-tagging(Coden et al., 2005; Dwivedi and
Sukhadeve, 2011). We would, never the less, always need annotated material
in order to evaluate how the different methods performs.

3.2 Information Extraction

After the above described pre-processing procedures, we are ready to begin
extracting information from the narrative text. This basically means that
we recognize entities, relations and events in the text and store these in a
structured and retrievable manner. In this thesis we take the perspective on
Information Extraction (IE) as a task centred around recognizing terms and
entities of interest in the running text. In general IE systems this would typ-
ically be named entities, such as references to individual persons, cities and
companies (Jurafsky and Martin, 2008). In the clinical setting we are more in-
terested in entities such as medicines, diagnoses and events such as procedures
and drug usage. We are further interested in finding relevant and important
aspects of these entities and events. These include: Negation, speculation and
status, whether the extracted entity or event is negated or being speculated
(“the test results were negative”, “the patient may have asthma”) or about
someone else (“the patient has a family history of”). Temporality, whether
it is a past, current or future event and whether one event occurred before
or after another. Relations between entities and/or events, (“tissue damage
located in right thigh”).

Named Entities and Terms

Named entity recognition and classification (NERC) is an essential task when
recovering and structuring information from free text. It is also a useful task
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in Information Retrieval systems, where the aim is to retrieve all documents
containing a specified term or entity. A named entity (NE) is, according to
Jurafsky and Martin (2008, page 761), “anything that can be referred to with
a proper name”. We want to investigate the running tokens in the text, and
uncover which of these are named entities and classify what kind of NE it is.
Examples of NE types/classes include Person, Organization and Location.

Generally NERC includes finding names of people, localizations, companies
and dates, while more specific approaches are engineered towards finding genes
or proteins, etc. When dealing with clinical records it is naturally important
to find mentions of medications and medication usage, (including dosage and
frequency of use), diagnoses and other medical conditions and findings, op-
erations and other kinds of procedures and of course mentions of the patient
itself, family members and possibly medical personnel and perhaps medical
institutions and doctors.

Jurafsky and Martin (2008) treat named entity recognition as a sequence
classifying task, similar to the machine-learned, stochastic, approach to POS-
tagging and chunking explained in the sections above. A gold-standard training
corpus is used to train a model to label each token as the beginning of a named
entity, inside a named entity or outside a named entity. The model creates
statistics over features in the running text (such as surface form, POS-tags,
etc.) in order to compute how plausible it is that a named entity starts or
ends at a given token in the sequence of tokens. Classification, then, consists
of detecting the kind of each named entity (person, city, company, etc.) This
approach is, as we will see, not so regular in the clinical domain, possibly
because of the lack of training corpora and also possibly because IE systems in
the clinical domain typically map a phrase directly to a concept in a terminology
or ontology.

A thorough survey of NERC-related research has been performed by Nadeau
and Sekine (2007), which describe the development from early hand-crafted
rule-base systems, through supervised learning approaches and ending with
semi-supervised and unsupervised techniques. In supervised learning we use
annotated corpora to train a model which looks at pre-defined features and
learns how to distinguish named entities based on these features. The features
include the token part-of-speech, frequency or rate of a sequence of tokens (n-
gram), digit patterns (for dates, etc.), casing of letters in the token, morphology
(for instance tokens ending in “ish” or “an” might imply nationality, such as
Danish and Norwegian), etc.'!

Supervised learning utilizes a hand-annotated corpora to train a system
(usually based on some kind of stochastic model) to annotate named entities.
This would typically work in the same manner as in supervised POS-tagging
and supervised chunking (Jurafsky and Martin, 2008). Semi-supervised learn-
ing is mainly driven by bootstrapping, where the system begins with a small
number of unambiguous “seeds” and uses some general clues to estimate other
possible entity-mentions in the text. These clues could be grammatical, like

HFor a full list of fruitful features, see (Nadeau and Sekine, 2007).
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sequences of POS-tags and subject-object relations, or orthographical clues like
sequences of preceding words, word-bags, capitalization and titles (for instance
is “Mr.” likely to be a part of a person-entity)(Nadeau and Sekine, 2007).

Complete unsupervised learning mechanisms can be used as well, where no
pre-annotated material is used. For instance one could use external vocabu-
lary resources to extract both lists of entities and types (like WordNet). One
could also build a named entity classifier by clustering groups of tokens given
features and clues used in semi- and supervised machine learning. Since anno-
tated material is hard to get by in the clinical domain, and we have access to
terminologies and ontologies that can be used, unsupervised learning will be
our primary focus when dealing with named entities from now on.

Named Entities and Terms in the Clinical Setting

Supervised learning in named entity recognition — which utilizes hand-labeled
corpora during training — remains the dominant method for NERC (Nadeau
and Sekine, 2007). Unfortunately there is little annotated data available in
the domain of clinical health records, especially so when it comes to NEs. A
possible exception is the data described by Ogren et al. (2008). Recently
the i2b2 also released their corpus used for the i2b2 2010 shared task, where
concept mentions and their co-references are annotated (see section 5.3). This
could perhaps be used to learn a named entity recognizer (but not a classifier).
Nevertheless, the small amount of annotated material in the clinical domain has
lead to the fact that most research uses semi- or unsupervised NE-recognition
methods.

In clinical free text we are — as we have mentioned — typically interested in
entities such as diseases, medications, allergies, procedures and persons. This is
admittedly not precisely like named entity recognition seeing that we are often
interested in entities without a proper name 2. In this first step of IE, we want
to uncover the text-spans that represent one of these types of entities, and also
map each occurrence to a concept in the medical terminology. This differs
from the typical NE methods; instead of classifying the NE, we want to get
direct knowledge about which entity this is in accordance to a terminology. For
instance, in a running text like “the patient was treated with aspirin” instead
of finding the NE “aspirin” and classify this as a NE-type of “medication”, we
want to annotate it in accordance to a nomenclature such as SNOMED CT
and say that it is |Aspirin (product)| with SnomedId C-60320 and/or | Aspirin
(substance)| with SnomedId F-61BBS.

We find two plausible reasons why this is so: In the clinical domain we
typically have several standard terminologies, which may ease the NE process
(discussed further below). Second, the main target of NE in the clinical domain
is to uncover which concepts are referred to in the text. We are therefore more
concerned here with the mapping from terms and phrases in the narrative

12We do want to find singular entities and events that can be pointed out, in this sense
covering what Nadeau and Sekine (2007) refer to as “rigid designators”.
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clinical text into a terminology or ontology than finding and classifying named
entities as such.

Oliver and Altman (1994) performed one of the earlier attempts of clinical
term extraction, where they mapped medical terms found in hospital admission
summaries to SNOMED-IIT'3 concepts. They used a kind of supervised learn-
ing, and built a training and test-set based on electronically stored admission
summaries of patients that had congestive heart failure. 197 phrases where
used for the training set. These were coupled with the correct SNOMED term
resulting in a total of 139 SNOMED terms used.

From the training set, where terms are coupled with SNOMED terms, they
had to find some way of mapping new unseen phrases to the correct term.
That is, they wanted to build a method which given an input phrase returns the
SNOMED terms relevant to the phrase. For this task they used a mathematical
tool named linear least squares fit (LLSF).

They built two sparse matrices, designated as matrix A and matrix B. A
contains 197 columns — one for each phrase that was mapped to a SNOMED
concept in the training set — and 365 rows — one for each unique token found
in the phrases. An entry A4;;'* is set to 1 if word i is found in phrase j. B is
similar, there is 197 columns for each text phrase and 139 rows, one for each
SNOMED term. If the SNOMED term 4 is relevant to phase j B;; is set to 1,
otherwise 0.

When doing this, each phrase is a vector, mapping a phrase represented by a
vector of 0’s and 1’s into a set of SNOMED terms (also a vector where relevant
terms is marked as 1). They then used a method to create a mapping from
a vector a (consisting of 1’s and 0’s) into a vector b, where vector b indicates
which SNOMED terms that are relevant, given the tokens found in the phrase
that a represents. This could then be used to map phrases from a text into a
SNOMED term. A similar approach with phrases mapped to ICD-9 codes was
also performed by Yang and Chute (1993).

The system was evaluated against 116 sentences taken from admission his-
tories for five patients which had congestive heart failure. Instead of using
phrases, they used entire sentences as input. They could achieve a high sen-
sitivity (recall) and lower specificity, 90% and 83% or low sensitivity and high
specificity, 42% and 99.9%, depending on how they adjusted their mathemati-
cal method. So with this method it is possible to adjust performance depending
on whether we want to find as many concepts as possible, or be as precise as
possible.

The downside of this mapping mechanism is that it is costly to make a
mapping-function for all the terms in a terminology. This procedure depends
on a domain expert which assigns relevant terms to the different phrases, i.e.
it is a supervised machine learning algorithm. Another negative aspect of this
procedure is that the method they developed worked on sentence-level, which
means that the system does not identify where in the sentence the SNOMED

13For more about SNOMED see section 5.1
14A,-]- means “the content of the cell in row 4, column j.
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Entity Class Examples
Dosage 40 mg/day
Blood Pressure  105mm of Hg
Demography 69 year-old man

Duration 3 week
Date May 1991
Quantity 55 mm

Table 3.3: Examples of administration entities (Patrick et al., 2007).

term is represented. This makes it for instance more difficult to identify whether
a identified SNOMED term is negated or not.

A more recent approach is performed by Patrick et al. (2007), which attacks
all these problems. They mapped free text into SNOMED CT'® concepts.
They pre-processed the narrative with common NLP tasks like tokenization,
sentence detection and normalization (down-casing, stemming, spelling variant
generation), POS-tagging and chunking. They first extracted what they call
administration entities, which include entities such as Date, Dosage, Demog-
raphy and Duration. Regular expressions were used to extract these entities.
Examples of administration entities can be seen in table 3.3.

Their system generates all possible n-grams'®, from uni-grams up to the
length of the sentence. This is done after stemming and removal of stop words.
For each word in the sentence, they collect all SNOMED CT descriptions which
contains the word. Then, for each possible n-gram of the sentence, they keep a
list of the intersection of all SNOMED CT descriptions collected for the word
tokens in the n-gram. So now, each n-gram has a list of all SNOMED CT
descriptions which contains all the word tokens in the n-gram.

They score each alternative term for each n-gram based on how many tokens
there are in the n-gram which can be found in the SNOMED CT description
(number of tokens in the n-gram over number of tokens in the description). The
winning term is the “candidate” for the given n-gram. Overlaps then need to be
dealt with: For instance in the phrase “bacterial pneumonia” the whole phrase
(bi-gram) is linked to the description “bacterial pneumonia”, but the uni-gram
“pneumonia’ is also found as a SNOMED CT description. This is done by
finding all possible configurations of n-grams not overlapping each other, and
scoring each configuration based on numbers of tokens which also exist in the
candidate SNOMED-CT terms over number of tokens in the sentence. In the
phrase “bacterial pneumonia” then, the description “bacterial pneumonia” gets
a score of 1.0 while the phrase “pneumonia” gets a score of 0.5'7. This means

I5SNOMED CT is a newer variant of SNOMED III.

16 A1l bi-grams over a sentence “the patient had fever” are “the patient”, “patient had” and
“had fever”, three-grams are “the patient had” and “patient had fever”, while the four-gram
is the sentence in itself.

"Remember, though, that we are doing this over whole sentences, and not phrases. “Bac-
terial pneumonia” is just a convenient example for how we score the different configurations.



3.2. INFORMATION EXTRACTION 31

that their system prefers mapping maximum numbers of tokens to a term, and
that no terms which the text is mapped to overlap in the input-text.

There are two benefits to this procedure. Firstly, it is completely unsu-
pervised. Secondly, it depends on little linguistic knowledge (only knowledge
about spelling variants of the tokens is used). It is not dependent upon finding
phrases in the running text, so tokenization and normalization are the only
pre-processing techniques used for mapping text to SNOMED-CT concepts.
18

Patrick et al. (2007) argue that constricting the mapper to noun-phrases
may increase the precision of the system, but that some concepts might be
missed because SNOMED-CT terms cross the noun-phrase chunk. For in-
stance, the SNOMED CT term “Third degree burn of elbow” is chunked
“[npthird degree burn] of [ pelbow]”. This could be missed if the system only
considered NP chunks. But this could be avoided by using shallow semantic
parsing, as described in section 3.1. The system we used in our experiments
also identified “Third degree burn of elbow” as a complete NP chunk (as well
as treating “of” and “elbow” as chunks in and of themself).

Entity relations

The next step after extracting and classifying the named entities is to discover
the relations between them. Take for instance this example sentence from the
CMC 2007 corpus (see page 55):

(1) This is a 8 year old with Trisomy 18 with cough and fever.

After finding the entities patient!?, Trisomy 18, cough and fever one
would want to extract the three relations between patient and the syndrome
and symptoms. If we operate with the two relations “has syndrome” with
|person| as domain and |syndrome| as range, and “has symptom” with same
domain and |symptom| as range, an entity relation detection system could
report these four relations:

o |person001| |has syndrome| | Trisomy 18].
e |person001| |has symptom| |coughl|.
o |person001| |has symptom| |fever|.

o |person001| |is a| |patient|.

18They do state that the text is POS-tagged and chunked as part of the pre-processing
steps, but the algorithm they describe does not seem to use this information when mapping
concepts to text.

19The committed reader may have noticed that the “patient” is not mentioned directly in
the text. An IE system should be able to infer that there is a patient in this text nonetheless.
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The use of the same identifier for the patient underlines the fact that the
computer “knows” it is the same person. If one asks the computer “What is
the frequency of patients which had a fever and were coughing”, the computer
should be able to sum up all different persons with both a |has symptom)|
relation to cough and fever.

Contextual Features

After finding the named entities of interest, it is fruitful to identify whether the
entity has been negated (“the patient did not ...”), or whether the uncovered
entity describes someone else than the patient (“the patient has a family his-
tory of ...”). After finding named entities such as diagnoses and procedures,
then, we want to look at the contezt of the entity, to affirm or negate its status
accordingly.

Chapman et al. (2007) developed an algorithm named ConText especially
for the clinical domain. This algorithm uses regular expressions to locate con-
textual features indicating negation, temporality and experiencer and is an
extension of the similar NegEx algorithm for uncovering negations. The nega-
tion feature has two values: Negated and affirmed, the temporality feature has
three: Recent, historical and hypothetical, and the experiencer feature has two:
Patient and other.

NegEx locates a trigger term (indicating a negation) and a indexed term
(an annotated entity), where both terms must be within a sentence and there
is no more than 5 word-tokens or annotated entities?® in between. Either the
trigger term can be in the far left of the scope and the indexed term on far
right, or vice versa. The trigger term may negate the indexed term if several
requirements are met: For instance the word “but” terminates the negation if
it appears in between the negation and index terms, and the negation term is
on the left (“She denies headache but complains of dizziness.” Example from
(Chapman et al., 2007)). For more on the NegEx algorithm see (Chapman
et al., 2001).

As said, ConText expands NegEx by also detecting temporality and expe-
riencer. Different trigger terms are used, for instance “father(’s)” indicate that
the experiencer value is other, “should he” indicate that the temporality value
is hypothetical while “history” indicate that the temporality value is historical.
In both NegEx and ConText there is also a list of pseudo-trigger terms, that
contains the trigger term, but is not actually a trigger. For negated events this
is terms like “no increase” and “not extended” (Chapman et al., 2007).

Unfortunately, not all negations are clear cut, let us examine this example
sentence from the i2b2 2008 corpus (see page 57):

(2) She denies dysuria or hematuria.

20This means that if several word tokens is annotated as an entity, it counts as “one word”.



3.2. INFORMATION EXTRACTION 33

Two problems arrive here. First, it is not always the case that we can infer
that for instance dysuria did not occur even if the word “deny” appear close
to it. Take this made-up example:

(3) She denies dysuria to be a big problem.

Second, a patient’s denial of an illness does not make it the case that the
illness is not present. Whether the IE system should attack this problem is
another topic.

Extraction of Temporal Clues

After uncovering entities, events, relations and negations the natural next step
is to uncover temporality within narrative clinical text. Uncovering temporal
information from text is highly relevant when performing information extrac-
tion in general, and is viewed as essential in the clinical setting (Tao et al.,
2010). By extracting temporal clues we can perform better analysis of the pro-
gression of diseases, different causes of clinical situations and new causal links
between events like drug usage and symptoms. For this we need to identify
both date references (“underwent surgery on August 97), reference to future
and past (“2-3 weeks”), and relative assertions between events, like in example
sentence 4 (taken from i2b2 2008 corpus, see page 57). Dealing with temporal-
ity is perhaps the most difficult part of IE, both regarding extracting temporal
information and how to store and treat such information on the computer.

(4) One week after his myocardial infarction , he underwent an exercise tol-
erance test MIBI.

Zhou and Hripcsak (2007) give a review of temporal reasoning with medical
data, where we see that extracting temporality from the text is a complex
problem. Questions like Is time continuous or discrete?, as well as different
considerations of how fine grained one should extract temporality and how
one should store information about temporality are not yet settled. Zhou and
Hripcsak also discuss the structure of time. The ordinary view is a “timeline”
where events occur on this line. But repeated actions (like daily or weekly
doses of medicine) could be described by circular time, future events could
be described by a branched tree (the future may have several outcomes) and
parallel time-lines could describe concurrent events. Take for instance this
sentence, from the i2b2 2008 corpus (see page 57):

(5) she has also recently completed a course of Levaquin for urinary tract
infection

There are some alternatives on how to represent this. The IE system can
ignore past events entirely, treating them as non-existing. This may seem
viable in some respects; previous treated illnesses would be of little interest
for instance when asserting ICD-9-CM codes to the record/patient. In other
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respects we may miss out on important information. If we do not record the
previous use of medications (like Levaquin) or covered illnesses (like urinary
tract infection) important causal relations between medications and/or illnesses
is left out. One could for instance be interested in the question “How frequently
do patients treated with medicine x have symptom y?” (for instance when
searching for possible new side effects from drug usage).

A second option is to leave out temporality, but store the information that
the patient uses Levaquin and has urinary tract infection. This could lead to
important gains of knowledge, but seems hazardous: This is not correct. The
best option (if available) seems to be retrieving and storing temporal informa-
tion one finds in EHR. This means that some sort of temporality-information
should be included in almost every entity relation stored in the system. In
addition there is the level of granularity. Should we just extract information
about past/present/future, or should we extract exact dates (where possible)
or something in the middle? It is no doubt, then, that managing temporality
is a challenging task, and must be considered when developing IE systems.



Chapter 4

Knowledge Representation

After extracting information we need to store it in such a way that nothing of
importance is lost, and such that everything is available for reuse. All this while
considering computability or machine readability, meaning that the computer
is able to treat the structured data in a well-defined manner. We also want to
be able to capture the meaning, or the semantics, within the text by adding
formal constraints such that a mechanical procedure can calculate over the
semantic content.

There is not much focus on knowledge representation in our experiments
(see section 7), except the plain fact that extracted information needs to be
saved and restored. Why, then, devote a whole chapter to this subject? We
are motivated to bring in this because it is vital to address the treatment of in-
formation in any IE system and because we utilize ontologies which have these
capabilities in our work. Extracted information has to be stored somehow, and
it is worthwhile reflecting on how. Furthermore, some of the concepts intro-
duced in this chapter will be used later in the thesis, such as inheritance and
tazonomy. It is, for instance, easier to introduce the SNOMED-CT ontology
with this chapter as a background.

When adding structure to data, it is beneficial to follow a common standard,
so that retrieved information can easier be communicated and used between
several parties (Hitzler et al., 2009). Several standards for classification of
diagnoses are used in the clinical domain, but we will here focus on SNOMED-
CT, which also contains semantic constraints and relations useful when trying
to represent and reason over knowledge contained within clinical documents.

It is also valuable to have access to general knowledge (as opposed to the
specific one we extract) about the domain in which we operate when extract-
ing information. Such general knowledge range from simple terminologies over
domain-specific terms, into full-blown ontologies which define entities, rela-
tionships between entities and other formalized knowledge about the domain
of interest. We are utilizing such general knowledge through the SNOMED-
CT Ontology and UMLS Metathesaurus in our experiments. To have a firm
grasp of what such models can perform is a strong enough motivation to study

35
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the formal aspects of the technologies behind in detail. In this chapter we
will therefore look into knowledge modelling, reasoning with knowledge and
exchanging information.

The focus will be on three main points from the perspective of Information
Extraction. We want to be able to use the stored information, we want to
lose as little information as possible when storing new extracted information
and we want to be able to communicate the information to other parties while
minimizing the amount of information being lost in the process. For this we
need a robust way of handling and representing extracted data, and we need a
common vocabulary that every communicating party knows. All these aspects
are part of how we handle knowledge in the computer.

4.1 Representing information

By “representing knowledge” we here mean the ability to store information
with its semantic features, so that we can retrieve precisely the information we
seek and so that the computer can reason over the information and infer new
knowledge where possible. When we want to query the computer after a spe-
cific entity, we must be able to describe this entity unambiguously through an
interface. The computer needs to know where these entities are found, i.e. the
data needs to be structured somehow. For instance, through an interface the
end-user may select a specific medical term from a formalized vocabulary — say
| Bronce diabetes (disorder)|. The computer can then scan all documents® and
retrieve those that contain strings annotated with the terminology. Further,
the computer could filter out (disregard) documents only containing negated
mentions of the concept.

There are many alternatives as to how we can store structured informa-
tion in the computer. Whilst relational databases are the classic alternative,
other options exist. For instance the UIMA framework for processing unstruc-
tured information use Typed Feature Structures (see chapter ), which is a
well-studied data structure used in NLP (Gotz and Suhre, 2004). With Se-
mantic Web technologies RDF-triple stores are also becoming more popular,
where we also have the ability to semantically constrain the information such
that more precise knowledge can be defined (more on this in section 2).

We choose here to use RDF and its semantic extensions RDFS and OWL
to discuss how we can store, represent, exchange and automatically reason over
structured information. We do this mainly because SNOMED-CT — which we
will discuss in the next chapter — is defined within terms from this paradigm,
but also because it is easier to introduce the subject of knowledge representation
by a standardized apparatus. We also think that semantic technology can be
used to store and retrieve new information we extract from clinical documents
in a robust and flexible manner.

Mnstead of “scanning all documents” the computer could of course access a database
over all documents containing the term, etc. We are not interested in the technical imple-
mentation.
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RDF triples

To exemplify how we can capture information in a machine-readable way, we
are going to look at Resource Description Framework (RDF), which has gained
popularity over the recent developments in the Semantic Web (Hitzler et al.,
2009). Originally RDF was designed for modelling metadata, but has evolved
into a general modelling method for describing relations between objects of
interest. As an assertional language, it can express computer-readable propo-
sitions (Hayes, 2004). It consists of subject-predicate-object triples, where the
predicate typically indicates a relation from the subject to the object. RDF
triples do not carry any semantics on their own; semantics must be agreed
upon between producers and consumers of statements made with RDF. More
precise formal vocabularies can be developed to express formal semantics that
can be mechanically reasoned over (see sections 4.2 and 4.3). The RDF frame-
work is not a serialization (specification on how to store data on disk), but a
general description of how to model information as propositions. When used,
a specific serialization must of course be chosen (Klyne and Carroll, 2004). As
an overall summation, the following quote from a W3C Recommendation may
be enlightening:

RDF has an abstract syntax that reflects a simple graph-based data
model, and formal semantics with a rigorously defined notion of
entailment providing a basis for well founded deductions in RDF
data. (Klyne and Carroll, 2004)

A set of RDF-triples builds up a graph, where subjects and objects are
nodes and predicates are arcs between the nodes. Nodes can be resources, either
globally named sources via an URI?, locally named sources (“blank nodes”) or,
for object-nodes, literals. Literals are specific, constant, values with datatypes
such as “string” and “number”. These datatypes are not defined with RDF,
but rest on the XML Schema Datatypes instead (Klyne and Carroll, 2004).
Predicates can only be a resource (that is, not a datatype). With RDF we can
then name simple facts by using the predicates as relations between subject
and object. If we want to express that a person is 30 years old, we can do this
by typing an RDF-triple like in example 1. “ex:John” and “ex:hasAge” are
here short forms of the respective URIs, while “30" rdf:XMLLiteral” is a plain
literal, representing the number 30.

(1) ex:John ex:hasAge “30" rdf:XMLLiteral”
Some properties follow are defined within the RDF standard, we can for

instance express that resources belong to a class. We can then (for instance)
say that |John| is a type of |Person|, or that |John| is a type of |Man|. This

2Uniform Resource Identifier, defined here as a string of characters for identifying a
resource.
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has the same effect as saying that a concept is a child of another concept,
such that when saying that |John| is a type of |Person| everything that is
true about |Person| are also true about |John|. We will here deviate from
the specifications and focus on what matters for us. We will use the relation
|type of| to say which class(es) an individual belongs to, and the relation |is
a| to model parent/child relations between concepts (as we will soon define in
section 2).

Barely any semantics is included in RDF. Some of the few things a computer
can “know” from an RDF-graph is that when it sees a triple “s p o”, then p
must be of type “Property”, and if the computer sees the triple “s p 1” where [
is a well-typed XML-literal (according to the XML Schema mentioned above),
then [ must be of type XML-Literal. This is defined in entailment rules in
the W3C Recommandation RDF' Semantics (Hayes, 2004). We will see more
semantically rich frameworks, such as RDFS and OWL, in the next section.

4.2 Modelling Knowledge

We are here interested in how to represent general knowledge about the domain,
i.e. knowledge the computer has access to prior to information extraction. We
do this with the help of models. By defining classes or concepts (what type
of things there are), properties (what kind of relationships that exist between
concepts) and individuals (instances of a class/concept) we can describe the
parts of the world we are interested in.

The most typical example of a relationship between two concepts is the
|is a| relationship, which creates a hierarchy of concepts and relations. For
instance we could establish the hierarchical relationship between |Man| and
| Person| with an expression like 2:

(2) |Man| |is a| |Person|

A useful distinction to make when modelling knowledge is that between
assertional knowledge and theoretical knowledge. Theoretical knowledge is
propositions describing relations between concepts, for instance the proposi-
tions “bronze diabetes is a type of disease” and “bronze diabetes is a kind
of chromatosis”3. Assertional knowledge is specific knowledge describing in-
dividuals, and we can here equate it with the type of information we are to
extract from the clinical notes, for instance the propositions “the patient has
hemochromatosis” or “the patient does not have bronze diabetes”.

Theoretical knowledge is typically represented in a taxonomy (a hierarchical
terminology) or an ontology?. Creating taxonomies or ontologies is a task
consisting of modelling information, i.e. capturing the relevant domain-specific
knowledge. Doing this serves several purposes: The computer can reason on

3The relationship is taken from SNOMED-CT.

4Technically speaking, there is nothing wrong with expressing assertional knowledge in
an ontology, and this is often done for well-known facts (Such as “The Beatles composed
Lucy in the Sky with Diamonds”).
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the basis of the data, for instance if the computer knows that a patient has
“bronze diabetes”, it can infer that the patient also has “hemochromatosis”.
Having a common terminology also strengthens the interoperability between
different parties, which means that information can be communicated more
precisely (see section 4.4).

If the information we extract from the document is coupled with an on-
tology, the computer is also able to perform reasoning over the information,
and thus draw new conclusions hidden in the text. One example of this is
the parent/child relations in SNOMED-CT. If the computer extracts the dis-
ease |Urethral caruncle| from a record, and links this to the corresponding
SNOMED-CT Concept, the computer does not only “know” that the patient
suffers from this particular disease. When one wants to retrieve all patients
suffering from |Polyp| the computer could also return this patient, because it
knows from the ontology that | Urethral caruncle| is a type of | Polyp|.

Terminologies

We will here define a terminology as a list of terms, often such that a termi-
nology enlists all important terms used within a given domain. A term is a
sequence of words used to name a concept, where each concept can be named
by several terms (synonyms and abbreviations). Synonymity will here be un-
derstood thusly: Term A is synonymous with term B if they can be used to
refer to the same concept. It may be the case that there exists some nuanced
difference in the meaning of the synonymous terms in daily usage, but we will
simplify this here and generally say that if two terms are synonymous they can
represent the same class or concept.

A terminology, then, can typically be used to model how we use different
terms to name a concept. It can also in some cases model antonyms (terms
with opposite meanings). Additional information that could be found in a
terminology is what language the term is written in and how frequently the
word is being used (in some given set of example texts). Ambiguity could also
be modelled in a terminology, by somehow stating that a term can refer to
several concepts.

A terminology can, as we have seen in section 3.2, serve as a quite useful
tool when extracting entities and events from running text. By providing each
concept referred to by a term with a single and unique ID, they can also prove
useful when referring to a concept in the computer, as well as distinguish the
different concepts.

Modelling Taxonomical Relationships

A taxonomy builds up a hierarchy of the concepts which are defined in a model,
and the typical relation is named |is a| or |is a child of |. That a concept |A| has
an |is a| relation to a concept | B| means that every individual in the domain of
the model which is an instance of |A| is also an instance of |B|. This includes
the fact that all properties of | B| are also properties of |A|. The reverse relation
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of |is a child of| is, naturally, |is a parent of|, meaning if |A| |is a parent of|
|B| then |B] |is a child of| | A|.

If a concept does not have any parents, we call this the root concept, and
if a concept does not have any children we call it a leaf concept. There are
some modelling rules which apply to taxonomical trees. There should only
be a single root (which does not have any parents), and all concepts should
have the root as an ancestor. Furthermore, there should be no cycles in such
a hierarchy. Some taxonomies only allow one parent for each concept, and
we call this single inheritance. When a taxonomy allows several parents for
one concept it is called multiple inheritance. Similarly, in some taxonomies a
concept is not allowed to have just one child, but must have zero or several
children (Bodenreider et al., 2007).

As we have said, if “|A| |is a| |B|?, then all properties of |B| are also
properties of |A|. This also includes the fact that all members of |B| are
members of |A|. |is a| is a so called transitive relation: If “| 4| |is a| |B]” and
“|B| |is a| |C|”, then all properties of |C| are also properties of |B| and |A|.
Some operate with a nuanced difference between the |is a| relation and the |is
a child of| relation. For instance, when |A| |is a| |B| we only know that all
instances of |B| also are instances of |A|, but it could be that |A| is identical
to |B|. On the other hand, if |A| |is a child of| |B|, then |A| and |B| are not
identical (a more formal specification is found in Bodenreider et al. (2007)).
Here it is sufficient to treat these relations as equals.

Another kind of a hierarchical structure, called mereology, is built up by
the |part of | relation®. The relation |part of| can for instance model that | Hip
region structure| is a part of |Entire lower limb|®. In this way we can define
localizations of the different body-parts within a human, as well as knowledge
like that a |Window| is a part of a |House|. Similar principles apply here as
in taxonomies, such that the hierarchy defined with the relation has a single
root, that the relation is transitive, and that there should not exist any cycles
in the hierarchy (Bodenreider et al., 2007).

Modelling with Ontologies

Often we want to define concepts (or classes) by other relations than hierar-
chical ones. More complex models can be designed as well by defining types of
relations that can be used to capture even more in-domain knowledge. When
making models like these we typically call them ontologies. We then need some
way of defining the semantics of different relationships as well as the concepts
involved in the ontology. One example of a computer language capable of
building complex ontologies is the Web Ontology Language (OWL), based on
the formalities in Description Logic (DL). We will here see what capabilities
exists in OWL, following a standard point-wise approach by first introducing
RDF Schema.

5The knowledge about part and wholes is called mereology.
6Taken from SNOMED CT.
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We are not interested here in defining or describing the formal nature of
ontologies, we are considering what kind of possibilities that lies within a full-
fledged ontology. Later we will see how SNOMED-CT utilizes these possibilities
(see section 5.1). Bear in mind that for the computer, to be able to calculate
over the semantics, we need formal definitions of the constrains and relations
used. Readers are here referred to the W3C standards on RDFS and OWL 2
(Hayes, 2004; OWL Working Group, 2009).

RDF(S) and OWL is designed around the open world assumption, as op-
posed to the closed world assumption used in the traditional databases. Simply
put, in the open world assumption we assume that we cannot know that some-
thing is not the case, even if it is not stated in the knowledge base. Implicitly
we assume that the knowledge is incomplete. The closed world assumption
assumes that everything we know is in the data base, for instance if person x
is not in the customer data base, we can assume that x is not a customer.

The open world perspective seems to be a healthy one when automatically
extracting information: That we didn’t extract some given information — say,
our system do not say that patient x got allergy y — does not mean it is not
the case. The patient could have the allergy; perhaps is wasn’t mentioned, or
that the software failed extracting this piece of information from the note.

RDF Schema (RDFS)

RDFS constrains RDF such that more precise, but still computable, proposi-
tions can be made. For instance, RDFS defines domain and range of predicates,
specifying what types that are allowed as subject and object to the predicate.
For instance, say that we have a relation |has diagnosis|, we could specify that
the class | Person| is the domain, meaning that only persons can be diagnosed”.
Furthermore we could say that the range of the relation is | Diagnosis| (which
then means that a patient can only be diagnosed with a diagnosis).

With RDFS we can also define hierarchical relations between classes and
properties/relations, such as those discussed above. As properties are hierar-
chical they will contain parent/child relations and the properties of a parent
will always be inherited by the child. This means for instance that if a property
|p| has a domain |C'| and that property |g| is child of property |p|, then |¢| also
has the domain |C|. More generally, everything we say about a concept or a
property is also true for its child. We can also explicitly say that a resource
is a class, RDFS gives us such a vocabulary. Plain RDF already gives us the
means to state that a resource is a property.

Web Ontology Language (OWL)

OWL 2 is divided into several sub-languages, which offer advantages with re-
gard to computational complexity (how much time and space is needed to per-
form reasoning over the modelled knowledge) (OWL Working Group, 2009).

“For a veterinarian clinical setting this would, of course, be altered to |Animal|.
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We will not consider these sub-languages here, but rather see in a more general
way what kind of semantics OWL 2 is able to represent.

OWL 2 defines three basic notions used for making ontologies: Axioms
which are the fundamental expressions of the ontology, entities which repre-
sent real-world objects and expressions which are formulated by combining the
entities.

With OWL 2 we are able to, amongst other things, express that two classes
are disjoint, which means that no members of one class is a member of another.
A typical example would be that |Man| is disjoint to | Woman|. Among other
things possible to model with OWL is that a property does not hold between
individuals (for instance that “|Mary| is not married to |John|”) and that two
individuals are identical or not identical (for instance that “|John| is not | Billy|”
and that “|Andy| is |Andrew|”) (Hitzler et al., 2009).

With OWL 2 we can also define more complex classes. For instance, we
can define that a class | X| is an intersection of two other classes |A| and |B|,
meaning that every individual belonging to both classes | 4| and |B]| belongs
to class | X|. A typical example would be that a |Mom| is the intersection of
| Parent| and | Women|. A class could be defined as a union of two classes, such
that individuals that are either a member of |A| or a member of | B| is a member
of | X|, for instance a |Parent| is a member of |Mom| or |Dad|. A complement
class of a class |A| consists of every individual not in class | 4| (Hitzler et al.,
2009).

Furthermore we can restrict properties as a way of defining classes. We can
for instance express that “every person which has a child must be a parent”.
This is called ezistential quantification, where being in a particular relation to
a type of individual includes membership to a class. A similar restriction is
the universal quantification. For instance, we can model that a person is a
member of the class |HappyPerson| only if all his children are members of the
class |HappyPerson|®. We can also add cardinality-restrictions, defining how
many relations there can or must exist between individuals or classes (Hitzler
et al., 2009).

4.3 Reasoning with Knowledge

Standardizing and formalizing the way humans reason gives us new computable
capabilities to expand on previous knowledge. As we have seen, making hier-
archical relations between concepts already gives the computer the means to
deduce new information. For instance, when |A| |is a| | B| and |z| is a member
of |A| the computer can deduce that |z| is a member of |B|. The same kind of
logic applies to mereological hieararchies. If |C| |part of| | D] and |y| is located
in |C| the computer can deduce that |y| also is located in |D|. These are safe,
well-defined, ways of extending the knowledge in a computer database.

8Formally one needs both the universal and the existential constraints to model this, if
not it would be sufficient to not have any children to meet the universal constraint.
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If we have more complex ontologies, not restricted to merely describing the
hierarchical (parent/child) relations between the concepts, even more new in-
formation can be automatically deduced by the computer. We can see this
for instance in the SNOMED-CT ontology, where the relation | CAUSATIVE
AGENT| links |hemochromatosis| with |Iron AND/OR iron compound|. The
computer can then deduce that the patient which suffers from hemochromato-
sis has been exposed to iron. There is also an obvious hazard in deducing new
information this way. If the algorithm we use to extract information from a
clinical note fails, and the extracted information is incorrect, the consequence
may be that not only is this piece of information wrong, but all further infor-
mation the computer infers from it is wrong. We will not discuss these issues
at length here, but it is important to bring them into attention. On the face
of it, it seems that the more insecure the information extraction process is, the
more hazardous it is to let the computer deduce new “knowledge” based on
the extracted information.

Another, perhaps obvious, hazard is expanding negated propositions —
such as “John does not have bronze diabetes” — with help of the hierarchical
relations in the same manner we do with positive findings. We see that the
parent of |Bronze diabetes (disorder)| in SNOMED CT is | Hemochromatosis|,
but can we infer that John does not have hemochromasotis? No, for instance
it could be that John has bronze cirrhosis, and |Bronze cirrhosis| is also the
child of |Hemochromatosis|. But negated entities can be expanded the other
way: If we know that John does not have hemochromasotis, we also know that
he does not have bronze diabetes nor bronze cirrhosis.

The question of what kind of new information that can be deduced is closely
related to the restrictions in the formal language we use for modelling knowl-
edge. When two classes |A| and |B| are defined as disjoint, and we know that
an individual |a| belongs to |A|, the computer can infer that |a| does not be-
long to |B|°. If a class |C] is a intersection of two classes |A| and |B|, and a
individual |a| is a member of both |A| and | B], the computer can deduce that
|a| is a member of |C|.

If we have an ontology defining diagnoses with respect to findings and symp-
toms, making use of complex ontological statements containing intersections
and cardinality restrains, we imagine it possible to use the computer for au-
tomatically assigning diagnoses with respect to uncovered findings and symp-
toms.

With all the above as a background, it is fairly easy to explain how the
computer deduces new information. We simply mean that we can state some
rules explaining how new propositions can be inserted into a database, based
on propositions already in it. In the example below, we have two statements
already stated in a database (pl and p2) and a piece of new knowledge that
can be automatically inserted to the database by the computer (c).

pl [A] [is a |B|

9Remember that with the open-world assumption, we cannot determine that |a] is not a
member of | B| merely on the ground that this is not explicitly stated.
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p2 |a| |type of | |A]
c |a| [type of| |B|

The computer can iterate through the database, and see if there are is set of
statements that constitute the deduction of a new statement, according to rules
defined within RDF, RDFS or OWL. Each time the computer discovers new
knowledge, it can then insert it into the database and see if this new knowledge
again spawns even more knowledge. Some caution must be made, so we do not
enter into a state where the computer never stop deducing more statements.

4.4 Exchanging Knowledge

If two or more parties are to communicate, they need three things: A link
or medium to communicate through, a protocol (set of rules) for how the
communication is to proceed, and the ability to understand the content of
what is being communicated.

Ontologies bring us the ability to understand not only which specific terms
are being used in the text, but also the underlying semantic content of the
message. By linking each concept or entity, as well as every relation that can
occur between concepts or entities, to a unique identifier and/or definition, we
can interchange data in such a way that all parties understand what is being
communicated. We call this semantic interoperability. Berges et al. (2010)
explains semantic interoperability in the following way:

In general, semantic interoperability is defined as the ability of one
computer system to receive some information and interpret it in
the same sense as intended by the sender system, without prior
agreement on the nature of the exchanged data. (2010, page 11)

We will not consider semantic interoperability further, we are primarily
concerned about extracting the information.



Chapter 5

Existing Resources

5.1 Ontologies and Terminologies

Using medical ontologies when representing the semantics in medical texts
offers several advantages when reasoning over and extracting information from
clinical documents. First of all it is a unique resource to clearly stated, language
independent, non-ambiguous marking of the medical terms. Given that we find
some concept or description from unstructured clinical text in a terminology, we
attain partly in-depth knowledge of the subject-matter in the text. Secondly a
precise ontology gives an exceptional ability to make high-level comparisons of
symptoms and diseases due to the logical definition of the terms. For instance
it is possible to automatically make comparisons between different procedures
of bone immobilizations, both those recorded as cast immobilization of fracture
as well as closed and open reduction of fracture, since they are likely both to
be defined as types of bone immobilizations in the ontology.

We have already seen some examples of using terminologies and ontolo-
gies in information extraction (Oliver and Altman, 1994; Patrick et al., 2007).
There are different resources to choose from, but one of the most promising
alternatives seems to be SNOMED CT. There are other resources available as
well, such as ICD9-CM, but SNOMED CT is in contrast far more granulated
and complex. We will therefore here focus on SNOMED-CT, and also mention
a few other existing ontological resources. In particular we will describe the
UMLS Metathesaurus since we have used this in our experiments.

SNOMED CT

SNOMED CT is a comprehensive resource of terminology within the domain of
health-care. The purpose is to have reliable clinical information within software
applications, securing communication between different systems and in different
languages. SNOMED CT can maintain input in electronic information systems
in a standardized form, so that the data can be reused for different purposes.
The development of SNOMED CT occurred within a native formalism of DL
(Bodenreider et al., 2007). 311.000 concepts related to millions of descriptions

45
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(terms) ensure unambiguous documentation in electronic patient records and
other health-related documents.

The building blocks of SNOMED CT are concepts, descriptions and rela-
tions. A concept has a unique clinical sense, coupled with a distinctive and
static identifier, and each concept is logically defined by relations to other con-
cepts within the SNOMED CT terminology. Each concept is represented by
three kinds of descriptions (human readable names); fully specified name, pre-
ferred term and synonym (where a concept can have zero to several synonyms).
All concepts must have one fully specified name, which is exclusive for the con-
cept and one preferred term (IHTSDO, 2012). The extensive list of different
descriptions of concepts makes SNOMED CT interesting when dealing with
named entity recognition and term extraction. Having access to different ways
of spelling out the term helps us when we are using NER methods which do
not rely on machine-learning.

SNOMED CT Relations

Relations, also called attributes, are used to link concepts in SNOMED CT to
each other. Four different kinds of relations exist (defining, qualifying, histori-
cal and additional) but we will here focus on the relations used to model and
define the concepts. Some attributes have hierarchical relations to each other,

such that one attribute can be more general or specific (granular) than another
one (IHTSDO, 2012).

The most defining relation is the |Is a| relation, building a taxonomical
tree over all concepts within the ontology. Mereological relations are used when
defining the different parts of the human body. Other defining relations include
| Associated morphology| and |Finding site|. 50 different attributive relations
are also used, defined both with domain and range, and the attributes are also
defined within a hierarchy in itself.

We know from chapter 4 that when a concept |B| is a child of another con-
cept | 4|, | B| inherits the definitions of |A|. But when the relations/attributes
are defined within a taxonomical relationship we can constrain the definition
of |B| to more granular versions of the attributes used to define |A|. This is
also the case in SNOMED CT which defines several attribute hierarchies. For
instance the relation |Associated with| has three children: |Causative agent|,
| Due to| and |After|.

In figure 5.1 we see an incomplete graph of gout disorder!. We see that
| Gout| is defined as a subtype of | Disorder of purine metabolism|. Gout also has
the explicit qualifying relations | Clinical Course| and |Severity| (not depicted
in the figure), which it inherits from its ancestor |Clinical finding|.

IThis information was drawn from the UMLS Terminology Services, SNOMED CT
Browser 2012
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SNOMED CT Concept
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Figure 5.1: The tree positions of Gout

Concepts of SNOMED CT

The concepts are organized in a hierarchical manner, below 19 top level con-
cepts. This hierarchy is defined with the taxonomical |Is a| relation. Each
concept also has a formal DL-description, consisting of a listing of properties
belonging to them. The properties could for instance be the unique identifier,
parents (|Is a|) and names (Bodenreider et al., 2007). To get a nice overview
of all the concepts, it is helpful to look at the top level concepts. These can be
found, in lexicographical order, in figure 5.2 (IHTSDO, 2012).

Each concept in SNOMED CT is related to a status, revealing whether the
concept is in active use or not. When a concept is found to be erroneous,
ambiguous, etc. it is replaced with a new concept. The old one is kept, but
changes its status accordingly.
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Body structure Normal and abnormal anatomical structure.
Clinical finding Result of clinical observation, assessment or judgment

Environment or geographical location Environments (as intensive care
units) and locations.

Event Occurrences, excluding procedures and interventions (flood, earth-
quake, etc.).

Linkage concept Concepts used to link two or more codes to express com-
positional meanings.

Observable entity A question or procedure which produces an answer or
result.

Organism Animals, microorganisms, plants etc.

Pharmaceutical/biologic product Drug products (as opposed to their
chemical constituents, substances).

Physical force Physical forces that can play a role in injury.
Physical object Natural and man-made objects.
Procedure Activities performed in the provision of health care.

Qualifier value Concepts used as values which are not a subtype of another
top level concept.

Record artifact For instance patient records and also more fine-grained sec-
tions of records.

Situation with explicit context Conditions and procedures that have not
yet occurred (future history), refer to someone else than the patient (fam-
ily history), or that have already occurred (past history).

Social context Family status, economic status, ethnic and religious heritage,
life style, occupations, etc.

Special concept Concepts no longer active in the terminology.
Specimen Entities obtained for examination or analysis.
Staging and scales Assessment scales, tumour stages, etc.

Substance Active chemical constituents of drugs, food and chemical allergens.

Figure 5.2: List of top level concepts in SNOMED CT (2012)
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Unified Medical Language System

The Unified Medical Language System (UMLS) provides access to many con-
trolled medical thesauri, ontologies, terminologies and classifications (we will
refer to all of these as “vocabularies” from now). The collection of these vocab-
ularies is designated as the UMLS Metathesaurus. All concepts within UMLS
are also assigned one (or more) semantic category, this information/interface
is provided through the Semantic Network. Further, UMLS provide NLP fa-
cilities through the SPECIALIST Lexicon.

The UMLS facilities is designed and maintained by the US National Library
of Medicine. It is free to use the system, but licensing requirements of the source
vocabularies still applies when accessing those through UMLS.

UMLS Metathesaurus

The UMLS Metathesaurus is a large multi-lingual vocabulary built up from sev-
eral vocabularies from the medical domain. It contains over 1 million biomed-
ical concepts which are collected from over 100 source vocabularies. This in-
cludes ICD-10, SNOMED CT, and RxNorm 2

The Metathesaurus is focused around the concepts derived from the source
vocabularies, with their attributes intact. Each concept belongs to a UMLS
semantic type, as defined in the UMLS Semantic Network. Synonymous con-
cepts across source vocabularies are also linked to each other. UMLS does
not present a coherent ontology, but keeps all inconsistencies that may exist
between different terminologies and ontologies encapsulated in the metathe-
saurus.

UMLS Semantic Network

The Semantic Network can be seen as a layer on top of the source vocabularies,
grouping the Metathesaurus concepts into different semantic types and adding
new relationships between concepts. Thus the Semantic Network categorizes
the concepts and adds new formal semantics to them via the semantic types.
The relationships are defined between the types, and there are 133 types and
54 relationships. All concepts are assigned at least one semantic type, but some
concepts belong to several semantic types where appropriate (UMLS, 2009).

The different semantic types are hierarchically related to each other, for
instance the semantic type |Chemical| is a subtype of |Substance|. The net-
work is divided into ENTITIES and EVENTS. ENTITIES have two top-level
types |Physical object| and |Conceptual Entity|. The |Physical object| type
has four subtypes: |Organism|, |Anatomical Structure|, |Manufactured Ob-
ject| and |Substance|. ENTITIES have the two top level types |Activity| and
| Phenomenon or Process|.

2See a full list at http://www.nlm.nih.gov/research/umls/knowledge_sources/
metathesaurus/release/source_vocabularies.html (last entered 08.17.12).
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The division of types in the hierarchy continues in the same manner, where
types important for the medical domain typically are more granular. This
can be witnessed in the sub-types of | Manufactured Object|, which is |Medical
Device|, |Research Device| and |Clinical Drug|. There exist, of course, many
manufactured items which does not fit these more granular types. These would
then belong directly under | Manufactured Object|.

The relations that can hold between the semantic types consist of the typical
|IS A| relation, defining the taxonomical hierarchy plus five other different types
of relations: |physically related to|, |spatially related to|, |functionally related
to|, [temporally related to| and |conceptually related to|. These relations types
function as relations in themselves. Amongst the relations we find for instance
the mereological |part of| relation®.

The relations are defined to hold across semantic types as high in the tax-
onomical structure as possible. As usual, the relations are inherited by the
children of the semantic types, but in UMLS there is an added possibility of
blocking inheritance. The UMLS Reference Manual exemplifies this with the
fact that the type |Mental Process| would be linked to |Plant| via the |process
of | relation by inheritance. Since plants are not sentient, this is specifically
blocked.

UMLS Specialist Lexicon

The UML Specialist Lexicon (Browne et al., 2000) is a general English lexicon
which includes terms used in the biomedical domain. It records both syntac-
tic, morphological and orthographic information. With the lexicon one can
gain access to all possible POS-tags of the given word, and for each POS-tag
the lexicon includes information about the different inflectional variants of the
word. For each word, it also includes spelling variants, for instance for the
word “anaesthetic” the lexicon provides the alternative spelling “anesthetic”.

The SPECIALIST lexicon tools have been used as a linguistic resource in
everything from spell-cleaning (Tolentino et al., 2007)* to providing normal-
izations of the running tokens in a text® (Savova et al., 2010).

5.2 NLP and IE Systems

Several systems for information extraction from clinical free text already ex-
ist, and some of them will be described here. The descriptions are primarily
based on the research papers written by those responsible for developing the
systems. We will introduce four systems, two of historical interest, a mod-
ern open source project and a text-summarizing system for clinical free text
in Japanese. Linguistic String Project and MedLEE are interesting systems
because their creators pioneered the idea of using NLP technology to extract

3For a full list, see http://www.nlm.nih.gov/research/umls/META3_current_relations.
html (last entered 07.17.12).

4Discussed in section 3.1 from page 3.1.

5Will be discussed in section 6.2.
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and structure information in clinical free text. The newer open source project
c¢TAKES is interesting because it is publicly available and serve as useful tool
when investigating and developing methods and algorithms for IE in the clinical
narrative. A notable example of a system we did not cover is the open source
system Ontology Development & Information Extraction (ODIE)®, which at-
tempts to use ontologies to extract information from clinical records as well as
using clinical records to enhance ontologies.

Linguistic String Project

One of the earliest attempts of capturing information in clinical free text to
store in databases evolved around the Linguistic String Project. According to
the homepage of Naomi Sager” — the project’s initiator — the project took
place in the period from 1965-2005. Sager et al. (1994) describe an early five-
module system, where module one creates syntactical analyses over each input
sentence. Module two filters out semantically incorrect syntactical analysis.
Module three extends statements with conjuncts, such as “pain in arm and
leg” to “pain in arm” and “pain in leg”. The last two modules structure the
extracted information so that it can be mapped into a database. This mapping
was evaluated in accordance with information needs in asthma management, a
pre-defined set of features was extracted. The precision was 82.1% and recall
was 82.5% (they got higher figures when only counting major omissions). They
also made early experiments of mapping free text into SNOMED III concepts
(Sager et al., 1994).

The Linguistic String Project has a long history of research and development
of NLP systems in the medical/clinical domain®. An interesting continuation
of the Linguistic String Project is an experiment performed on patient records
written in Dutch. Spyns et al. (1998) describe how they could use the output
of a morpho-syntactic analyser for clinical Dutch text as input to the language
independent modules of the now matured Medical Language Processor of the
Linguistic String Project. They used this to build an information extraction
system. This work effectively shows that it is feasible to couple language-
specific NLP modules (analysing morphology and syntax) with domain specific
information extraction modules (using formats to select information pieces such
as “patient”, “diagnosis”, etc.).

MedLEE

MedLEE (Medical Language Extraction and Encoding System) is a text extrac-
tion system which extracts and encodes information from free text in patient

Shttps://wiki.nci.nih.gov/display/VKC/Ontology+Development+and+Information+
Extraction+),280DIE%29 (last entered 31.07.12)

“http://www.cs.nyu.edu/cs/faculty/sager/ (last entered 28.06.12).

8 An overview of the project can be found at http://www.cs.nyu.edu/cs/projects/lsp/
pubs/MLPPubs_Annotated.html (last entered 27.06.12).
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records. Originally it was designed to process radiological reports at Columbia-
Presbyterian Medical Center and was soon extended to handle mammogra-
phy reports as well. The system maps extracted information into structured
databases, where it is used by automated processes such as decision-support
systems (Friedman et al., 1995). MedLEE is still available through licensing.

The system® consists of five modules arranged in a typical pipeline-manner.
Module one is the pre-processing phase, which consists of discovering the free
text sections in the report and prepares the free text for further processing.
Module two parses the sentences with a semantic grammar. The third module
regularizes the parsed sentences to fit the vocabulary better before encoding.
For instance in the phrase “heart appears to be enlarged”: The parser discovers
“enlarged” as a central finding, and “heart” as a body-location modifier, and
the regularizer transforms the phrase to “enlarged heart” to better fit the
vocabulary used for encoding. The encoding is performed in the fourth module,
which maps the regularized phrases into unique concepts in a clinical dictionary.
A last module transforms the newly structured material into a standardized
format (Friedman et al., 1995).

Three early initial evaluations were performed. The first evaluation con-
sidered the parsing-module. 3354 sentences, filtered in such a way that only
sentences containing information of interest, were parsed. 86% of the sentences
parsed correctly, which means that some analysis (possibly incorrect) could be
given. Unsuccessful parses occurred mainly because the sentences contained
spelling errors and out-of-vocabulary words (6%) or semantic patterns not rec-
ognizable by the parser (5%). Of the successfully parsed sentences, they saw
that 2% were not structured correctly. The precision and recall for correctly
structured sentences was 99% and 89 %(Friedman et al., 1995).

The second initial evaluation consisted in identifying four clinical diseases
from 230 randomly selected reports. The reports were hand-annotated by three
medical experts for the diseases as well as processed with MedLee. They then
made queries designed to retrieve the documents marked with the diseases. The
average precision and recall figures were 87% and 70% respectively (Friedman
et al., 1995).

A third evaluation was also performed in a similar manner, but with six
diseases!'! and annotation done by twelve medical experts. Three of the diseases
had a high precision and recall!? while the other three had low precision and
recall. They achieved better results when augmenting the queries used to
retrieve the correct documents with more terms (at the risk of lower precision)
(Friedman et al., 1995).

10

9We are here following a paper from 1995 (Friedman et al., 1995).

10These four diseases were: Neoplasm, chronic obstructive pulmonary disease, acute bac-
terial pneumonia, and congestive heart failure.

11 The two extra diseases were: Pleural effusion without chf, and pneumothorax.

12This was not recorded in the paper, but they report that 26 reports were annotated
for congestive heart failure. The system retrieved 25 of these, with an addition of two
incorrect reports.
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There has been ongoing development on MedLEE since the paper from
1995 was published and the above descriptions might not apply to the modern
version of MedLEE. A more recent description can be found in Sevenster et al.
(2012). They used the output of MedLEE to find correlations between clinical
findings and body locations. From the structured output they wrote several
rules, annotating uncovered body locations and clinical findings as correlating
with each other. If they could not find the information straight forwardly from
the MedLEE output they used an additional rule which annotated a correlation
between a finding and a body location within sentences, given that only one
body location was mentioned in the sentence. They also enhanced their system
with frame filler software to better detect breast locations.

Sevenster et al. (2012) evaluated their system on 660 radiology reports
and 119 breast cancer reports. They found that only using the output from
MedLEE yielded a higher precision, but with a lower recall. Recall was over-
all quite low, ranging from 20-45 % while precision ranged from 83 - 100 %,
depending on whether they evaluated on breast cancer reports or radiology
reports, and whether they only used the output from MedLEE or also included
their sentence-rule. The use of the frame filler also yielded better performance
when working on the breast cancer reports (Sevenster et al., 2012).

TEXT2TABLE

TEXT2TABLE is a text-summarizing system for clinical free text, based on
entity recognition and negation identification (Aramaki et al., 2009). The pro-
gram extracts medical events and times from a clinical document, tries to detect
whether the event actually has taken place and summarizes the findings for the
end user. Even though the system is trained on clinical free text in Japanese,
the methods described are independent of language.

Four steps are involved in TEXT2TABLE: The system first marks six dif-
ferent types of events (operation, test, disease, medication, patient action and
other verb). This part resembles NERC. Secondly the discovered terms are
normalized, for instance acronyms are disambiguated and extended. Thirdly,
relations between events and date-times are established, and finally the nega-
tive events are located.

The negative events are divided into eight categories (modalities): Nega-
tion, future, purpose, suspected, necessity, intended by patient, possible and
recommended. An event can be classified as several of these, for instance “No
chemotherapy is planned” (example from the i2b2 2008 shared task, see page
57) is in this system regarded both as a negated event and as a future event.
For evaluating negation detection 435 Japanese discharge summaries were col-
lected and annotated for events and modality. All events are assumed correctly
identified, and a SVM-classifier was used with a 10-fold cross validation for eval-
uation experiments. When treating all eight modalities as negated events, they
reached an F-score of 85.81 (precision 89.40 and recall 82.50). When classifying
the different modalities independently, results were considerable lower, mostly
because of the small amount of training data.
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clinical Text Analysis and Knowledge Extraction System
(cTAKES)

c¢TAKES is an open-source NLP system for information extraction from clin-
ical free text (Savova et al., 2010). It includes components for dealing with
tokenizing, sentence segmentation, token-normalizing, POS-tagging, shallow
parsing and a NER-annotator. The package comes with ready-made classifier
models for the different tasks, developed with supervised training on hand-
annotated clinical free texts. However, these annotated text-resources are in
general not available due to copyright and patient confidence issues. Therefore,
other resources are necessary for training new models and performing evalua-
tions. Technical details about ¢TAKES are discussed in more detail in section
6.2.

c¢TAKES processes a clinical document incrementally through a pipeline,
adding new information about the document for each step. The free text is
first sentence segmented and tokenized, the tokens are then normalized, POS-
tagged, shallowly parsed and then annotated with named entities, which are
contextually annotated with negation (confirmed, negated or possible) and
status (current, history or family history). Because of the modular structure of
c¢TAKES, new modules can easily be developed and inserted by other parties.

The named entity recognition (NER) module was evaluated by Schuler et al.
(2008). They used a corpus of 160 clinical notes manually annotated with 1957
discovered mentions of clinical entities. The NER module uses noun-phrases
as look-up windows, and retrieves SNOMED-CT and RxNorm concepts via
UMLS. When the look-up window exactly matched the span of the annotated
term, they achieved a recall of 0.63, precision of 0.51 and F-score of 0.56'3.
Computing the same metrics with partial matched they got a recall of 0.76,
precision of 0.88 and an F-score of 0.81. Schuler et al. (2008) found that
spelling errors, incorrect assignment of POS-tags, incorrect chunking and am-
biguous terms and abbreviations was typical sources of errors when finding
named entities.

5.3 Shared Tasks and Corpora

Most of the publicly available clinical reports that can be freely used for scien-
tific purposes are released via different shared tasks. These shared tasks have
played a key role in the development of and research into information extraction
in the clinical narrative. Naturally, hospitals and clinics are cautious about re-
leasing sensitive data to researchers outside their institutions (Chapman et al.,
2011), so getting hands on training and evaluation material is difficult in the
clinical domain. The need of keeping patients data anonymous is addressed in
the i2b2 shared task from 2007 (Uzuner et al., 2007), where one task of the
shared task was automatic de-identification of clinical documents.

13These metrics are explained from page 72.
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The lack of annotated data makes progress slow when developing NLP tools
for the processing of clinical records. Annotated material makes it possible to
evaluate and compare different systems and algorithms. The shared tasks pre-
sented below are the few resources available. With publicly available annotated
material it is possible for scientists and other developers of IE systems for the
clinical domain to measure their progress and compare with other systems and
algorithms.

The CMC 2007 Challenge

In 2007 the Computational Medicine Center (CMC) held a challenge where the
participants were to assign ICD-9-CM codes to clinical free text (Pestian et al.,
2007). From several radiology reports they collected the two critical parts of
the document for ICD-9-CM assignment; “clinical history” and “impression”.
Three different companies' annotated the documents with ICD-9-CM codes.
In the available training material it is possible to see what codes the different
companies assigned to the different documents. There is also an annotated
code marked “MAJORITY”, which simply means states the majority of the
companies assigned. The majority is used for evaluation.

For evaluating the systems Pestian et al. (2007) used a micro-averaged F-
score’®. The winner achieved an F-score of 0.8908% and the top 21 systems
had scores from 0.81% and up. The common approach of the participants was
to find representative features in the records and use these in some kind of
machine-learning. The best system used C4.5 decision trees, outperforming
newer and mathematically heavier algorithms.

The BioScope Corpus

The BioScope corpus (Vincze et al., 2008) consists of documents from the
biomedical domain annotated with negations and speculations. There are three
different types of text: Medical free text, biological full papers and abstracts
of such papers. We are here interested in the medical free text, which more
specifically consists of radiology reports. This is the same material as used in
the CMC 2007 Challenge.

1954 radiology reports with 6383 sentences are marked with 877 negation
cues and 1189 “hedge” cues (speculation). Vincze et al. (2008) report that
the “impression” part of the document is denser with respect to negations and
speculations. The corpus was used at the CoNLL-2010 shared task (Farkas
et al., 2010), but the clinical data was not used as far as we can tell.

4 The three companies providing annotations were Cincinnati Childrens Hospital Medical
Center and two anonymous parties (likely domain experts).
15We describe the evaluation metric F-measure from page 72.
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i2b2 Shared Tasks
i2b2 2007 Shared Task

There were two i2b2 challenges in the first shared task of i2b2. In the first
challenge the participants were to build systems for automatic de-identification
(Uzuner et al., 2007). In the second challenge the participants were to build sys-
tems which could identify whether the patient was a former or current smoker,
or non-smoker based on medical records (Uzuner et al., 2008).

De-identification is an important aspect of using and sharing clinical records
for research purposes. The removal of private health information (PHI) is
necessary before sharing data, and the building of systems which could do this
automatically would be beneficial in this regard. In the i2b2 shared task, eight
categories of PHI were identified and annotated in 889 discharge summaries.
The annotated PHI was also replaced by surrogate-pairs, for instance every
name-mention was replaced with another name. This means that the records
were de-identified before they were released (Uzuner et al., 2007).

Of the 889 discharge summaries in the data-set, 669 were released to the
participants to use in development. The remaining 220 records were used to
evaluate submitted systems. After evaluating Uzuner et al. (2007) concluded
that the best performing systems were able to locate almost all PHI instances
in the data. But since all records were drawn from the same hospital, and the
regularity of names was artificially high, these systems can not directly be used
to de-identify data from other sources. Hence, larger and more heterogeneous
data sets are needed for the further development of de-identification systems.

The smoking challenge (Uzuner et al., 2008) is a classification challenge,
where systems are built to identify the smoking status of a patient based on
the patient’s discharge record. The motivation was to inspire new research
within MLP by facilitating evaluation and comparisons on the same data-set.
By letting domain experts annotate the smoking status of a patient based on
their medical intuitions, one can also evaluate the system’s ability to infer new
knowledge that is not spelled out in the narrative text.

The discharge records were annotated on document level, and a document
belongs to one of the five categories: Past smoker, Current smoker, Smoker
(either current or past), Non-Smoker and Unknown. This was done for both
textual information, meaning that the information was spelled out in the nar-
rative, and intuitive, meaning that the experts annotating the reports had to
infer the smoking status based on other clues in the text. In the challenge the
participants were only using the textually annotated material, in other words
the “intuitive” annotations were not used to score the submitted systems.

The winning team got a micro-averaged F-measure'® of 0.90, closely fol-
lowed by 12 other system runs which all had a micro-averaged F-measure above
0.84. The systems used different techniques for uncovering smoking status, but
most of them made use of explicitly textual features, such as whether the doc-
ument contained sub-strings like “smok”, “tobac” etc. (Uzuner et al., 2008).

16See section about evaluation metrics from page 72.
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i2b2 2008 Shared Task

The second i2b2 shared task was centred around detecting obesity and co-
morbidities in clinical records. This is a multi-label classification task involv-
ing 16 morbidities. The motivation for this task is the development of “in-
dexing, classifying, and summarizing obesity-related facts found in discharge
summaries.” (Uzuner, 2008, p. 562) The annotated data released with this
shared task was used in our experiments (see section 7.2).

The data for the Obesity Challenge consists of 1237 discharge summaries
for patients which recently had problems with diabetes or obesity. These doc-
uments were annotated by hand by two medical experts with textual and in-
tuitive judgements for each of the 16 morbidities. A textual judgement means
that the diagnosis was spelled right out in the discharge summary. Intuitive
judgements, on the other hand, means that the experts had to perform some
kind of reasoning in order to uncover the diagnosis, for instance classifying the
patient as obese or not by looking at statements about weight and height. This
is similar to how the smoking-status documents were annotated. In this chal-
lenge, the participants were competing on both the textual and the intuitive
annotations.

The experts would annotate a discharge summary for each of the 16 mor-
bidities as present (Y), absent (N) questionable (Q) or unmentioned (U) for
textual judgements and present (Y), absent (N) or questionable (Q) for in-
tuitive judgements. The challenge is to develop a system making the same
judgements as the human annotators. In the textual task the rule-based sys-
tems performed best, while systems based on machine-learning competed fairly
in the intuitive task.

i2b2 2009 Shared Task

In the third i2b2 shared task the participants extracted information about
medications, dosages, frequencies, durations, reasons for prescribing the drug
and how the drug is used (modes of administration). 1243 discharge summaries,
of which 696 were released during the development period (Uzuner, 2009).

An interesting aspect of this medication challenge was the community-
driven annotation of the discharge summaries. When participants entered the
contest, they committed to partake in the annotation process. The i2b2 team
annotated 17 “gold-standard” records of the 696 training records released. The
evaluation set of annotated test-documents was then collectively annotated by
the contestants. The community annotated 251 records for evaluating the sys-
tems after the system results were submitted to the challenge (Uzuner et al.,
2010).

Evaluating the performance Uzuner (2009) found that the contributed sys-
tems performed well on detecting drug names, dosages, modes and frequencies
but that detecting duration and reason for medication proved to be more chal-
lenging.
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i2b2 2010 Shared Task

The fourth shared task focused on extracting medical concepts. The partic-
ipants were to build systems which identified concepts in the clinical record,
medical assertions indicating existence, absence or uncertainty of medical prob-
lems and relations between medical problems, tests and treatments (Uzuner
et al., 2011).

As usual the annotated data used for the shared tasks was split in a train-
ing set used for development, and testing set used for evaluation. A set of
349 documents was used for training, with 27,837 concepts and 5,264 relations.
The test set consisted of 477 documents with 45,009 concepts and 9,069 rela-
tions. Additionally the medical problem concepts were annotated so that they
indicating whether the problem was present, absent, hypothetical, conditional,
possible or associated with anybody else than the patient.

i2b2 2011 Shared Task

The fifth i2b2 shared task focused on co-reference resolution. In this task
i2b2 gathered data from several resources, and used different kinds of clinical
records, such as pathology-reports, discharge records, radiology reports, etc.
Three tasks in the shared task were given: Identify mentions and co-reference
in the ODIE corpus was the first task. Task two focused on the co-reference
resolution part, that is, the mentions were pre-annotated. Task three was
similar, but on a different set of documents (Uzuner et al., 2012).

Evaluating the contributed systems developed by the 20 participant teams,
Uzuner et al. (2012) concludes that the co-reference resolution systems per-
formed well in finding co-references, but that it seems to be more difficult
when it comes to cases that require domain knowledge.



Chapter 6

UIMA and cTAKES

This chapter is devoted to the UIMA framework and the technicalities of
c¢TAKES. These systems were used in our experiments, with some additional
custom-made modules explained in section 7.1.

6.1 Apache UIMA

Unstructured Information Management Architecture (UIMA) is an open source
scalable and extensible platform and an OASIS! standard for creating software
for managing and analyzing unstructured information such as free text, audio-
streams and images. The focus here will be on the text processing part. One
of the ideas behind UIMA is that if NLP developers were to agree on a mutual
standard for managing the work flow between components handling unstruc-
tured free text, it would be easier to share and re-use resources developed by
other parties. Many NLP projects follow a similar pattern: I) Read a number
of documents from a collection. IT) Run several NLP algorithms in a specific
order, analyzing and annotating each document, and III) Serve the result-
ing uncovered and structured information to its final destination. The UIMA
standard defines this workflow and how the different components should com-
municate.

These steps could include using machine learning algorithms for training
models or clustering the documents, classifying the documents or parts of the
documents, storing and visualizing the data or serving it to a search engine,
etc. Conforming to a standardization such as UIMA could be a huge benefit for
both researchers and companies dealing with NLP tasks such as information
retrieval and extraction.

UIMA was first developed by IBM (Ferrucci and Lally, 2004), but is now
maintained as open source software by the Apache foundation?. It functions as
a framework for developing information management tools, where other par-
ties can contribute modules for information extraction and management them-

Thttps://www.oasis-open.org/
?http://uima.apache.org/
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selves. Apache UIMA conforms to the Unstructured Information Management
Architecture (UIMA) Version 1.0 standard approved by OASIS, which provides
guidelines and methods for accessing unstructured information.

The document and annotations (meta-data) are handled by a component
called Common Analysis Structure (CAS), which is being sent through the
UIMA pipeline system. The standard defines a common work flow of managing
components, where a Collection Reader module is in charge of loading the
documents of interest into a pipeline, Analysis Engines enrich and structure the
document and CAS Consumers post-process the annotated documents for end
users. The UIMA Collection Processing Manager is responsible for initializing
and running all the components in an UIMA pipeline.

The Common Analysis Structure

The Common Analysis Structure (CAS) is responsible for managing both the
original content of the document as well as the additional annotated content
added by the analysis engines (such as tokens, POS-tags, sentence annota-
tions, parse trees, NEs, etc). As such, the CAS gives the analysis engines an
interface access to the (original and extracted) content of the analyzed doc-
ument. The information extracted from a document is stored as attributive
meta-information about (parts of) the document. As the CAS object is passed
from one AE to another, it is successively enriched with more information
about the document, so that the AEs later in the pipeline can utilize informa-
tion extracted from earlier modules. For instance, when a POS-tagger AE has
populated a CAS object with its findings, the CAS can be sent to the next step
in the pipeline, for example a chunker (Gétz and Suhre, 2004).

The Type System

Formally the Type System is a Typed Feature Structure, supporting hierarchi-
cal types and single inheritance. Some standard base-types are already defined
within the UIMA system, like string, integer, Boolean and float as well as fea-
ture structure lists and arrays. Each type belongs to a name space, similar in
form to Java name spaces, in order not to confuse two types which accidentally
share the same name.

There is no limitation as to what type of information can be stored in a CAS
object. The developer is free to engineer a suitable Type System for the CAS,
which defines the different types of information he wants to extract from the
document. One can for instance define the type “Person”, which has features
like “name”, “age”, etc. An analysis engine designed to extract mentions of
persons in free text can then store its findings in the CAS object as “Person”
and fill out the uncovered features.

The Type System, then, defines the input and output of an analysis engine,
and one typically defines types belonging to a specific collection of analysis en-
gines. When the Collection Processing Manager initializes the analysis engines,
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it creates CAS objects containing the definition of the different types defined
for the different AEs (Hahn et al., 2007).

The Collection Reader

The Collection Reader ensures uniform access to the data for all components
within the UIMA pipeline. The reader knows how to iterate over the input
documents, and stores the raw data in the document into the CAS Object.
Within the CAS the document is referred to as the subject of analysis (sofa),
and it is possible to have several sofas within one CAS object (for instance
different perspectives on the same document).

Creating a Collection Reader is done in two steps. One must first define
a description of the reader, to be read by the Collection Processing Manager.
This defines the input parameters that should be set by the end user, for
instance in what directory the documents are located, and the Type System
that the Collection Reader should use®. The second step is to write the actual
code which reads the document collection. The code consists of an initializing
method for reading user emitted parameters, the iterator components getNext
and hasNext used by the pipeline system to iterate through the documents
when populating CAS objects, and a close-method for closing the resources
used for reading the documents.

The Analysis Engine

An analysis engine (AE) typically analyses the documents and infers new in-
formation. This includes simple AEs such as tokenizers and sentence detectors
as well as sophisticated machinery which parses the sentences, detects named
entities, etc. The AE can utilize annotations inserted to the CAS by previous
AEs as well as the content of the document itself, and it stores the new inferred
information into the CAS objects.

When implementing an AE, one must provide a description of it, in the
same manner as for the Collection Reader. This includes defining both the
types that the AE retrieves from the CAS object and the new annotations
with which the AE populates the object. Each AE also has a process-method,
which performs the actual analysis, or calls on a third party tool (such as an
OpenNLP module) for doing the actual analysis. When using third party tools
for analyzing, this is typically wrapped inside an AE.

The CAS consumer

The CAS consumer iterates over all CASes and utilizes the new structured
information which is populated by the AEs. The consumer can typically store
the structured information into a database, use the annotated information

3There is a possibility that the reader wants to populate the CAS object with annota-
tions, and not just the raw document, for instance if the documents are pre-annotated with
information of interest.
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as features for a machine-learning algorithm, or index the documents for a
search engine. The CAS consumer is, technically, not different from an AE,
the only difference is the intended use of the component and the fact that the
Collection Processing Manager runs the consumers after the analysis engines.
A consumer iterates over the CAS objects like an AE. When all the documents
in a collection are processed, a method named collectionProcessComplete
is called (which also exists for AEs). This method performs necessary tasks
after all CAS-objects are read, such as computing statistics across documents.
This is very convenient for tasks that require all analysis to be completed.

Collection Processing Manager

The Collection Processing Manager manages the flow in the UIMA pipeline.
It reads the descriptions of the Collection Reader, the AEs and the CAS con-
sumers, initializes a CAS-object for each document, and manages the pipeline
flow from the document collection phase to the consumer phase. Developing
a Collection Processing Manager consists of making a description of which
Collection Reader, AEs and Consumers to use.

Summary

To summarize; when a collection of documents is processed through the UIMA
architecture, they are first read by a Collection Reader, then a CAS object with
the appropriate Type System is initialized for each document. The documents
are then processed and analyzed through an AE pipeline, before entering a
CAS Consumer. Then the extracted and structured meta-information is made
available to a front-end application, such as a search engine or an information
browser. The component taking care of all these parts is called a Collection
Processing Manager.

6.2 cTAKES

c¢TAKES is a framework for processing clinical free text developed within the
UIMA framework by the Mayo clinic and IBM (Savova et al., 2008; Schuler
et al., 2008). It is released as a part of the Open Health Natural Language
Processing Consortium?®. It includes several modules which process patient
records for uncovering tokens, sentences, POS-tags, chunks, named entities
and more. Many of the components are trained on in-domain text or a combi-
nation of in-domain text and general corpora. We will here look into the main
components of cTAKES, especially those we will apply in our experiments (see
section 7.2). In our experiments we used cTAKES version 1.3.1.

When a clinical document travels through the typical cTAKES clinical doc-
ument pipeline, the text gets tokenized, sentence segmented, normalized, POS-
tagged, chunked and annotated for named entities, including context annota-

4http://ohnlp.org/
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The [ tomansvumerar [did]] [not ] [fee] [any] [chest] [pain]),| [but]

Dr‘ H] ‘Joe ‘ ‘ confirmed ‘ ‘ myocardial ‘ ’ infarction “\

—

PersonT'1itle

Figure 6.1: Base tokens and contextual tokens.

tions (negation and status). Before tokenizing, the pipeline uncovers sentences.
The sentence detection module is a wrapper around the OpenNLP tools (Savova
et al., 2010), in the same way as several others of the cTAKES pipeline mod-
ules. The OpenNLP sentence models used for identifying sentences are trained
on annotated clinical data, and serves in this regard as a unique source when
handling English clinical free text. The sentence detector annotates sentences
both by looking at the OpenNLP sentence annotator output, and by explic-
itly declaring a new sentence at end-of-line (EOL) characters®. Postulating
that EOL characters always mark the end of a sentence produces some diffi-
culties using cTAKES on clinical documents. A widely used source of research
within clinical text processing — the I12B2 shared tasks — involves documents
where EOL characters occur inside sentences on a regular basis. When using
c¢TAKES as an information management framework on these documents (as
well as other documents with the same property) one has to deal with this.
One option is to replace EOL-characters in these documents with white space,
but this reduces the amount of information we have about the document. For
instance may the lack of new-line characters make the section segmentation
process harder. Another option is to not consider EOL-characters when iden-
tifying sentences, but this produces noise for other components such as the
POS-tagger. The POS-tagger is, naturally, not trained on material where EOL
occurs inside a sentence. For instance it classifies “EOL” as an NN in sentence
1. We therefore chose to replace EOL with a space character (“”).

(1) [The ] [pationt | [id] [mot ] [feet [y | [ chest | [ paim | [, [EO. | [t [ x|

‘ Joe ‘ ’ confirmed ‘ ‘ myocardial ‘ ‘ infarction ‘

The tokenizer works in two steps: First, the text is split into basic tokens,
by space and punctuation characters. Second, some special tokens may be
detected and possibly merged by several Final State Automata (FSA) which
identify entities like Roman numerals, dates, titles and lists. We see an exam-
ple of a tokenized sentence in Figure 6.1, where base word (e.g. ) and

punctuation tokens (e.g. |.|) are annotated as well as the person title “Dr.”
and the pseudo Roman numeral “did”.

Some fine-tuning could have helped these FSAs, we see for instance that
the Roman numeral FSA identifies did as a Roman numeral. It is trivial to
build an FSA only recognizing Roman numerals in correct form. However, that

5An EOL character is the symbol for “new line”, which is inserted in text when the
Enter-key on the keyboard is punched.
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« 1 "
head Lemma key ‘patients ]

posTag “NN"

key “patient”
head Lemma [ posTag  “J.J"
tail FSList]...]

FSList
tail FSList

Figure 6.2: Alternate spelling variants and POS-tags of “patient”.

The patient did not feel any chest pain , but Dr
DT NN VBD RB VB DT NN NN , CC NNP
Joe  confirmed myocardial infarction
NNP VBD JJ NN

Figure 6.3: POS-tags applied by cTAKES.

did is identified as a Roman numeral does not mean that did is not treated as
a regular word by the system. This could both be a strength and a weakness.
For instance, the POS-tagger could benefit from knowing that a sequence of
letters actually is a number, but as long the Roman numeral FSA returns false
positive hits this could potentially lead to the result that AEs later in the
pipeline miss out on important information.

After tokenization each word token gets normalized. The normalizer in
c¢TAKES is a wrapper around the SPECIALIST lexical tools, and produce
alternative spellings such as alphabetic case, inflection, spelling variants, punc-
tuation and genitive markers. The normalizer AE inserts a feature structure
list into the CAS-object, coupled to the token, including information about
the POS-tag of every alternative inflection. An example of a feature structure
list can be seen in Figure 6.2, which is the output from ¢TAKES for the word

token 6.

The cTAKES POS-tagger and chunker AEs are also wrappers around Open-
NLP modules, trained on clinical data. Inspecting the output of the POS-
tagger, we see that it is the basic word tokens that get POS-tagged, and not
the context depended tokens. For instance, “Dr.” is treated as two, and not
one, tokens by the POS-tagger as we can see in Figure 6.3. On this stage, when
c¢TAKES is finished tokenizing, normalizing and POS-tagging each sentence,
each token is enriched with an annotation similar to the one in figure 6.4.

The chunker (shallow parser) actually exists of three modules, the chunker
itself and two extensions which adjusts noun phrases to first include following
noun phrases, and then to include following preposition phrases, then noun
phrases (within the same sentence)”. The chunker itself is trained on annotated

6Due to space limitations, the last item on the list is removed in figure 6.2, which consists
of the spelling “patient” with the tag “NN”
"These chunking modules is witnessed in the source code.
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begin 4
end 11
tokenNumber 1

WordT oken | normalizedForm “patient”
partO fSPeech “NN"
canonical Form “patient”
lemmaFEntries FSList]...]

The content of lemmakEntries is figure 6.2.

Figure 6.4: The WordToken fully annotated through the cTAKES pipeline.

[Np The patient] [Vp did not feel] [Np any chest pain, but [Np Dr]. [Np

Joe“ [V P conﬁrmed] [ ~p myocardial infarction|.

Figure 6.5: The identified chunks.

[LW The patient] dit not feel [ Lw any chest pain, but Dr. Joe] confirmed [LW

myocardial infarction] .

Figure 6.6: Lookup Window annotations.

clinical data (Savova et al., 2010). An example output can be seen in figure
6.5.

Perhaps the most important tool in cTAKES is the Dictionary lookup mod-
ule, which identifies medical named entities. This rely on the Lookup Window
Annotator, which marks all NP-phrases as lookup-windows, but deletes sub-
frames of lookup windows. This means that if window A fully overlaps window
B, window B is disregarded. An example output of lookup windows can be
seen in figure 6.6.

After finding the lookup windows, the Dictionary Lookup Annotator uses
the normalized variants of the tokens inside this window as a query in a dictio-
nary. The dictionary consists of SNOMED-CT and RxNorms terms, through
UMLS (Savova et al., 2010). The dictionary lookup does not distinguish be-
tween SNOMED CT concepts with different statuses. For instance, when look-
ing up the window “myocardial infarction” six different SNOMED CT concepts
are returned, only one of them having the status “current”. The other five have
the status “ambiguous”. Information about concept status is not saved in the
CAS, so if one wants to only use current concepts, one has to implement a
filtering AE (or modify the original AE) which queries the UMLS database
with the dictionaries a second time uncovering the concept status and deleting
non-current concepts. An example output of the Dictionary Annotator can be
seen in figure 6.7, for the substring “chest pain”.

c¢TAKES also includes a Context Annotator, based on an algorithm similar
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begin 29
end 39
Identified Annotation statys 0
certainty -1
ontologyConceptArr < UmlsConcept [...],
[..],. >

Figure 6.7: An annotated SNOMED CT entity. ontologyConceptArr is an
array containing the UMLS IDs for this entity.

to NegEx. NegEx is — as we have looked at briefly in section 3.2 — a simple,
but effective, method of discovering negations based on regular expressions
built specifically for clinical data. Two annotators implement the Context
Annotator; Negation Annotator and Status Annotator. For each annotated
named entity, they search for negation and status clues on each side of the
entity. There is one regular expression which detects negation cues that negate
entities to the left of the cue, and one which detects negation cues that negate
entities to the right of the cue. In cTAKES, if there is a match of negation cue
and the focused entity, the entity is marked with a certainty value of “-17. We
see an example of this in figure 6.7. The Status Annotator works in a similar
manner, and searches for instance of clues for whether the entity belongs in the
past (“the patient had chest pain”), then annotates the entity accordingly.




Chapter 7

Experiments

In this chapter we will perform and discuss our experiments. What we want
to explore is how well one of the up-to-date systems performs when extracting
information. This is not easily evaluated directly, since there are few, if any,
available gold standards that can be used to evaluate the system performance.
Instead we have used the indirect approach by using the output of cTAKES
as input to a machine-learning algorithm to classify the documents in the i2b2
2008 shared task challenge. In the experiments we make use of machine-learned
decision trees to annotate the morbidities found in the shared task data. The
uncovered information extracted from cTAKES is used as clues, or features,
that the decision tree uses to decide whether a patient has one or more of the 16
morbidities which the shared task data is annotated with. The use of decision
trees might not give us optimal performance, but it gives us a unique insight
into how the computer decides on a given morbidity.

Before we could begin our experiments, some adjustments had to be made.
We built extensions to the system so it could read the i2b2 documents and
use the extracted information to train and use decision trees for classifying
documents. So we extended the cTAKES framework with modules that can
read the i2b2 data and modules that use the output from ¢TAKES to train and
classify the documents. These extensions are described first, before we cover
our experiments. The chapter ends with a discussion of our results.

7.1 Extensions of UIMA /cTAKES

Some UIMA modules had to be built for this thesis. Specifically new Collection
Readers, a simple Section Segmentation AE, AEs to extract features used in
several machine learning algorithms, and some AE wrappers for the Weka Data
Mining Java tools (Hall et al., 2009). We will briefly discuss all the components
that we needed to develop before experimenting could begin.

A simplified overview of the extended pipeline is shown in figure 7.1. Typ-
ically one has to make extensions in the front and the end of a pipeline to
adjust it to specific needs: First we needed to adapt the i2b2 data to the
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i2b2 Section
Collection Segmen-
Reader tation

¢TAKES Weka

pipeline

trainer /
Classifier

Figure 7.1: The complete pipeline of our system.

original pipeline, which included reading the XML formatted i2b2 documents
and uncovering the sections in each document. At the end of the pipeline,
we wanted to adapt the extracted information into a setting where we either
trained weka models for classification, or used previously trained models to
classify documents.

The i2b2 2008 Collection Reader

A UIMA Collection Reader for reading the i2b2 2008 shared task data was de-
veloped. These documents are stored in XML-format with annotations stored
in a separate XML-document. Three parameters, intended to be emitted by the
end-user when building a pipeline handling i2b2 2008 documents, were set. The
user has to tell the Collection Reader where to find the XML-document con-
taining the clinical documents (obligatory), where to find the XML-document
with annotations (optional) and whether the Collection Reader should replace
new-line characters with a white space character. The last parameter was
needed because of how ¢cTAKES handles new-lines when annotating sentences
or how the POS-tagger behaves when it sees a new-line token (as discussed in
the previous chapter).

This Collection Reader initializes by parsing a XML DOM-tree over both
the documents-file (DOC) and the annotations-file (ANN). For this, the stan-
dard javaz.zml library was used. Then, when the Collection Reader is iterated
by the Collection Processing Manager, it climbs the DOC and returns one doc-
ument at the time. If the user has set the “replace new-line characters with
white space” parameter, the Collection Reader does this before populating the
CAS object with the clinical text. (Otherwise the text is not altered in any
respect.) If the user has specified an annotation file, the Collection Reader also
extracts the annotations from the ANN (for the document at hand) and inserts
it into the CAS object.

A UIMA Type System was also introduced, where a Morbidity Annotation
extends the uima.tcas.Annotation type. It includes three features, first the
Morbidity, with a string value indicating one of the sixteen morbidities, second
a Certainty feature, with a string value being either “Y”, “N”, “Q” or “U”,
lastly a feature named AnnotationType, with a string value of either “intuitive”
or “textual”’. In this case, it is the Collection Reader, and not an Analysis
Engine that populates the CAS with annotations, because the documents are
pre-annotated. The classification module (explained later) uses the same Type
System when populating the CAS with predicted annotations based on the
decision tree models.
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New Analysis Engines

We developed a Section Segmentation AE, a Weka Classifier AE and several
AEs used to extract CAS annotations for using them as features when training
models with Weka. The Section Segmentation AE is a simple and naive section
annotator built specifically for the i2b2 2008 documents. It employs a regular
expression in order to identify headlines of each section. It marks the start of
a section at the start of a headline, and the end of a section at the start of the
next headline. Exceptions are the start of the first section, which starts at the
beginning of the document, and the last section which ends at the end of the
document.

The sections are annotated by section type. To find the type of a section,
a rule-based system is used which looks at the content of the headline. For
instance, if the headline consists of the uppercase letters “DIAGN” the sec-
tion is annotated as the type “diagnose”. As said, this is a simple section
segmentation, and investing in a more sophisticated one could be of value in a
clinical document pipeline. The output of this section segmentation method is
explained in more detail from page 76.

The weka classifier AE is a wrapper around the Weka tools. This supports
multi-classification tasks by loading several weka models at once, and filters
away features unknown to the model by coupling each model to a Weka arff-
file. There are defined two user parameters: One to specify the directory in
which the model files are located, and one to specify the directory where the
weka arff-files are located. The AE simply couples each arff-file with a model-
file by matching the file-names.

Each Weka model file is a byte-serialized Java object implementing the Clas-
sifier interface defined in Weka. Each model file is deserialized as a Classifier,
and used for classifying a set of feature-values. When classifying a document,
the relevant features are extracted from the CAS object. Features or feature
values that are not defined in the arff header file are filtered out, and a new
in-memory arfi-file representing the single document is created. This document
is then served to the Classifier object, and the predicted class is extracted. The
class is then inserted into the CAS object again, linked with the name of the
classifier.

Some Weka Types were also defined in the UIMA Type System, signi-
fying the different Weka attribute types. The root Weka attribute type is
called Attribute, with the feature “name”. Three subtypes were defined, Nom-
inalAttribute, StringAttribute and NumericalAttribute. All three have a fea-
ture “value” which is either a string (for nominal and string attributes) or
a Double (for the numerical attribute). NominalAttribute also has an extra
Boolean feature named classificationClass. If this is set to true, it is used as
the class when training Weka models.



70 CHAPTER 7. EXPERIMENTS

The Weka Consumer

A CAS Consumer which creates Weka-files was also needed. It employs the
same weka types as the Weka Classifier AE, and creates files in arff format
out of the annotations in the CAS Object that uses the Weka features. Two
parameters are defined for this consumer, an optional arff input file, and an
output directory for storing the new arff files. The arff input file is used in
the same manner as the Weka Classification AE; it filters out attributes and
attribute values not mentioned in the arff-file, and ensures that the order of the
attributes and attribute-values is the same. This is necessary when creating
both a training set and a test set of arff-files, because the trained Weka models
expect their input to be in the same order when classifying new documents.

This Consumer can output several arff-files, depending on how many dif-
ferent nominal attributes are used as a classification class. There is only one
nominal attribute marked as a classification class which is saved in each arff-
file. This way, one can effectively create several classifiers at once in Weka
for the same set of documents. The actual training and creation of the weka
model files was not done in UIMA, but a simple consumer running after this
consumer could easily be created if one was to make a pipeline that finishes
the whole job.

7.2 Experiments with the i2b2 2008 Shared Task

As said we want to, in one way or another, evaluate how well a modern IE-
system for clinical data performs. Our choice of IE-system fell on ¢cTAKES,
because as an open-source project it is freely available for scientific purposes
and because the system utilizes ontologies such as SNOMED CT and RxNorm
through the UMLS Metathesaurus. As evaluation data we used the documents
and annotations released in connection with the i2b2 2008 shared task, as
described from page 57.

The nearest thing to compare our results with are the contestants in the
i2b2 2008 contest, but the reader should be aware that they developed systems
designated to compete in this task. We, on the other hand, have not altered
the cTAKES pipeline in any way to gear it towards better scores in the given
task. To encompass this we have instead coupled the metadata extracted with
¢TAKES and the annotations from the shared task to train a classifier for each
morbidity we are interested in. These classifiers should then, based on the
output from cTAKES, be able to decide whether a patient belonging to a given
discharge summary has a given morbidity or not.

We used the uncovered Named Entities from the cTAKES system as features
for classifying the documents. We also utilized the simple section-segmentation
module developed for these experiments as well as the negation detection al-
gorithm within ¢TAKES. These features were used to train several sets of
classifiers in accordance with the shared task at hand.
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The Corpus Data

The i2b2 2008 data consists of 1237 discharge summaries, each annotated for
16 different morbidities. The annotation is done both for textual judgements
(whether or not it is spelled right out in the document that the patient suf-
fers from the morbidity) and intuitive judgements (if the annotator has to do
some thinking before annotating the summary). This totals in 32 different
annotation-types, 16 morbidities and 2 different types of judgements.

For each morbidity and for each annotation-type the document is annotated
with a value Y, N, Q and U. Yes, the patient has the morbidity. No, the
patient does not have the morbidity. It is Questionable whether the patient
has the morbidity or not, and for the textual task, it is Unmentioned whether
the patient has the morbidity or not. We will consider these values (Y, N, Q
and U) as classes, and classify each document for each of the 16 morbidities, for
both textual and intuitive judgements. This sums up to 32 different classifiers,
with three or four classes for each classifier.

The 1237 documents are divided into three sets, 611 documents as a training
set, 119 documents as a held-out set. The rest of the documents are used as a
final test set. The held-out set is used as a temporary test set while developing
the classifiers. The test-set was not available for the participants in the shared
task when developing their systems. It is not kosher to evaluate a system
on the same documents that are used to train it, because the system can be
“overfitted” to these documents. This means that the evaluation figures do
not reflect how the system would perform in a realistic setting, where it is
used for classifying unseen documents. Therefore, we used the same strategy
here, and did not look at the test set before evaluating different settings on
the held-out set. At the end we decided on a final configuration and evaluated
this setting on the test set. We found that the best setting was to count the
occurrences of each concept in the discharge summary, and use this as features,
while differentiating between negated and non-negated concepts and ignoring
concepts occurring in the family history section of the document.

Methods

¢TAKES was used, with its default configurations, for extracting metadata
from the documents. The Weka data-mining tool was used for creating the
classifiers, with the help of the components described in section 7.1 (page 70).
Named entities (from the UMLS Metathesaurus) were extracted as features,
and different settings were tested: In some settings we only looked at whether
the entities were mentioned in the current document or not, in others we also
included information about whether the entity was negated or not. The simple
section segmentation component (technical descriptions in section 7.1 on page
69) was also used, to indicate in which part of the document the clinical named
entities were located or to filter out uninteresting parts of the document.

A similar approach can be found in Meystre (2009), which used MMTx to
extract entities from the text, in combination with ConText to analyze nega-
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tion, temporality and experiencer' and a method for dealing with ambiguous
terms. The paper also used the semantics in the UMLS Metathesaurus actively
by (manually) linking the 16 morbidities to related concepts. For instance was
hypertriglyceridemia linked to primary hypertriglyceridemia, secondary hyper-
triglyceridemia, blood triglycerides increased, and so on.

To cover the intuitive annotations better, Meystre (2009) also extracted
a set of keywords for each morbidity which gave an indication of whether the
morbidity was present. This set includes medicines and therapeutic procedures
only used to treat the disease in question (like the drug allopurinol to treat
gout and the procedure fundoplication to treat gastro-esophageal flux). Their
system also recognized specific biomarker values used when detecting specific
diseases.

In this experiment we have, instead of using the semantics of the Metathe-
saurus and specific keywords, depended on machine learning algorithms to
uncover which entities are linked to the different diseases. In the 611 train-
ing documents a classifier is trained to uncover the diagnosis given the set of
features. The classifier does not know in advance which clinical entity that cor-
responds to the disease it is trying to classify, but learns this only indirectly. In
the process, the classifier should also become sensitive to other clues indicating
the disease, such as that the presence of |allopurinol| indicates that the patient
has gout.

This was done in the following manner: In the training phase we extracted
so-called features from the document, which is a set of properties of the item we
want to classify?. The model trained and used for classification only see these
features, it does not see the document as a whole, nor all extracted metadata.
It is given, then, that the system performance depends on what kind of features
we choose to extract.

The machine learning algorithms explored are Naive Bayes, and a decision
tree?, both as implemented in Weka. With the decision tree we get direct
information about why the classifier assigns a class to a given document, which
may reveal interesting data. We also found that we got better results using
decision trees at an early stage in our experiments.

Evaluation Metrics

For evaluating our system performance we use Precision, Recall and the har-
monic mean (F7) of these. Precision is the fraction of the classified instances
that are correct, while recall is the fraction of the instances that are correctly
classified. For instance, if we are measuring the precision when classifying the
class Y, we count two things: How many instances that the classifier says
belongs to Y and which actually belongs to Y (true positives, TP), and how

IThe experiencer as in, does the entity describe something about the patient or someone
else?

2The “item” we want to classify is really the patient, which is represented by a discharge
summary.

3The J48 implementation of the C4.5 algorithm.
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Annotation
TRUE | FALSE
TRUE | TP FP
FALSE | FN TN

System

Table 7.1: Counting true and false positives and true and false negatives.

Precision — — 1L
recision = TP+ FP
TP
Recall = TP FN

Precision x Recall

Fi=2x
! Precision + Recall

Figure 7.2: Formulas for precision, recall and F-score.

many instances the classifier says belongs to Y but does not (false positives,
FP). (See table 7.1.) We find the precision by the equation given in figure 7.2.
Notice that saying that no instances belong to Y gives a maximal precision of
1.

In a similar manner we find the system recall (also called sensitivity) by
counting true positives and false negatives. For the class Y, false negatives
(FN) are instances of Y that are not detected by the classifier. We find recall
by the equation in figure 7.2. Notice that we gain a maximum recall simply by
saying that all instances are members of the class, much in the same way we
get a maximum precision by classifying no instances as Y. Because of this we
use the harmonic mean between precision and recall, called F.

The evaluation software following the i2b2 2008 shared task is used when
evaluating the different sets of classifiers. Given a system output and a gold
standard (the correct answers) the software computes precision, recall and the
harmonic mean (F;) between these, both micro- and macro-averaged. The
metrics are described in detail in Uzuner (2008). The participants in the shared
task competed for highest macro-averaged F-measure because i2b2 wanted to
focus on the less well-known classes: Macro-averaging the scores gives an equal
weight for each class, regardless of the class frequency. As we can see in Table
7.2 some classes are very rare, for instance missing the one member of class
Q for the intuitive judgements of the PVD classifier will give a precision and
recall of zero for this class.

It is difficult, if not impossible, to learn such low frequent classes with
machine learning algorithms because there is no way to separate features which
are unique to the class by chance with features which naturally only occur inside
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the class. As such, it has no purpose here to compete with the highest ranking
scores of the i2b2 2008 shared task participants. The macro-averaged scores
are still included for convenience of comparison.

When macro-averaging the scores, we are averaging over each class and
not over the result for each morbidity. Therefore, we see in the evaluation
tables in appendix A that the macro-averaged overall system score can be lower
than if we average the score for each of the morbidity classifiers. For instance,
when calculating the macro-averaged precision for textual judgements, the i2b2
evaluation script computes the precision of class Y over all morbidities. This is
done by summing up TP and FP for all morbidities, and then computing the
precision. The other classes N, U and ) are computed similarly. The macro-
averaged F-score over all morbidities for textual judgements is then the average
over these four classes and we are penalized even further for misclassifying the
low-frequent classes.

When micro-averaging the scores, precision, recall and F-measure will be
identical to each other. Instead of talking about three different measurements
which in effect gives us the same number, we will from now on use the term
“accuracy” instead of micro-averaged metrics. Accuracy, then, is simply the
fraction of how many documents the system has classified correctly (a score
of 1 would mean that all documents are classified correctly). Macro-averaged
precision, recall and F-measures will be denoted as P-Macro, R-Macro and
F-Macro respectively.

Baseline

The baseline gives us an idea of what we could, at least, expect from a system,
by using a simple heuristic for classifying each instance. For instance, a baseline
classifier could pick out a random class, or it could classify all instances as the
most frequent class from the training material. A natural baseline for this
classification task is to classify all instances as the most frequent class in the
classifier task. Table 7.2 gives us the frequency distribution for each class, for
each morbidity on the held-out data. The baseline intuitive judgement Asthma
classifier then, would say that all documents are an instance of the class N,
whilst the intuitive CAD classifier says that all documents belong to class Y,
etc.

The result of this simple classification procedure is reported in Table 7.3,
the resulting macro-averaging f-measures for intuitive and textual classification
being 0.4896 and 0.3550 respectively. It proves that even a simple baseline
such as this can be hard to beat; the worst macro-averaged F-measures of the
submitted systems in the i2b2 2008 shared task were 0.3358 for intuitive and
0.2237 for textual judgements* (Uzuner, 2008).

4Note that the shared task numbers are for the test-data, while our baseline-numbers are
for the held-out data-set
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Intuitive Textual
Morbidity Q N Y U Q N Y
Asthma 0 502 70 529 1 1 75
CAD 4 223 325 241 4 16 333
CHF 1 280 243 345 0 7 239
Depression 0 460 122 519 0 0 86
Diabetes 5 171 396 184 6 12 399
GERD 1 372 115 501 3 1 98
Gallstones 0 506 87 513 0 3 91
Gout 2 518 78 534 2 0 T
Hypercholesterolemia | 1 240 262 342 1 9 246
Hypertension 0 103 428 149 0 10 442
Hypertriglyceridemia | 0 554 33 594 0 0 15
OA 1 467 98 514 0 0 89
OSA 7 506 84 514 7 0 88
Obesity 1 314 239 3564 4 3 245
PVD 1 469 87 526 0 0 83
Venous Insufficiency 0 482 44 592 0 0 14

Table 7.2: Class frequencies for textual and intuitive judgements over each
morbidity from the training set.

System ‘ Accuracy P-Macro R-Macro F-Macro
Intuitive 0.7724 0.8250 0.4880 0.4896
Textual 0.7686 0.8578 0.3537 0.3550

Table 7.3: Baseline precision, recall and harmonic mean, micro- and macro-
averaged on held-out data.

Features and models

In order to classify each document we extracted pre-defined annotated informa-
tion, assembled it as features of each document and used a training algorithm
for teaching the computer which features are significant for a given class. We
used three different types of information pieces to create the features: Named
Entities, document sections and negation of the Named Entities. These are put
together in different ways to form features describing each document. We here
operate with features and feature-values. For a set of classifiers, we have a fixed
number of features. For each feature, there is a value, and it is the value that
we use for separating the different documents. We can, for instance, have three
features named “Asthma’”, “Diabetes” and “Gout” indicating whether one of
these diagnoses are mentioned in the document. The feature-values could then
for instance be present if the given feature exists in the document, null if it
does not and negated if it is present but negated.

Since Named Entities can occur several times within a document, we also
used the frequency count (how many times the entity was mentioned in the doc-
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ument) as feature values. To separate negated and non-negated Named Entities
we created two features for each entity name, for instance “Asthma:Present”
and “Asthma:Negated” for the named entity |Asthmal.

We have used two different kinds of supervised machine learning algorithms,
Naive Bayes and C4.5 decision tree algorithm. Both are taken from the Weka
package (Hall et al., 2009). Naive Bayes is a stochastic method, multiplying up
probabilities for the different classes given each feature present in the document.
The decision tree tries to discover unique combinations of features for each class.
An example of a decision tree is given in figure 7.3 (page 84). One reason for
sticking with decision trees is the issue of transparency: We always know how
the computer decides which class the document supposedly belongs to.

NE Only

The NE classifier simply uses the uncovered named entities from the Clinical
Document Pipeline in ¢cTAKES as features. In this first iteration of building
a set of classifiers, no effort has been made to uncover different sections of
the document. Hence the system does not differentiate between mentions of
diagnoses from a diagnose section and mentions of diagnoses from a family
history section. Entities which are negated are also disregarded in this first
run, which is to say that if the Named Entity |Asthma| only occurs negated
in a document the feature “Asthma” of that document gets the feature value
null. Each document is thus represented by a set of features with the value
present or null according to whether the NE exists in the document or not. In
the first iteration these features are fed to the machine learning algorithm in
order to build models which can recognize the classes given the features. In the
second iteration we evaluate models by comparing its judgements to the correct
answers in the held-out set of documents. As said, one classifier model is made
for each of the sixteen morbidities for both textual and intuitive annotations,
resulting in a total of 32 classifiers.

When only using Named Entities we already achieve a high accuracy. For
the Naive Bayes classifiers, the total accuracy over all 16 classifiers for textual
judgements is 81.97 % while the accuracy for intuitive judgements is 81.74 %.
Classifiers built over the decision tree perform even better, with an over-all
accuracy of 90.98 % and 90.64 % for textual and intuitive judgements respec-
tively.

We see that Naive Bayes outperforms the Decision Three when it comes
to P-Macro for textual judgements, but gets a lower F-Macro due to lower
R-Macro. For a full report on how these two sets of classifiers performed on
each morbidity, see tables A.1 and A.2 on page 102 and 103 in the appendix.

Section Segmentation

Not all parts of the document are necessarily valuable when trying to classify
diagnoses of the patient, in particular this holds true for the family history
section. Therefore, a very simple section segmentation was developed, as pre-
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Intuitive judgements
Algorithm Accuracy | P-Macro | R-Macro | F-Macro
Naive Bayes 0.8175 0.8646 0.5129 0.5200
Decision Tree 0.9064 0.9286 0.5942 0.5947

Table 7.4: Accuracy and macro-averaged P, R and F scores for NE-only features
on intuitive judgements.

Textual judgements
Algorithm Accuracy | P-Macro | R-Macro | F-Macro
Naive Bayes 0.8197 0.8941 0.3834 0.3873
Decision Tree 0.9099 0.4497 0.4503 0.4500

Table 7.5: Accuracy and macro-averaged P, R and F scores for NE-only features
on textual judgements.

viously described, to detect many of the sections in a document. This consisted
of defining a greedy pattern which recognized most of the headlines in the doc-
ument. The pattern for detecting headlines was ”([A-Z -J[A-Z -]*):”, where
the parenthesis marks the headline start and end. This expression captures all
sub-strings consisting of capitalized letters, space (“”) and hyphen (“-”) that
end with a colon (“”).

This is perhaps a naive method of finding and annotating sections, but
the classifiers should now nevertheless have some more information about the
document. Developing more sophisticated methods for finding sections should
yield even better results. Based on literature around the i2b2 2008 shared task
(see for instance Childs et al. (2009)) we defined these following section types:
Diagnosis, family history, laboratory data, comments, medications, allergies,
past and other. The content of the headline decides what kind of section we
are annotating. For instance, if the headline contains the letters “DIAGN”
the following section is marked as “diagnosis”. The reason for only using
“DIAGN” to uncover the diagnose-part of a document is that no other tokens
in non-related headlines contains the sub string “DIAGN”, the fact that some
headlines spell it out “DIAGNOSES “ while other spell out “DIAGNOSE” or
“DIAGNOSIS”. This also works as a recovery for some spelling errors. Similar
sub-strings for uncovering the section-type were identified for all types, based
on the most frequent occurrences of headlines. If any identified headline is not
covered by one of these rules, it is regarded as the type “other”.

In table 7.6 we have included some statistics over how many sections, and
what kind of sections, that was uncovered in the training set with this method.
We see that the “comments” sections and the “Other” sections are the most
numerous, with an average appearance of over 9 times in a discharge summary.
This is because in the “Comments” sections we tried to detect all sections that
seemed interesting, while the “Other” sections is not identified as any of the
other types. We have also included a list over the sub-strings used to identify
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Section type Freq. Rate | Avg. pr doc.
Allergies 609 | 0.0396 0.99
Comments 5873 | 0.3819 9.61
Diagnosis 782 | 0.0509 1.28
Family history 437 | 0.0308 0.71
Lab data 318 | 0.0207 0.52
Medications 1003 | 0.0652 1.64
Other 5888 | 0.3829 9.64
Past 468 | 0.0304 0.76

Table 7.6: Frequency, rate and average occurrence of the sections types in the
611 training documents.

a section in Appendix C.

The first classifier which took sections into account simply labelled all NEs
with the section the NE was found in. So the attribute was named for instance
diagnose9999999 instead of just 9999999, if the concept ID 9999999 was found
in a diagnoses section. When testing a Naive Bayes and decision tree classi-
fier with these features the accuracy went down compared to only using NE
as feature. For Nalve Bayes the total accuracy went down from 81.97 % and
81.74 % to 80.60 % and 80.60 % for textual and intuitive judgements respec-
tively. For the decision tree the corresponding numbers were from 90.98 % and
90.64 % down to 86.93 % and 83.51 %. Also the macro-averaged P, R and
F; scores dropped with respect to the decision tree. F-Macro dropped from
0.5947 to 0.5380 for intuitive judgements and from 0.4500 to 0.4432 for textual
judgements, as can be seen in table 7.7 page 79°.

It seems that knowing which section the different named entities are ex-
tracted from does not help us much. This could be due to a number of factors,
for instance that the section segmentation method we have developed is not
sophisticated enough or that the features get to sparse to be used efficiently
with the machine learning algorithms. Another solution is to simply disregard
sections which seem uninformative, instead of annotating each NE with the
document section the NE was extracted from. This will solve the sparseness
problem. So instead of marking each NE feature with section, new feature
values were extracted by simply disregarding some sections when collecting
NEs. We decided to filter out the sections labelled as “family”, “allergies” and
“past” in our first go. The result of this can be seen in table 7.7 on the line
“NE+MINUS-ALL” (meaning that we use NEs as features, but not including
the three mentioned types of sections). This procedure performs better than
when separating features according to which section we find them in, but dis-
regarding sections at all still performs the best. The only exception is F-Micro
for textual judgements, going even further down from 0.8693 to 0.8635.

5 All tables with micro and macro-averaged P, R and F-scores for all sets of classifiers are
included in appendix A.
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Intuitive
Accuracy | P-macro | R-macro | F-macro
Baseline 0.7724 0.8250 0.4880 0.4896
NE 0.9064 0.9286 0.5942 0.5947
NE+SEGMENT 0.8351 0.5451 0.5324 0.5380
NE+MINUS-ALL 0.8768 0.5749 0.5679 0.5711
NE+MINUS-FAMILY 0.9064 0.9288 0.5939 0.5946
NE+NEG+MINUS-FAMILY 0.9122 | 0.9360 0.5948 0.5984
FREQ 0.9384 0.6265 0.6137 | 0.6196
Textual
Accuracy | P-macro | R-macro | F-macro
Baseline 0.7686 | 0.8578 0.3537 0.3550
NE 0.9099 0.4497 0.4503 0.4500
NE+SEGMENT 0.8693 0.4495 0.4401 0.4432
NE+MINUS-ALL 0.8635 0.4952 0.4424 0.4584
NE+MINUS-FAMILY 0.9088 0.6989 0.4508 0.4499
NE+NEG+MINUS-FAMILY 0.9083 0.7802 0.4895 0.5029
FREQ 0.9425 0.6488 0.5808 | 0.6063

Table 7.7: Micro and macro-averaged Fi-scores. Decision tree classification of
held-out material.

It seems intuitive that the sections of the records mentioning family history
should not contain information about the patients morbidity, at least not in
such a way that this can be discovered with the tools we are employing. One
last attempt of filtering out sections was therefore investigated. We only disre-
garded the family-section of the documents, and collected NE features as usual.
The result of this was slightly smaller scores than the original NE-setting, but
these differences are probably not significant (though we did not really assess
whether the improvement were significant or not): F-Micro remained the same
for intuitive judgements compared with NE only, while for textual judgements
it went down from 0.9099 to 0.9088. F-Macro went down from 0.5947 to 0.5946
(intuitive task) and from 0.4500 to 0.4499 (textual task).

Since there was almost no difference between using NEs from the whole doc-
ument and using NEs from the whole document minus family history-sections
and since we have the intuitive notion that the family history sections do not
include much information about the patients morbidities, we will continue to
disregard the family section.

Negated Named Entities

As mentioned earlier, and as showed in Table 7.2, some classes are very rare.
For the intuitive judgements these are questionable diagnoses for CAD, CHF,
Diabetes, GERD, Gout, OA, OSA, Obesity and PVD. For the textual judg-
ments these are the questionable and/or negative diagnoses of all the mor-
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bidities except Hypertriglyceridemia, OA, PVD and Venous Insufficiency. In
the i2b2 2008 shared task they wanted to focus on the correct classification
of these rare cases, and therefore used an unweighted macro-average for the
Fi-measure. This means that missing one instance in one of these rare classes
will have a large impact on the end result.

More sophisticated analysis of the text is most likely necessary in order
to get the questionable diagnoses correctly classified. The few negative judge-
ments in the textual classifications, on the other hand, could be easier to detect
if we recorded information about negated named entities. Therefore, instead
of disregarding the negative entities, it could boost system performance to use
those as features as well.

There are two ways of doing this. Either we could have negated concepts as
new features, with two values “present” and “not present”. Or we could use the
original features, with the extra possible value negated. These two scenarios
seem to give the training algorithm the same information, but the last one will
not capture the cases when a document contains both negated and non-negated
mentions of the same entity. Since we are already using nominative feature-
values the natural extension is to use the value negated instead of null if the
document contains a negated mention of an uncovered entity. Later, when we
use numeric values instead, we will go for the first alternative, which basically
consists of adding more features rather than more feature values.

The “feature space” for each document now consists of a fixed set of features
representing given SNOMED CT and RxNorm concepts. Each of these have
either the value “present” if the concept is present in the document and not
negated, “null” if the concept is not found in the document or “negated” if
the concept is found in the document but is negated. This setting gave us
better results than any previous scheme. Using the Weka J48 decision tree, we
outperform the simple NE classifiers, with exception of micro-averaged scores
for textual judgements. The biggest leap upwards is nevertheless the macro-
averaged scores on textual judgements — F-Macro goes from 0.4500 to 0.5029
— as we hoped.

Counting frequency

We are still trying to increase performance. At this point we found an obvious
but overlooked flaw in our scheme. We are representing each document with
a nominal value indicating whether a concept has occurred in the document
or not. When neglecting negated entities this could possibly be defended, but
what now, when we are representing negated mentions of the entities as well?
The obvious problem is that a document can contain both negated and non-
negated occurrences of a given entity, and we have no way to capture this with
the feature engineering performed until now.

We solved this by adding features for negated entities. Instead of using fea-
tures like “99999999” representing the unique identifier for a SNOMED CT or
RxNorms concept, we use the features “99999999:present” and “99999999:negated”.
We are also moving away from using nominal values, and instead count the
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number of times any concept is mentioned in the document (according to
c¢TAKES). This way we are also giving the training algorithm more information
about the document.

Comparing the evaluation metrics when using frequency as feature values
(FREQ) in table 7.7 we see a significant performance boost. The biggest leap
is seen in F-Macro for textual judgements, which goes up more than 0.1 points.
Surprisingly we also see that P-Macro goes down quite a bit both for textual
and intuitive judgements. If we compare the two tables A.6 and A.7 (page 107
and 108) we see that the precision drops significantly for OSA, both in textual
and intuitive judgements. Since R-Macro also is below average this affects
the F measure as well. But we see a profitable increase of macro-averaged
precision, recall and F measure in Hypertension. So it seems that using the
frequency count of each entity gives the computer more insight with respect to
particular morbidities, but not all. When examining the evaluation metrics for
each morbidity in the two aforementioned tables, we see increased performance
for some morbidities, and decreased performance for others.

A peculiarity seems to be that, for intuitive judgements, the performance
of PVD is identical when using frequency counts feature values and nominal
feature values. This was a surprising find, and had to be investigated further.
That these values are identical seems to indicate that the decision trees contain
the same information or that some kind of error has occurred in the transition
from using nominal values to using frequency values. We examined the model
outputs and witnessed that the decision trees used different information. We
then ran the experiments several times to rule out any errors. That we get
identical results seems to us a mere coincidence.

Results

We have now examined how using discovered SNOMED CT and RxNorm con-
cepts, in combination with section identification and negation, has performed
when classifying morbidities of patients given their discharge summaries. De-
spite the fact that using frequency values made the precision of the system
decrease notably, this gave us the best macro-averaged F-score. We therefore
allowed ourselves two final system runs, one with the nominal values and one
with frequency values.

The final evaluation is performed on the same test-set as the i2b2 2008
participants used. In this way, we get comparable evaluation values. This
time we include both the training set and the held-out set in the training
phase, which gives the decision tree machine learning algorithm more data
during training. Hopefully this extension of the training material will boost
performance even more.

When comparing the performance with nominal values on the final test set
(table A.9, page 110) to the similar system on the held-out test set (table A.6,
page 107) we see that the P-Macro drops, but that the F-Macro values increase,
in much the same way as when going from nominal values to frequency values
on the same training and evaluation set. The difference between these settings
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Intuitive Textual
F-micro | F-macro || F-micro | F-macro
Nominal values 0.9208 0.6053 0.9158 0.5433
Frequency values 0.9324 0.6142 0.9490 0.6052
Solt et al. 0.9590 0.6745 0.9756 0.8000
Yang et al. 0.9572 0.6336 0.9723 0.8052

Table 7.8: Comparison of our system with the top two contestants in the i2b2
2008 shared task.

is the amount of training and evaluation documents, the latter one having both
more material for training and for evaluation. Having more training material
then, seems to give us better recall and overall system performance, at the
expense of precision.

If we compare the two final system runs, the one using nominal values
(table A.9, page 110) and the other using frequency values (A.10, page 111) we
see that overall performance increases when using frequency values. This can
particularly be seen in the overall F-macro score on textual judgements which
goes up from 0.5433 to 0.6052.

A comparison of our system and the top-performing contributors in the
shared task is given in table 7.8. The achievements of the systems reported
are taken from Uzuner (2008). From this source we also learn that our system
would not have made it to the top-ten list in this shared task. In the textual
judgements 10th place went to DeShazo et al. with an F-macro of 0.6140,
while our best score was 0.6052. In the intuitive judgements 10th place went
to Jazayeri et al. with an F-macro score of 0.6287 while our score was 0.6142.
Considering that we did not use a system tuned for this task (except the fact
that our models, of course, were trained and evaluated on the same material),
but used a general clinical TE system coupled with a rather naive section seg-
mentation method, these results are perhaps not so bad. We did not have
domain experts to help us engineer rules, symptom-lists etc. for the task, like
many of the shared task participants had. Finally, the decision to use decision
trees is also very likely to have altered our performance in a negative way. Us-
ing a more sophisticated training/classifying algorithm would most likely alter
the final results, but unfortunately we did not have the time to investigate this
further.

Decision Trees

It is interesting and enlightening to see some examples of the decision trees
used to classify the documents. The advantage of using decision trees is that
we can directly see why the computer has classified the document /patient the
way it has. The choices the computer makes are transparent. This is not the
case with more sophisticated machine learning algorithms.

The decision tree created by Weka for the textual classifications of gout is
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perhaps the easiest example to run through due to its small number of nodes
(decisions). Figure 7.3 is a graphical representation of the decision tree we
get when using identified NEs as features, with the nominal feature values
present, negated and null (meaning that the NE was found, the NE was found
but was negated, or the NE was not found in a document) when ignoring
“Family history” sections of the documents. The circles (nodes) represent the
feature-names, and in this tree we have only three of those: |Gout|, | Gout NOS|
and |Entire right lower leg|, all concepts from SNOMED-CT. This means that
the training algorithm only found these three features to be of any value for
separating patients with gout, patients unknown to have gout and cases where
it is questionable whether the patient have gout or not.

The arrows (arcs) represent feature-values and what choice the classifier
makes when encountering a document with this feature value. For instance, if
the classifier sees that the concept “Gout” has been negated for this document,
the patient is classified as having gout: The arc labelled negated points to
the quadratic box (leaf node, representing the selected class) containing an
“Y” (Yes, the patient has gout). That the classifier says “Yes, the patient has
gout” may seem strange when the concept “gout” is negated. However, the
number under the “Y” indicates that only one document in the entire test set
had a negated instance of |Gout|®, and the patient did actually have Gout.
The reason for this could for instance be that the negation detection algorithm
erred on this concept.

If |Gout| is present in the document, the classifier enters the |Entire right
lower leg| node to separate the classes “Q” and “Y”. If this concept is present,
the classifier says it is questionable that the patient has gout. Only two ques-
tionable instances are detected with this rule, and it is likely that this decision
does not reflect facts from reality: It happens to be that out of the 68 anno-
tated documents where |Gout| is present, two of those classified as “Q” also
have a present (and non-negated) |Entire right lower leg| in common, so the
algorithm selected this feature to separate these instances.

We also see that if |Entire right lower leg| is negated, it chooses the class
“Y” despite the fact that no such documents exist: This decision is based upon
the class frequency of all the instances in the |Entire right lower leg| node. That
is, in all the documents where | Gout| is present, the most frequent class is “Y”.
In the 68 documents where |Gout| is present, we see that in 66 of these |Entire
right lower leg| is mot present. 65 of these documents are classified as “Y”,
and the algorithm did not find a feature which separates the one document
not classified as “Y”, hence we have a document in the training set that at
this stage is misclassified by the decision tree. (This is the reason that we see
“65/1” in the leaf node, meaning that 65 documents of the training set gets
classified correctly and 1 incorrectly by this decision tree).

In figure 7.4 we see a similar decision tree for Gout that is made when

6This is not entirely true. Because of our naive assumption that a concept only occurs
once in a document, we do not need to count occurrences of each document. This means
that there is only one document where the last mentioning of | Gout| is negated.
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Gout
(disorder)

Entire right lower leg
(body structure)

0 65/1 22/1 1 635/2

Figure 7.3: Decision tree for textual classification of gout. Nominal feature
values.

Gout:
present

U
348

Figure 7.4: Decision tree for textual classification of gout. Frequency feature
values.

using frequency feature values. The decision tree works in a similar manner,
but instead of making a decision on a particular feature value (i.e. an integer)
it uses “bigger than” and “smaller or equal than” operators. For instance, if a
document mentions the term | Gout| more than 0 times and |Acquired stenosis:
present| is mentioned more than 2 times, it decides that the patient must have
gout.
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7.3 Discussion

We have now explored how we can use the output from up-to-date IE software
to classify patient records with respect to obesity and 15 co-morbidities. We
have done this in a fairly straightforward fashion, which is easily implementable
for other parties. The standard ¢cTAKES pipeline was used in combination
with a homemade section segmentation, and the extracted information served
as input to a machine learning algorithm based on decision trees. With this
system we got an average score comparing our scores with the shared task
participants. Given that we had no input from domain experts (i.e. medical
personnel) to create rules or key-word lists and the fact that we used a general
IE system (as opposed to engineering a system geared to this particular task),
we conclude that our system performed decently.

When comparing our results to the results of the participants in the same
shared task we got the training and evaluation data from, we find that, at
least for the textual judgements, we got better than average scores: According
to Mishra et al. (2009) the average F-macro score of the participants in the
textual part of the shared task was 0.56. Comparably, we got a F-macro of
0.6052. So even if we did not beat the top ten performances as described by
(Uzuner, 2008) it seems that our system is performing well.

We did not find similar average scores for the intuitive task in the literature,
and we are hence not able to compare our scores on the intuitive judgement
part of the shared task with the participants. In Uzuner (2008) we learn that
participants utilizing machine learning in their classification systems (as op-
posed to rule-based) did a better job on the intuitive task compared to the
textual. Also, the top ten participants in the textual task had F-macro scores
in the range 0.6140 - 0.8052, while the range of the top ten participants in
the intuitive task was 0.6287 - 0.6745. Therefore, there is reason to believe
that our system performed decently also for the intuitive task; we also used
machine learning algorithms and the top ten participants in the intuitive task
had generally lower scores with respect to the textual task. Our best F-macro
for the intuitive task was 0.6142.

Many of the participants took advantage of domain experts when creating
their systems, either for writing detection rules used for the classification or
for writing a word-list for the different morbidities over which words and/or
measures signify a given morbidity (Uzuner, 2008). We did not use input from
domain experts, but instead used software utilizing an ontology and a termi-
nology (SNOMED-CT and RxNorms) to detect bio-medical entities mentioned
in the text. This software structures the information in the text by adding
meta-data about the clinical terms used in the document. The structured
information serve as a computable insight into the content of each document.

In classification tasks such as these, it is not uncommon to use compli-
cated queries to retrieve the possible relevant documents for a given disease
(see for instance (Sager et al., 1994)). At least for the textual part of the task,
this method can attain a high recall (finding all the relevant documents), but
engineering a query which recognises all relevant entities (medications, more
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granular variants of the morbidity, etc.) needs the assistance from skilful med-
ical personnel who knows which entities are likely to be associated with what
morbidities. A part of this task could perhaps be performed automatically by
using the taxonomical knowledge within UMLS or SNOMED-CT. This was
for instance done by Meystre (2009), but not without input from experts. In-
stead we went for a machine learning algorithm, teaching the computer which
medical entities are likely to be seen in the case of a given morbidity.

Machine learning algorithms could be used because we had access to train-
ing material prior to the evaluation of our system, something which is likely
not a resource in clinical settings in general. The algorithm we chose was the
Weka-implementation of the well-used C4.5 decision tree (Hall et al., 2009).
The positive aspects of using a decision tree are that we gain a unique view
of why the computer selects a given class. We can, as we have seen, read the
highly readable tree and see what specific feature values are used to classify a
document /patient. The negative aspect is a possible lack of performance, but
this needs an in-depth study.

We saw in figure 7.4 that the decision trees use entities that might be
unrelated to the given morbidity when deciding whether or not a patient has
the morbidity. Whether these entities really are unrelated to the disease has to
be, of course, evaluated by domain experts. Either way it is well known that
sparseness in the training data leads to low performance, and the decision trees
would possibly find better clues for a given morbidity if more training material
were available.

Sparseness is indeed a problem for the very low-frequent classes @ in the
intuitive task and Q and N in the textual task. To illustrate how the perfor-
mance decreases due to these low frequent classes, we can eliminate the classes
Q and U and calculate new scores. For the intuitive task we eliminated the
class Q, and said that every instance of Q really is an instance of Y. Without
training any new classifiers, but merely by considering Q as Y using the best
final classifier, we get the results as reported in table A.11 on page 112. We see
that the system both get a much higher P-Macro (0.9294), R-Macro (0.9137)
and F-Macro (0.9210). In a similar manner we can replace the classes U and Q
in the textual task, and consider U as N and Q as Y. Here as well we get much
higher P-Macro (0.9499), R-Macro (0.9397) and F-Macro (0.9446) scores.

These new numbers look, of course, much more promising, but what do
they mean? In the intuitive task we are simply regarding all questionable
cases as cases where the patient has the diagnose. In many use-cases this is
indeed what we want. For instance, if we want to find all patients with a
given diagnose it is often better to have false positives than false negatives, i.e.
it is in these settings better to falsely report a patient having a disease than
ignoring a patient that actually has the disease. In use-cases such as these, it
is also important that we get a (near) perfect intuitive recall for the class Y:
We want a perfect recall because we want to include every patient that might
have the disease in question. We are interested in the intuitive task because we
can then also identify patients with the disease without it being spelled out in
one of the patients records. The R-Macro for the intuitive task reported above
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was 0.9137 %, but this is averaged between the two classes Y and N. Since we,
in this, scenario do not mind including patients without the disease, but are
more concerned with finding all patients with the disease, it is more interesting
to compute the recall for the class Y in itself (over all the 16 morbidities).
By using the (undocumented) method which prints the confusion matrix in
the i2b2 2008 shared task evaluation script, we find that the number of true
positives is 1980 and the number of false negatives is 173 (adding up over all
morbidities), giving us a recall of 0.9195. This means that around 92 % of the
patients which have or might have the disease are discovered. The recall of the
class Y in the textual task was 0.9361.

Whether these are good enough results to make use of such a system in
a clinical setting is not up to us to consider. We must also have in mind
that these figures are not “natural”. Our sample documents are not randomly
drawn from a EHR/EMR, but include only patients with obesity or one of its
15 co-morbidities as defined in the shared task. These numbers may therefore
be artificially high.






Chapter 8

Conclusions and the Road Ahead

Throughout this thesis we have seen how one can build an IE system from
the ground up, focusing on algorithms and systems developed for the clinical
domain. This has been done in such a manner that prior knowledge in the
field was not required by the reader. We then evaluated how well an off-
the-shelf system performed on a shared task, coupling it with a decision tree
algorithm. Comparing our general-purpose IE system with systems geared
towards a specific IE task, we found that our system performed quite well. We
learned that the main resource needed to strengthen such systems is annotated
clinical data which can be used to develop more precise NLP and IE modules.

In this final chapter we want to discuss all of the above with a close eye on
our problem formulations given in section 2.5. Then we want to discuss what
should be done if one is to develop similar IE systems for a different language.

8.1 Conclusions

This thesis includes a diversity of topics, geared towards attaining a deep under-
standing of how one can capture information from unstructured clinical text.
A chief contribution has been to clarify the picture of this inter-disciplinary
research field thus removing the magic of Al in natural language processing.
We have often glanced towards the role of ontologies in such a task; In sec-
tion 3.2 we saw how ontologies can be used as a tool when uncovering clinical
named entities in the text, by using the textual definitions of concepts for find-
ing the entities. In chapter 4 we explained how an ontology can expand the
uncovered information, thus enabling the comparison and retrieval of patient
information not explicitly stated in clinical text. We have also seen how an on-
tology can function as a target for entity extraction, by mapping the extracted
entities to the ontology. Finally we evaluated a system which uses SNOMED
CT and RxNorms to extract entities in clinical text. Comparing our general
IE system with systems the participants of the shared task, we found that the
performance of our system was quite decent.

We have predominantly focused on ontologies as a tool for finding and
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annotating clinical entities. Instead of, for instance, using machine learning
techniques on annotated text to build such a term-mapper, the idea is to use
the textual descriptions of the clinical term within the ontology. We described
how Patrick et al. (2007) mapped n-grams from free text into ontology concepts,
by measuring the overlap in (normalized) tokens of the n-gram and the textual
description of the term. We also used a system which mapped look-up windows
in free text to ontology concepts by querying the dictionary with the tokens in
the lookup-window.

The benefit of this approach, in contrast with machine learning techniques,
is that we are relieved of the burden of having to acquire and annotate huge
amounts of clinical records. So the need to de-identify a number of clinical
records, as well as the need to hire domain experts to annotate these records,
declines. On the other hand, it might be that using unsupervised techniques
such as Patrick et al. (2007) and ¢cTAKES (Schuler et al., 2008) degrades the
performance. This should be investigated more thoroughly by evaluating the
different systems on the same evaluation set. We expanded the cTAKES system
with a machine learning module, due to difficulties evaluating the unsupervised
method of finding clinical entities: We did not have access to any corpora
annotated with clinical entities. The machine-learning module used the output
from the system to classify morbidities in an corpora annotated with these
morbidities.

We also sought to find out what kind of resources already exist, and gave
an overview of some of the important resources in chapter 5. We covered
SNOMED CT and UMLS when discussing ontologies and terminologies, and
saw how they are built up with semantic constrains and definitions. Different
IE systems developed for the clinical domain were also presented, and we see
that they all share a basic strategy: In a pipeline fashion, the systems first
uncover linguistic entities and structure, normalize the tokens and use these
linguistic elements as input to the IE part of the system. Finally we covered the
corpora available for research purposes. These were predominantly annotated
with clinical information, such as ICD-9 codes, smoking status, morbidities,
medications and clinical concepts. Some corpora were also annotated with
IE-specific information, such as negations, speculations and co-references.

But, how can such a system be of any benefit? We defined some use-cases
in section 2.4, but we are unfortunately not in any position to estimate the
fruitfulness of the system we evaluated in any clinical or research setting: Such
a study must include analysis performed by domain experts, likely medical
scientists. But we have exposed what such a system is capable of, given the
limited means currently available — hopefully in terms apprehensible for such
domain experts with little experience or knowledge of computational linguistics.
We hope this encourages further research within this highly interdisciplinary
field.
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8.2 The Road Ahead

Future work

Our experiments could have been improved by engineering other, and perhaps
better, features. For instance we could, instead of extracting all uncovered
entities in the text as features, focused on entities related to the different mor-
bidities. Reducing the amount of features to only include relevant ones might
help because the decision tree algorithm is confused as to which feature indi-
cates sparse classes. We could also benefited from term lists and the detection
of specific phrases which is likely to signify the presence of one of the mor-
bidities. Such terms and phrases could then be used to extract supplementary
features. Nevertheless, locating the relevant entities, terms or phrases necessi-
tates help from domain experts: We were not in a situation to determine which
of the uncovered entities in the text is important for each morbidity.

We could also have utilized the SNOMED CT ontology to a larger extent,
for instance by expanding the extracted information as described in section 4.3
thus harvesting more features. SNOMED CT could also help us uncover which
entities are related to the morbidities we were trying to detect, by exploring the
relations involving the concepts defining each of the morbidities. But even this
task would have benefited from help of a domain expert, to find the relevant
initial concepts describing the morbidities.

In our experiments we have primarily used machine learning based on deci-
sion trees to identify each morbidity. We would expect even better performance
if we used other algorithms, such as support vector machines. We did not find
the time to include additional experiments in our work, so these experiments
are left to future research.

In a more general perspective, one could check if an IE system which utilizes
ontologies does it better than an IE system which does not utilize any ontology,
in other words: Does ontologies contribute in finding named entities? We have
not seen any good way to investigate this directly, because of the lack of corpora
to evaluate this and because it is difficult to compare a system which utilizes
ontologies and a system that does not — they would necessarily be different
on other accounts as well.

When mapping terms from free text to an ontology, our experiments and
research indicates that using the textual definitions of the ontologies directly
— such as the query method used in cTAKES — enable us to capture a wider
range of entities to extract. Using rule-based approaches limits the variety of
entities by the fact that someone needs to write these rules to capture the en-
tities. Using algorithms based on machine-learning necessitates a large corpus
annotated with named entities.

Developing State of the Art IE Systems

With regards to developing new IE systems, the conclusion should now be
apparent: We need access to clinical records. We have included a discussion of
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this in appendix B. The next step is annotating these records with linguistic
and clinical information, so that we can train and evaluate the different modules
making up an IE system. Moreover, the importance of ontologies should not be
underestimated. As we have seen, access to ontologies with textual descriptions
written in the same language as the records proves to be a valuable tool, and
can even be used without developing sophisticated NLP machinery in advance
— as we saw in the n-gram matcher of Patrick et al. (2007).

There are good benefits of basing the IE system on a standardized pipeline-
system for handling unstructured data such as UIMA. There is less effort re-
quired when expanding existing systems, altering modules for own needs and
sharing components with other teams, as we witnessed first-hand when work-
ing on ¢cTAKES. We would therefore encourage new projects to use existing
standards and frameworks when developing NLP and IE modules.

We have also witnessed the need of keeping a consistent annotation scheme.
As we pointed out, a POS-tagger is best served data tokenized in the same
manner as the training data. A parser or a chunker will not work if used on
data annotated with different POS tags than what it is trained on. But even
seemingly small choices, as when the sentence splitter in cTAKES decides that
each End of Line (EOL) also end a sentence, have severe consequences. When
we worked on data where EOL frequented within sentences, we ran into several
problems: We could remove EOL in the documents, but not without a loss of
information — there was always an EOL before new sections, which could be
used when segmenting sections in the patient summaries. We tried to alter
the behaviour of the sentence segmentation module in cTAKES, but this gave
unrecognizable input to the POS-tagger which ended in obscure POS-tagging
(EOL could be tagged as a noun, for instance). So each decision should be
taken with great care, and be followed consistently throughout the project.

Automatic structuring of information in clinical reports in the future thus
rests on important actions we need to take today: Translating or developing
a biomedical ontology for the target language is an important step. Releasing
clinical data for scientific purposes seems necessary. Therefore, we see no need
to delay any project aiming at IE in the clinical domain.
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Appendix A

Evaluations

In the following pages we find the system evaluations of our classifiers. Tables
A.1to A.7 report on the performance during our temporary evaluations. Tables
A.9 and A.10 report on the performance on the final test set, with two different
systems. Table A.11 reports on the experimental binary classification.

For convenience, table A.8 comparing the different classifiers for each mor-
bidity is included. These are the classifiers trained on the initial training set
and evaluated on the held-out set (i.e. it summarizes all F-macro values from
table A.1 to table A.7).
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Intuitive judgment

APPENDIX A. EVALUATIONS

Disease P-Micro | P-Macro | R-Micro | R-Macro | F-Micro | F-Macro
Obesity 0.8198 0.8156 0.8198 0.8112 0.8198 0.8131
Depression 0.9391 0.9367 0.9391 0.8447 0.9391 0.8821
Hypertriglyceridemia | 0.9565 0.6909 0.9565 0.7365 0.9565 0.7109
Gallstones 0.9829 0.9594 0.9829 0.9594 0.9829 0.9594
OSA 0.9310 0.8919 0.9310 0.5867 0.9310 0.5716
Asthma 0.9636 0.9487 0.9636 0.9009 0.9636 0.9228
CAD 0.8991 0.9305 0.8991 0.6017 0.8991 0.5994
PVD 0.9636 0.9780 0.9636 0.9130 0.9636 0.9411
Gout 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Diabetes 0.9550 0.9589 0.9550 0.9347 0.9550 0.9456
CHF 0.7476 0.7313 0.7476 0.7399 0.7476 0.7343
Venous Insufficiency 0.9143 0.7551 0.9143 0.6842 0.9143 0.7120
GERD 0.9231 0.9518 0.9231 0.8621 0.9231 0.8947
OA 0.9057 0.8397 0.9057 0.8397 0.9057 0.8397
Hypercholesterolemia | 0.8300 0.8312 0.8300 0.8276 0.8300 0.8286
Hypertension 0.7383 0.5614 0.7383 0.5351 0.7383 0.5325
Intuitive 0.9064 0.9286 0.9064 0.5942 0.9064 0.5947
Textual judgment
Disease P-Micro | P-Macro | R-Micro | R-Macro | F-Micro | F-Macro
Obesity 0.8908 0.8945 0.8908 0.8796 0.8908 0.8853
Depression 0.9328 0.8813 0.9328 0.7904 0.9328 0.8273
Hypertriglyceridemia | 0.9916 0.9958 0.9916 0.7500 0.9916 0.8312
Gallstones 0.9580 0.9726 0.9580 0.4642 0.9580 0.4681
OSA 0.9322 0.9277 0.9322 0.4325 0.9322 0.4301
Asthma 0.9746 0.9713 0.9746 0.6250 0.9746 0.6311
CAD 0.8205 0.4268 0.8205 0.4346 0.8205 0.4306
PVD 0.9832 0.9673 0.9832 0.9673 0.9832 0.9673
Gout 0.9832 0.9782 0.9832 0.6667 0.9832 0.6555
Diabetes 0.8739 0.9236 0.8739 0.4427 0.8739 0.4325
CHF 0.7542 0.5083 0.7542 0.5216 0.7542 0.5137
Venous Insufficiency 0.9748 0.7857 0.9748 0.9870 0.9748 0.8570
GERD 0.9748 0.9766 0.9748 0.6466 0.9748 0.6449
OA 0.9328 0.8961 0.9328 0.8656 0.9328 0.8798
Hypercholesterolemia | 0.8898 0.6164 0.8898 0.5998 0.8898 0.6059
Hypertension 0.6864 0.7112 0.6864 0.3718 0.6864 0.3705
Textual 0.9099 0.4497 0.9099 0.4503 0.9099 0.4500

Table A.1: Scores on Named Entities only. Decision tree.
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Disease P-Micro | P-Macro | R-Micro | R-Macro | F-Micro | F-Macro
Obesity 0.7027 0.7010 0.7027 0.6731 0.7027 0.6758
Depression 0.8174 0.6468 0.8174 0.5737 0.8174 0.5857
Hypertriglyceridemia | 0.9652 0.9826 0.9652 0.5000 0.9652 0.4912
Gallstones 0.8462 0.4381 0.8462 0.4806 0.8462 0.4583
OSA 0.8966 0.9643 0.8966 0.4222 0.8966 0.4548
Asthma 0.8636 0.9312 0.8636 0.5312 0.8636 0.5219
CAD 0.7798 0.8693 0.7798 0.4957 0.7798 0.5015
PVD 0.8364 0.8460 0.8364 0.6247 0.8364 0.6526
Gout 0.8596 0.9298 0.8596 0.5000 0.8596 0.4623
Diabetes 0.7838 0.8422 0.7838 0.6553 0.7838 0.6709
CHF 0.7573 0.7446 0.7573 0.7585 0.7573 0.7478
Venous Insufficiency 0.9143 0.9567 0.9143 0.5500 0.9143 0.5683
GERD 0.7500 0.8713 0.7500 0.5517 0.7500 0.5199
OA 0.8208 0.6635 0.8208 0.5206 0.8208 0.4979
Hypercholesterolemia | 0.6800 0.6822 0.6800 0.6740 0.6800 0.6736
Hypertension 0.7757 0.6405 0.7757 0.5148 0.7757 0.4746
Intuitive 0.8175 0.8646 0.8175 0.5129 0.8175 0.5200
Textual judgment
Disease P-Micro | P-Macro | R-Micro | R-Macro | F-Micro | F-Macro
Obesity 0.7227 0.7265 0.7227 0.6908 0.7227 0.6948
Depression 0.8824 0.9407 0.8824 0.5333 0.8824 0.5310
Hypertriglyceridemia | 0.9832 0.9916 0.9832 0.5000 0.9832 0.4958
Gallstones 0.8319 0.7649 0.8319 0.2569 0.8319 0.2519
OSA 0.8729 0.9190 0.8729 0.3100 0.8729 0.3276
Asthma 0.8644 0.9544 0.8644 0.3542 0.8644 0.3481
CAD 0.7179 0.8833 0.7179 0.3704 0.7179 0.3605
PVD 0.8655 0.8098 0.8655 0.5784 0.8655 0.5993
Gout 0.8487 0.9492 0.8487 0.3529 0.8487 0.3428
Diabetes 0.7563 0.9125 0.7563 0.3183 0.7563 0.3203
CHF 0.7119 0.8160 0.7119 0.4944 0.7119 0.4824
Venous Insufficiency 0.9664 0.9832 0.9664 0.5000 0.9664 0.4915
GERD 0.8319 0.9435 0.8319 0.3500 0.8319 0.3342
OA 0.8319 0.9153 0.8319 0.5238 0.8319 0.4992
Hypercholesterolemia | 0.7034 0.8009 0.7034 0.4744 0.7034 0.4708
Hypertension 0.7203 0.7294 0.7203 0.3729 0.7203 0.3681
Textual 0.8197 0.8941 0.8197 0.3834 0.8197 0.3873

Table A.2: Scores on Named Entities only. Naive Bayes.
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Disease P-Micro | P-Macro | R-Micro | R-Macro | F-Micro | F-Macro
Obesity 0.7928 0.8089 0.7928 0.7659 0.7928 0.7740
Depression 0.9130 0.8709 0.9130 0.8092 0.9130 0.8353
Hypertriglyceridemia | 0.9391 0.6336 0.9391 0.7275 0.9391 0.6658
Gallstones 0.9231 0.8137 0.9231 0.8329 0.9231 0.8229
OSA 0.8879 0.5332 0.8879 0.5700 0.8879 0.5480
Asthma 0.9000 0.8800 0.9000 0.6822 0.9000 0.7330
CAD 0.8991 0.9299 0.8991 0.5988 0.8991 0.5976
PVD 0.9273 0.9330 0.9273 0.8421 0.9273 0.8778
Gout 0.9912 0.9949 0.9912 0.9688 0.9912 0.9813
Diabetes 0.5676 0.4593 0.5676 0.4584 0.5676 0.4557
CHF 0.6699 0.6712 0.6699 0.6838 0.6699 0.6646
Venous Insufficiency 0.9143 0.7517 0.9143 0.7289 0.9143 0.7396
GERD 0.8558 0.8689 0.8558 0.7625 0.8558 0.7938
OA 0.7830 0.6263 0.7830 0.6210 0.7830 0.6235
Hypercholesterolemia | 0.7300 0.7370 0.7300 0.7344 0.7300 0.7298
Hypertension 0.6262 0.4789 0.6262 0.4777 0.6262 0.4780
Intuitive 0.8351 0.5451 0.8351 0.5324 0.8351 0.5380
Textual judgment
Disease P-Micro | P-Macro | R-Micro | R-Macro | F-Micro | F-Macro
Obesity 0.8151 0.8231 0.8151 0.7939 0.8151 0.8017
Depression 0.9412 0.8738 0.9412 0.8522 0.9412 0.8626
Hypertriglyceridemia | 0.9748 0.4915 0.9748 0.4957 0.9748 0.4936
Gallstones 0.9328 0.9474 0.9328 0.4284 0.9328 0.4368
OSA 0.8814 0.6263 0.8814 0.3912 0.8814 0.3832
Asthma 0.9153 0.9145 0.9153 0.5142 0.9153 0.5395
CAD 0.8376 0.6859 0.8376 0.4448 0.8376 0.4401
PVD 0.9664 0.9345 0.9664 0.9345 0.9664 0.9345
Gout 0.9832 0.9782 0.9832 0.6667 0.9832 0.6555
Diabetes 0.5126 0.4471 0.5126 0.2045 0.5126 0.1999
CHF 0.7712 0.8468 0.7712 0.6105 0.7712 0.6528
Venous Insufficiency 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
GERD 0.9664 0.9725 0.9664 0.6299 0.9664 0.6343
OA 0.8235 0.6906 0.8235 0.6684 0.8235 0.6780
Hypercholesterolemia | 0.8814 0.6135 0.8814 0.5970 0.8814 0.6051
Hypertension 0.7034 0.7159 0.7034 0.3651 0.7034 0.3605
Textual 0.8693 0.4495 0.8693 0.4401 0.8693 0.4432

Table A.3: Scores on Named Entities marked with segment.
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Disease P-Micro | P-Macro | R-Micro | R-Macro | F-Micro | F-Macro
Obesity 0.7568 0.7502 0.7568 0.7446 0.7568 0.7468
Depression 0.9304 0.9296 0.9304 0.8197 0.9304 0.8619
Hypertriglyceridemia | 0.9565 0.6533 0.9565 0.6160 0.9565 0.6316
Gallstones 0.9402 0.8855 0.9402 0.8117 0.9402 0.8433
OSA 0.8966 0.8534 0.8966 0.4789 0.8966 0.4949
Asthma 0.9273 0.9150 0.9273 0.7759 0.9273 0.8255
CAD 0.8899 0.9213 0.8899 0.5967 0.8899 0.5922
PVD 0.9091 0.8711 0.9091 0.8466 0.9091 0.8580
Gout 0.9825 0.9949 0.9825 0.9636 0.9825 0.9788
Diabetes 0.9369 0.9289 0.9369 0.9217 0.9369 0.9252
CHF 0.7961 0.7822 0.7961 0.7947 0.7961 0.7864
Venous Insufficiency 0.9048 0.7146 0.9048 0.6342 0.9048 0.6617
GERD 0.7788 0.7246 0.7788 0.7198 0.7788 0.7221
OA 0.8585 0.7625 0.8585 0.7287 0.8585 0.7433
Hypercholesterolemia | 0.7600 0.7627 0.7600 0.7627 0.7600 0.7600
Hypertension 0.7664 0.6202 0.7664 0.5532 0.7664 0.5522
Intuitive 0.8768 0.5749 0.8768 0.5679 0.8768 0.5711
Textual judgment
Disease P-Micro | P-Macro | R-Micro | R-Macro | F-Micro | F-Macro
Obesity 0.8403 0.8619 0.8403 0.8153 0.8403 0.8261
Depression 0.8235 0.4994 0.8235 0.4997 0.8235 0.4946
Hypertriglyceridemia | 0.9832 0.9916 0.9832 0.5000 0.9832 0.4958
Gallstones 0.8992 0.9042 0.8992 0.3902 0.8992 0.3963
OSA 0.8983 0.8939 0.8983 0.3831 0.8983 0.3877
Asthma 0.9322 0.9479 0.9322 0.5384 0.9322 0.5674
CAD 0.8547 0.5405 0.8547 0.5418 0.8547 0.5407
PVD 0.9076 0.8171 0.9076 0.8314 0.9076 0.8240
Gout 0.9328 0.9213 0.9328 0.5816 0.9328 0.5845
Diabetes 0.8824 0.9324 0.8824 0.4377 0.8824 0.4348
CHF 0.7288 0.8277 0.7288 0.5062 0.7288 0.4940
Venous Insufficiency 0.9832 0.8333 0.9832 0.9913 0.9832 0.8956
GERD 0.9244 0.6218 0.9244 0.5599 0.9244 0.5851
OA 0.8319 0.7032 0.8319 0.6361 0.8319 0.6569
Hypercholesterolemia | 0.7203 0.5176 0.7203 0.4740 0.7203 0.4736
Hypertension 0.6695 0.6919 0.6695 0.3568 0.6695 0.3538
Textual 0.8635 0.4952 0.8635 0.4424 0.8635 0.4584

Table A.4: Scores on Named Entity only, minus family history, allergies and

past history segments.
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Disease P-Micro | P-Macro | R-Micro | R-Macro | F-Micro | F-Macro
Obesity 0.8198 0.8156 0.8198 0.8112 0.8198 0.8131
Depression 0.9391 0.9367 0.9391 0.8447 0.9391 0.8821
Hypertriglyceridemia | 0.9652 0.7410 0.9652 0.7410 0.9652 0.7410
Gallstones 0.9829 0.9594 0.9829 0.9594 0.9829 0.9594
OSA 0.9310 0.8919 0.9310 0.5867 0.9310 0.5716
Asthma 0.9727 0.9845 0.9727 0.9062 0.9727 0.9404
CAD 0.9083 0.9360 0.9083 0.6097 0.9083 0.6061
PVD 0.9636 0.9780 0.9636 0.9130 0.9636 0.9411
Gout 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Diabetes 0.9550 0.9695 0.9550 0.9265 0.9550 0.9446
CHF 0.7379 0.7223 0.7379 0.7322 0.7379 0.7253
Venous Insufficiency 0.9143 0.7551 0.9143 0.6842 0.9143 0.7120
GERD 0.9038 0.9220 0.9038 0.8382 0.9038 0.8684
OA 0.9057 0.8397 0.9057 0.8397 0.9057 0.8397
Hypercholesterolemia | 0.8300 0.8312 0.8300 0.8276 0.8300 0.8286
Hypertension 0.7383 0.5614 0.7383 0.5351 0.7383 0.5325
Intuitive 0.9064 0.9288 0.9064 0.5939 0.9064 0.5946
Textual judgment
Disease P-Micro | P-Macro | R-Micro | R-Macro | F-Micro | F-Macro
Obesity 0.8824 0.8836 0.8824 0.8724 0.8824 0.8769
Depression 0.9412 0.8933 0.9412 0.8237 0.9412 0.8538
Hypertriglyceridemia | 0.9916 0.9958 0.9916 0.7500 0.9916 0.8312
Gallstones 0.9580 0.9726 0.9580 0.4642 0.9580 0.4681
OSA 0.9322 0.9277 0.9322 0.4325 0.9322 0.4301
Asthma 0.9746 0.9904 0.9746 0.6250 0.9746 0.6396
CAD 0.8462 0.6941 0.8462 0.4479 0.8462 0.4460
PVD 0.9832 0.9673 0.9832 0.9673 0.9832 0.9673
Gout 0.9832 0.9782 0.9832 0.6667 0.9832 0.6555
Diabetes 0.8487 0.9091 0.8487 0.4334 0.8487 0.4195
CHF 0.7712 0.5181 0.7712 0.5321 0.7712 0.5249
Venous Insufficiency 0.9748 0.7857 0.9748 0.9870 0.9748 0.8570
GERD 0.9748 0.9766 0.9748 0.6466 0.9748 0.6449
OA 0.8908 0.8100 0.8908 0.8214 0.8908 0.8155
Hypercholesterolemia | 0.8898 0.6164 0.8898 0.5998 0.8898 0.6059
Hypertension 0.6949 0.7184 0.6949 0.3757 0.6949 0.3748
Textual 0.9088 0.6989 0.9088 0.4508 0.9088 0.4499

Table A.5: Scores on Named Entities only, minus family history sections.
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Disease P-Micro | P-Macro | R-Micro | R-Macro | F-Micro | F-Macro
Obesity 0.8739 0.8753 0.8739 0.8637 0.8739 0.8682
Depression 0.9565 0.9502 0.9565 0.8947 0.9565 0.9195
Hypertriglyceridemia | 0.9652 0.7410 0.9652 0.7410 0.9652 0.7410
Gallstones 0.9915 0.9952 0.9915 0.9643 0.9915 0.9791
OSA 0.9138 0.8669 0.9138 0.5800 0.9138 0.5534
Asthma 0.9727 0.9845 0.9727 0.9062 0.9727 0.9404
CAD 0.9174 0.9412 0.9174 0.6263 0.9174 0.6129
PVD 0.9545 0.9728 0.9545 0.8913 0.9545 0.9251
Gout 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Diabetes 0.9730 0.9720 0.9730 0.9641 0.9730 0.9679
CHF 0.7379 0.7320 0.7379 0.7486 0.7379 0.7314
Venous Insufficiency 0.9238 0.8030 0.9238 0.6895 0.9238 0.7294
GERD 0.8846 0.8792 0.8846 0.8248 0.8846 0.8462
OA 0.8962 0.8361 0.8962 0.7928 0.8962 0.8118
Hypercholesterolemia | 0.8400 0.8407 0.8400 0.8418 0.8400 0.8399
Hypertension 0.7570 0.5814 0.7570 0.5324 0.7570 0.5223
Intuitive 0.9122 0.9360 0.9122 0.5948 0.9122 0.5984
Textual judgment
Disease P-Micro | P-Macro | R-Micro | R-Macro | F-Micro | F-Macro
Obesity 0.9328 0.9372 0.9328 0.9245 0.9328 0.9297
Depression 0.9160 0.8179 0.9160 0.7808 0.9160 0.7976
Hypertriglyceridemia | 0.9832 0.7457 0.9832 0.7457 0.9832 0.7457
Gallstones 0.9580 0.9726 0.9580 0.4642 0.9580 0.4681
OSA 0.9153 0.9067 0.9153 0.4275 0.9153 0.4165
Asthma 0.9746 0.9904 0.9746 0.6250 0.9746 0.6396
CAD 0.8632 0.7732 0.8632 0.5030 0.8632 0.5086
PVD 0.9832 0.9673 0.9832 0.9673 0.9832 0.9673
Gout 0.9832 0.9782 0.9832 0.6667 0.9832 0.6555
Diabetes 0.8571 0.7930 0.8571 0.5584 0.8571 0.5497
CHF 0.7542 0.8381 0.7542 0.5222 0.7542 0.5115
Venous Insufficiency 0.9916 0.9000 0.9916 0.9957 0.9916 0.9423
GERD 0.9748 0.9766 0.9748 0.6466 0.9748 0.6449
OA 0.8992 0.8265 0.8992 0.8265 0.8992 0.8265
Hypercholesterolemia | 0.8983 0.9359 0.8983 0.7664 0.8983 0.8220
Hypertension 0.6441 0.3602 0.6441 0.3525 0.6441 0.3549
Textual 0.9083 0.7802 0.9083 0.4895 0.9083 0.5029

Table A.6: Scores on Named Entities only, minus family history sections. NEs
are marked with negation.
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Disease P-Micro | P-Macro | R-Micro | R-Macro | F-Micro | F-Macro
Obesity 0.8559 0.8533 0.8559 0.8483 0.8559 0.8505
Depression 0.9217 0.8983 0.9217 0.8145 0.9217 0.8484
Hypertriglyceridemia | 0.9739 0.9868 0.9739 0.6250 0.9739 0.6933
Gallstones 0.9915 0.9952 0.9915 0.9643 0.9915 0.9791
OSA 0.9224 0.5677 0.9224 0.5644 0.9224 0.5661
Asthma 0.9818 0.9896 0.9818 0.9375 0.9818 0.9614
CAD 0.9450 0.9592 0.9450 0.6414 0.9450 0.6323
PVD 0.9545 0.9728 0.9545 0.8913 0.9545 0.9251
Gout 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Diabetes 0.9730 0.9784 0.9730 0.9641 0.9730 0.9711
CHF 0.8447 0.8405 0.8447 0.8496 0.8447 0.8415
Venous Insufficiency 0.9524 0.9750 0.9524 0.7500 0.9524 0.8205
GERD 0.9327 0.9573 0.9327 0.8793 0.9327 0.9091
OA 0.9528 0.9728 0.9528 0.8684 0.9528 0.9103
Hypercholesterolemia | 0.8900 0.8901 0.8900 0.8890 0.8900 0.8895
Hypertension 0.9065 0.8848 0.9065 0.8361 0.9065 0.8570
Intuitive 0.9384 0.6265 0.9384 0.6137 0.9384 0.6196
Textual judgment
Disease P-Micro | P-Macro | R-Micro | R-Macro | F-Micro | F-Macro
Obesity 0.8992 0.9015 0.8992 0.8898 0.8992 0.8945
Depression 0.9412 0.8512 0.9412 0.9093 0.9412 0.8769
Hypertriglyceridemia | 0.9832 0.9916 0.9832 0.5000 0.9832 0.4958
Gallstones 0.9748 0.9929 0.9748 0.4833 0.9748 0.4878
OSA 0.9068 0.6619 0.9068 0.4119 0.9068 0.4119
Asthma 0.9831 0.9935 0.9831 0.6458 0.9831 0.6526
CAD 0.9145 0.9189 0.9145 0.7122 0.9145 0.6884
PVD 0.9664 0.9542 0.9664 0.9117 0.9664 0.9314
Gout 0.9832 0.9782 0.9832 0.6667 0.9832 0.6555
Diabetes 0.8908 0.9419 0.8908 0.5586 0.8908 0.6034
CHF 0.8644 0.9126 0.8644 0.5951 0.8644 0.5860
Venous Insufficiency 0.9832 0.9915 0.9832 0.7500 0.9832 0.8290
GERD 0.9664 0.6633 0.9664 0.6167 0.9664 0.6379
OA 0.9412 0.9197 0.9412 0.8707 0.9412 0.8927
Hypercholesterolemia | 0.9407 0.7997 0.9407 0.7985 0.9407 0.7991
Hypertension 0.9407 0.8023 0.9407 0.7811 0.9407 0.7908
Textual 0.9425 0.6488 0.9425 0.5808 0.9425 0.6063

Table A.7: Scores on NEs marked as present and negated, feature-values are
frequency count. Family history sections are ignored.




Intuitive judgements

109

Disease NE-only | +SEG | -ALL | -FAM | NEG-FAM | FREQ
Obesity 0.8131 0.7740 | 0.7468 | 0.8131 0.8682 0.8505
Depression 0.8821 0.8353 | 0.8619 | 0.8821 0.9195 0.8484
Hypertriglyceridemia 0.7109 0.6658 | 0.6316 | 0.7410 0.7410 0.6933
Gallstones 0.9594 0.8229 | 0.8433 | 0.9594 0.9791 0.9791
OSA 0.5716 | 0.5480 | 0.4949 | 0.5716 0.5534 0.5661
Asthma 0.9228 0.7330 | 0.8255 | 0.9404 0.9404 0.9614
CAD 0.5994 0.5976 | 0.5922 | 0.6061 0.6129 0.6323
PVD 0.9411 | 0.8778 | 0.8580 | 0.9411 0.9251 0.9251
Gout 1.0000 | 0.9813 | 0.9788 | 1.0000 1.0000 1.0000
Diabetes 0.9456 0.4557 | 0.9252 | 0.9446 0.9679 0.9711
CHF 0.7343 0.6646 | 0.7864 | 0.7253 0.7314 0.8415
Venous Insufficiency 0.7120 0.7396 | 0.6617 | 0.7120 0.7294 0.8205
GERD 0.8947 0.7938 | 0.7221 | 0.8684 0.8462 0.9091
OA 0.8397 0.6235 | 0.7433 | 0.8397 0.8118 0.9103
Hypercholesterolemia | 0.8286 0.7298 | 0.7600 | 0.8286 0.8399 0.8895
Hypertension 0.5325 0.4780 | 0.5522 | 0.5325 0.5223 0.8570
Intuitive 0.5947 0.5380 | 0.5711 | 0.5946 0.5984 0.6196
Textual judgements

Disease NE-only | +SEG | -ALL | -FAM | NEG-FAM | FREQ
Obesity 0.8853 0.8017 | 0.8261 | 0.8769 0.9297 0.8945
Depression 0.8273 0.8626 | 0.4946 | 0.8538 0.7976 0.8769
Hypertriglyceridemia | 0.8312 | 0.4936 | 0.4958 | 0.8312 0.7457 0.4958
Gallstones 0.4681 0.4368 | 0.3963 | 0.4681 0.4681 0.4878
OSA 0.4301 | 0.3832 | 0.3877 | 0.4301 0.4165 0.4119
Asthma 0.6311 0.5395 | 0.5674 | 0.6396 0.6396 0.6526
CAD 0.4306 0.4401 | 0.5407 | 0.4460 0.5086 0.6884
PVD 0.9673 | 0.9345 | 0.8240 | 0.9673 0.9673 0.9314
Gout 0.6555 | 0.6555 | 0.5845 | 0.6555 0.6555 0.6555
Diabetes 0.4325 0.1999 | 0.4348 | 0.4195 0.5497 0.6034
CHF 0.5137 0.6528 | 0.4940 | 0.5249 0.5115 0.5860
Venous Insufficiency 0.8570 1.0000 | 0.8956 | 0.8570 0.9423 0.8290
GERD 0.6449 | 0.6343 | 0.5851 | 0.6449 0.6449 0.6379
OA 0.8798 0.6780 | 0.6569 | 0.8155 0.8265 0.8927
Hypercholesterolemia | 0.6059 0.6051 | 0.4736 | 0.6059 0.8220 0.7991
Hypertension 0.3705 0.3605 | 0.3538 | 0.3748 0.3549 0.7908
Textual 0.4500 0.4432 | 0.4584 | 0.4499 0.5029 0.6063

Table A.8: F-macro evaluations on the held-out data set. A comparison of the
different classifiers across all 16 morbidities.
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Disease P-Micro | P-Macro | R-Micro | R-Macro | F-Micro | F-Macro
Obesity 0.8881 0.8863 0.8881 0.8852 0.8881 0.8857
Depression 0.9266 0.9154 0.9266 0.8641 0.9266 0.8863
Hypertriglyceridemia | 0.9753 0.8962 0.9753 0.8357 0.9753 0.8631
Gallstones 0.9715 0.9660 0.9715 0.9276 0.9715 0.9455
OSA 0.9596 0.6158 0.9596 0.6056 0.9596 0.6106
Asthma 0.9788 0.9570 0.9788 0.9570 0.9788 0.9570
CAD 0.9301 0.9503 0.9301 0.6229 0.9301 0.6196
PVD 0.9591 0.9518 0.9591 0.6044 0.9591 0.6112
Gout 0.9920 0.9692 0.9920 0.9954 0.9920 0.9818
Diabetes 0.9457 0.9360 0.9457 0.9360 0.9457 0.9360
CHF 0.8242 0.8865 0.8242 0.5522 0.8242 0.5509
Venous Insufficiency 0.9532 0.8628 0.9532 0.7191 0.9532 0.7702
GERD 0.9085 0.9234 0.9085 0.5624 0.9085 0.5743
OA 0.8853 0.8832 0.8853 0.5478 0.8853 0.5488
Hypercholesterolemia | 0.8445 0.8418 0.8445 0.8448 0.8445 0.8429
Hypertension 0.7578 0.4836 0.7578 0.4935 0.7578 0.4726
Intuitive 0.9208 0.6065 0.9208 0.6042 0.9208 0.6053
Textual judgment
Disease P-Micro | P-Macro | R-Micro | R-Macro | F-Micro | F-Macro
Obesity 0.9047 0.7058 0.9047 0.4546 0.9047 0.4549
Depression 0.8696 0.7318 0.8696 0.6691 0.8696 0.6924
Hypertriglyceridemia | 0.9822 0.7797 0.9822 0.6970 0.9822 0.7308
Gallstones 0.9744 0.9899 0.9744 0.6245 0.9744 0.6391
OSA 0.9682 0.6330 0.9682 0.6153 0.9682 0.6237
Asthma 0.9782 0.7194 0.9782 0.4898 0.9782 0.4790
CAD 0.8893 0.5596 0.8893 0.5101 0.8893 0.5205
PVD 0.9684 0.9579 0.9684 0.8951 0.9684 0.9233
Gout 0.9842 0.9600 0.9842 0.9656 0.9842 0.9628
Diabetes 0.8807 0.6423 0.8807 0.6683 0.8807 0.6546
CHF 0.8145 0.6291 0.8145 0.5780 0.8145 0.5905
Venous Insufficiency 0.9921 0.8571 0.9921 0.9960 0.9921 0.9146
GERD 0.9821 0.9801 0.9821 0.4868 0.9821 0.4834
OA 0.8964 0.8347 0.8964 0.7761 0.8964 0.8006
Hypercholesterolemia | 0.8785 0.8586 0.8785 0.5256 0.8785 0.5524
Hypertension 0.6846 0.6816 0.6846 0.3467 0.6846 0.3423
Textual 0.9158 0.5958 0.9158 0.5178 0.9158 0.5433

Table A.9: Scores on final configuration on test-set using nominal feature val-

ues.
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Disease P-Micro | P-Macro | R-Micro | R-Macro | F-Micro | F-Macro
Obesity 0.9217 0.9320 0.9217 0.9146 0.9217 0.9216
Depression 0.9476 0.9393 0.9476 0.9049 0.9476 0.9206
Hypertriglyceridemia | 0.9424 0.5751 0.9424 0.5157 0.9424 0.5185
Gallstones 0.9817 0.9893 0.9817 0.9438 0.9817 0.9648
OSA 0.9414 0.6019 0.9414 0.5815 0.9414 0.5913
Asthma 0.9703 0.9616 0.9703 0.9154 0.9703 0.9367
CAD 0.9367 0.9551 0.9367 0.6266 0.9367 0.6240
PVD 0.9484 0.9484 0.9484 0.5745 0.9484 0.5924
Gout 0.9660 0.9470 0.9660 0.8889 0.9660 0.9152
Diabetes 0.9415 0.9273 0.9415 0.9368 0.9415 0.9318
CHF 0.8219 0.8814 0.8219 0.5538 0.8219 0.5504
Venous Insufficiency 0.9555 0.9366 0.9555 0.6884 0.9555 0.7566
GERD 0.9225 0.9471 0.9225 0.5684 0.9225 0.5868
OA 0.8961 0.9021 0.8961 0.5496 0.8961 0.5580
Hypercholesterolemia | 0.8817 0.8793 0.8817 0.8836 0.8817 0.8806
Hypertension 0.9260 0.8988 0.9260 0.8596 0.9260 0.8773
Intuitive 0.9324 0.6195 0.9324 0.6097 0.9324 0.6142
Textual judgement
Disease P-Micro | P-Macro | R-Micro | R-Macro | F-Micro | F-Macro
Obesity 0.9087 0.7087 0.9087 0.4571 0.9087 0.4576
Depression 0.9585 0.9255 0.9585 0.9005 0.9585 0.9124
Hypertriglyceridemia | 0.9783 0.6577 0.9783 0.5480 0.9783 0.5714
Gallstones 0.9744 0.9864 0.9744 0.6276 0.9744 0.6393
OSA 0.9443 0.6273 0.9443 0.5532 0.9443 0.5834
Asthma 0.9722 0.9684 0.9722 0.4787 0.9722 0.4734
CAD 0.9175 0.6417 0.9175 0.6154 0.9175 0.6268
PVD 0.9724 0.9847 0.9724 0.8906 0.9724 0.9308
Gout 0.9960 0.9815 0.9960 0.9978 0.9960 0.9895
Diabetes 0.9066 0.9186 0.9066 0.6442 0.9066 0.6542
CHF 0.8649 0.7425 0.8649 0.6169 0.8649 0.6325
Venous Insufficiency 0.9980 0.9990 0.9980 0.9500 0.9980 0.9732
GERD 0.9742 0.7317 0.9742 0.4693 0.9742 0.4753
OA 0.9343 0.9009 0.9343 0.8589 0.9343 0.8779
Hypercholesterolemia | 0.9044 0.8691 0.9044 0.5419 0.9044 0.5666
Hypertension 0.9760 0.9836 0.9760 0.8123 0.9760 0.8700
Textual 0.9490 0.6519 0.9490 0.5766 0.9490 0.6052

Table A.10: Scores on final configuration on test-set using frequency feature

values.
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Disease P-Micro | P-Macro | R-Micro | R-Macro | F-Micro | F-Macro
Obesity 0.9217 0.9265 0.9217 0.9146 0.9217 0.9191
Depression 0.9476 0.9393 0.9476 0.9049 0.9476 0.9206
Hypertriglyceridemia | 0.9424 0.5751 0.9424 0.5157 0.9424 0.5185
Gallstones 0.9817 0.9893 0.9817 0.9438 0.9817 0.9648
OSA 0.9495 0.8953 0.9495 0.8904 0.9495 0.8928
Asthma 0.9703 0.9616 0.9703 0.9154 0.9703 0.9367
CAD 0.9389 0.9345 0.9389 0.9400 0.9389 0.9369
PVD 0.9484 0.9225 0.9484 0.8561 0.9484 0.8852
Gout 0.9660 0.9470 0.9660 0.8889 0.9660 0.9152
Diabetes 0.9415 0.9273 0.9415 0.9368 0.9415 0.9318
CHF 0.8242 0.8243 0.8242 0.8250 0.8242 0.8241
Venous Insufficiency 0.9555 0.9366 0.9555 0.6884 0.9555 0.7566
GERD 0.9249 0.9275 0.9249 0.8503 0.9249 0.8814
OA 0.8983 0.8594 0.8983 0.8150 0.8983 0.8343
Hypercholesterolemia | 0.8817 0.8793 0.8817 0.8836 0.8817 0.8806
Hypertension 0.9260 0.8988 0.9260 0.8596 0.9260 0.8773
Intuitive 0.9335 0.9294 0.9335 0.9137 0.9335 0.9210
Textual judgment
Disease P-Micro | P-Macro | R-Micro | R-Macro | F-Micro | F-Macro
Obesity 0.9209 0.9228 0.9209 0.9131 0.9209 0.9172
Depression 0.9585 0.9255 0.9585 0.9005 0.9585 0.9124
Hypertriglyceridemia | 0.9783 0.6577 0.9783 0.5480 0.9783 0.5714
Gallstones 0.9783 0.9819 0.9783 0.9413 0.9783 0.9602
OSA 0.9602 0.9546 0.9602 0.8768 0.9602 0.9105
Asthma 0.9782 0.9520 0.9782 0.9574 0.9782 0.9546
CAD 0.9437 0.9421 0.9437 0.9438 0.9437 0.9429
PVD 0.9724 0.9847 0.9724 0.8906 0.9724 0.9308
Gout 0.9960 0.9815 0.9960 0.9978 0.9960 0.9895
Diabetes 0.9165 0.8996 0.9165 0.9141 0.9165 0.9062
CHF 0.8790 0.8747 0.8790 0.8767 0.8790 0.8756
Venous Insufficiency 0.9980 0.9990 0.9980 0.9500 0.9980 0.9732
GERD 0.9861 0.9737 0.9861 0.9680 0.9861 0.9708
OA 0.9343 0.9009 0.9343 0.8589 0.9343 0.8779
Hypercholesterolemia | 0.9203 0.9192 0.9203 0.9183 0.9203 0.9187
Hypertension 0.9780 0.9799 0.9780 0.9619 0.9780 0.9704
Textual 0.9564 0.9499 0.9564 0.9397 0.9564 0.9446

Table A.11: Final scores using frequency feature values, ignoring low-frequent

classes.




Appendix B

Access to unstructured
information

Since the importance of using clinical data when developing IE systems has
become so obvious during our work, we include a discussion of this here.

B.1 De-identification of documents

A necessary resource when developing information extraction systems for the
clinical domain is training and evaluation material, i.e. clinical records. But
if one wants to redistribute sensitive clinical information de-identification is
a prerequisite. This is an expensive task, since the full de-identification of a
document requires a number of stated facts (private health information, PHI)
to be altered or deleted, according to official privacy policy. We have already
talked about some of these issues covering the i2b2 2007 de-identification task
(page 56). Uzuner et al. (2007) summarise the following requirements from the
Administrative Simplification Regulations (paragraph 164.514) that is to be
met if the data is to be considered as de-identified (the quote within the quote
is from the paragraph):

1 An expert must determine and document “that the risk is very
small that the information could be used, alone or in combina-
tion with other reasonably available information, by an anticipated
recipient to identify an individual who is a subject of the informa-
tion.”

2 Or, the data must be purged of a specified list of seventeen cat-
egories of possible identifiers relating to the patient or relatives,
household members and employers, and any other information that
may make it possible to identify the individual. Many institutions
consider the clinicians caring for a patient and the names of hos-
pitals, clinics, and wards to fall into this final category because of
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the heightened risk of identifying patients from such information.
(Uzuner et al., 2007, p. 550)

There has been attempts at building systems for automatic de-identification,
as explored in the i2b2 de-identification challenge (Uzuner et al., 2007). But in
order to make reliable de-identification systems one would need training and
evaluation material, i.e. clinical records, but such records cannot be released
without prior de-identification. In Scandinavia there has been some attempts at
de-identifying clinical records, for instance: Tveit et al. (2004) worked on Nor-
wegian general practitioner records. In Sweden they annotated clinical records
taken from the Stockholm EPR Corpus for anonymization, as described by
Velupillai (2012). In Denmark Pantazos et al. (2011) created a database of
323,122 de-identified patient records.

If one is to release de-identified clinical records one should make sure of two
things: (1) One should be able to discover the cases where two different records
are referring to the same person, as this could provide useful insight into, for
instance, historical development of a patient. So if a particular name, say
“Mary Doe” is replaced with a surrogate name “Jane Smith”, all occurrences
of “Mary Doe” in other records should be replaced with the same name. Other
names should not be replaced with “Jane Smith”. The same principle goes for
social security numbers, etc.

(2) All replacements should be annotated in a concise manner so that the
material can be used when training and/or evaluating systems for automatic
de-identification. Since the task of de-identification is so expensive in itself,
making an effort to add such valuable meta-data to the documents should be
considered. PHI fields in the document could for instance be marked with
text-span, type (name, social security number, etc.) and role (patient, doctor,
family-member, facility, etc.). We imagine that a project like this would benefit
from a graphical interface, where annotators could just select the relevant text
and pick the type and role from drop-down lists. A computer program could
then automatically insert surrogate names and numbers in accordance with
(1), and output the result with the de-identified annotated text stored in a
computable friendly fashion.

B.2 In-house Material

Instead of releasing clinical records to a wider research audience, one could in-
stead allow access to the EMR/EHR belonging to an institution to in-house re-
searchers/developers. Two notable examples of such collections used in NLP /IE
research are the Mayo Clinic EMR (Savova et al., 2010) and the Stockholm
EPR Corpus (Dalianis et al., 2009). The use of records unavailable to a wider
research group has it downside, however: It is difficult, if not impossible, for
other scientists to replicate experiments if they want to check if the original
research was in error or investigate possible improvements.

When making a new IE system, it would for instance be interesting to see
if there is any statistical significant difference between the new system and the
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previous attempts. But to fully investigate this requires access to the same
system (in the best case), or at least a way of building an equivalent system.
Building an equivalent system is impossible if the other systems are trained on
unobtainable material.

It is also in some cases difficult to improve a module in a pipeline, while
keeping the rest of the modules, without access to the same material that the
other modules are trained on. This is because of the dependency between the
modules; the output of one module in an TE/NLP pipeline is usually the input
of the next. So even if one builds, say, a better POS-tager, it is hard to evaluate
the over-all system performance because (for instance) the chunker is trained
on the output of the old tagger which might make the performance drop even
if the new module is performing better. If the material that all modules were
trained on is available, one have the ability to make one of the modules better
and train the rest of the modules with the output from the modified module
together with the annotated material. This situation can be avoided by training
and evaluating all modules on a gold standard.






Appendix C

Detecting Document Section
Types

The following strings were used to detect the different section types in the
discharge summaries. If the headline contained on of the sub-strings in the
right column, the whole section would be classified as the type in the left
column on corresponding row.

Allergies “ALLERG”

Comments “SERIOUS INTERACTION”, “DISPOSITION”,
“DIET”, “PRESENT ILL”, “HOSPITAL COURSE”,
“DISCHARGE CONDITION”, “OPERATIONS AND
PROCEDURES”, “PLAN”, “COMMENTS”, “BRIEF
RESUME OF HOSPITAL COURSE”, “SUMMARY”,
“DISCHARGE PATIENT ON”, “EXAMINATION”,
“DISCHARGE”, “COMPLA”, “PROCED”,
“FOLLOW”, “IMPRESSI”

Diagnosis “DIAGN”

Family history “SOCIAL HISTORY”, “FAMILY HISTORY”
Laboratory data | “LABORA”, “LABS”

Medications “MEDICAT”
Other
Past “PAST”

Table C.1: Sub-strings of headlines for detecting the section type.
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